SlideShare a Scribd company logo
3
Most read
4
Most read
5
Most read
Theory of Computation
Topic: Definition of Turing Machine
INTRODUCING TURING MACHINES
Introduced by Alan Turing in 1936.
A simple mathematical model of a computer.
Models the computing capability of a computer.
DEFINITION
A Turing machine (TM) is a finite-state machine with an infinite tape
and a tape head that can read or write one tape cell and move left or
right.
It normally accepts the input string, or completes its computation, by
entering a final or accepting state.
Tape is use for input and working storage.
Representation of Turing Machine
•
Turing Machine is represented by-
• M=(Q,Σ, Γ,δ,q0,B,F) ,
• Where
• Q is the finite state of states
• Σ a set of τ not including B, is the set of input symbols,
• τ is the finite state of allowable tape symbols,
• δ is the next move function, a mapping from Q × Γ to
• Q × Γ ×{L,R}
• Q0 in Q is the start state,
• B a symbol of Γ is the blank,
• F is the set of final states.
THE TURING MACHINE MODELTHE TURING MACHINE MODEL
Transition function
One move (denoted by |---) in a TM does the following:
δ(q , X) = (p ,Y ,R/L)
• q is the current state
• X is the current tape symbol pointed by tape head
• State changes from q to p
Turing machine as language acceptors
A Turing machine halts when it no longer has available moves.
 If it halts in a final state, it accepts its input, otherwise it rejects its
input.
For language accepted by M ,we define
L(M)={ w ε ∑+
: q0w |– x1qfx2 for some qf ε F , x1 ,x2ε Γ *
}
Turing machine as transducers
• To use a Turing machine as a transducer, treat the entire nonblank
portion of the initial tape as input
• Treat the entire nonblank portion of the tape when the machine halts
as output.
A Turing machine defines a function y = f (x) for strings x, y ε ∑*
if
q0x |*– qf y
• A function index is “Turing computable” if there exists a Turing
machine that can perform the above task.
ID of a TMID of a TM
• Instantaneous Description or ID :
 X1 X2…Xi-1 q Xi Xi+1 …Xn
Means:
 q is the current state
 Tape head is pointing to Xi
 X1X2…Xi-1XiXi+1… Xn are the current tape symbols
 δ (q , Xi ) = (p ,Y , R ) is same as:δ (q , Xi ) = (p ,Y , R ) is same as:
X1 X2…Xi-1 q Xi Xi+1 …Xn|---- X1 X2…Xi-1 YY pp Xi+1…Xn
 δδ (q Xi) = (p Y L) same as:(q Xi) = (p Y L) same as:
X1 X2…Xi-1 q Xi Xi+1 …Xn|---- X1 X2…ppXi-1YY Xi+1 …Xn
VARIATIONS OF TURING MACHINESVARIATIONS OF TURING MACHINES
Multitape Turing Machines
Non deterministic Turing machines
Multihead Turing Machines
Off-line Turing machines
Multidimensional Turing machines
MULTITAPE TURING MACHINES
A Turing Machine with several tapes
 Every Tape’s have their Controlled own R/W Head
 For N- tape TM M=(Q,Σ, Γ,δ,q0,B,F)
• we define δ : Q X ΓN
Q X ΓN
X { L , R} N
NON DETERMINISTIC TURINGNON DETERMINISTIC TURING
MACHINESMACHINES
It is similar to DTM except that for any input symbol and current
state it has a number of choices
A string is accepted by a NDTM if there is a sequence of moves that
leads to a final state
The transaction function δ : Q X Γ 2 QXΓ X{L,R}
MULTIHEAD TURING MACHINEMULTIHEAD TURING MACHINE
Multihead TM has a number of heads instead of one.
 Each head indepently read/ write symbols and move left / right or
keep stationery.
OFF- LINE TURING MACHINEOFF- LINE TURING MACHINE
An Offline Turing Machine has two tapes
1. One tape is read-only and contains the input
2. The other is read-write and is initially blank.
MULTIDIMENSIONAL TURINGMULTIDIMENSIONAL TURING
MACHINEMACHINE
A Multidimensional TM has a multidimensional tape.
• For example, a two-dimensional Turing machine would read and
write on an infinite plane divided into squares, like a checkerboard.
 For a two- Dimensional Turing Machine transaction function define
as:
• δ : Q X Γ Q X Γ X { L , R,U,D}
Applications of TM
• Check Decidability If TM cannot solve a problem in countable time 
then there could not be any algorithm which could solve that 
problem (That is the problem is undecidable).For a decision problem 
if its TM halt in countable time for all finite length inputs then we can 
say that the problem could be solved by an algorithm in countable 
time.
• Classify Problem TM helps to classify decidable problems into classes 
of Polynomial Hierarchy. Suppose we found that the problem is 
decidable. Then out target become how efficiently we can solve it. 
The efficiency been calculated in number of steps, extra space used , 
length of the code/size of the FSM.
• Design and Implement Algorithm for Practical Machines TM helps to 
propagate idea of algorithm in other practical machines. After the 
successful check of 1,2 criteria we can use our practical 
devices/computers to design and implement algorithm.
Thankyou

More Related Content

PPTX
Turing machine by_deep
PPTX
Turing Machine
PPTX
Turing Machine
PPTX
Turing machine
PPTX
Turing machine
PPTX
Turing machine
PPTX
Turing machine-TOC
PPTX
Turing machine
Turing machine by_deep
Turing Machine
Turing Machine
Turing machine
Turing machine
Turing machine
Turing machine-TOC
Turing machine

What's hot (20)

PPTX
Turing machine
PPT
Turing Machine
PDF
Flat unit 3
PPTX
Pumping lemma
PPTX
Automata Theory - Turing machine
PPTX
Church Turing Thesis
PPTX
Regular expressions
PDF
Turing Machine
PPTX
LINEAR BOUNDED AUTOMATA (LBA).pptx
PPTX
Simplification of cfg ppt
PPTX
Multi dimensional turing machine
PDF
Automata theory
PPT
Finite automata
PPTX
Types of Parser
PPTX
Finite Automata: Deterministic And Non-deterministic Finite Automaton (DFA)
PPTX
Chomsky classification of Language
PPT
Variants of Turing Machine
PPT
Chomsky Hierarchy.ppt
PPT
pushdown automata
PPT
NFA or Non deterministic finite automata
Turing machine
Turing Machine
Flat unit 3
Pumping lemma
Automata Theory - Turing machine
Church Turing Thesis
Regular expressions
Turing Machine
LINEAR BOUNDED AUTOMATA (LBA).pptx
Simplification of cfg ppt
Multi dimensional turing machine
Automata theory
Finite automata
Types of Parser
Finite Automata: Deterministic And Non-deterministic Finite Automaton (DFA)
Chomsky classification of Language
Variants of Turing Machine
Chomsky Hierarchy.ppt
pushdown automata
NFA or Non deterministic finite automata
Ad

Similar to Turing Machine (20)

PPTX
4.1 turing machines
PPT
1LECTURE 9TuringMachines.ppt
PDF
Turing machine seminar report
PPTX
Turing Machine presentation for Theory of Computation
PPTX
Formal Languages of Automata theory: Turing Machines
PPTX
Turing machine
PPTX
TuringMachines-myppt.pptx
PPTX
AUTOMATA AUTOMATA AUTOMATAAutomata9Chapter8.pptx
PDF
Theory of computation complete 5th module
PDF
TuringMachines.pdf
PDF
TuringMachines.pdf
DOCX
TOA.docx
DOCX
TOA.docx
PPTX
souraj Toc.pptx
PDF
QB104544.pdf
PDF
Turing machines
PPTX
Turing Machine.pptx
PPT
Unit-3_TOC theory of computation subj.ppt
PPTX
Theory of Automata and formal languages Unit 5
PDF
Turing machine Introduction
4.1 turing machines
1LECTURE 9TuringMachines.ppt
Turing machine seminar report
Turing Machine presentation for Theory of Computation
Formal Languages of Automata theory: Turing Machines
Turing machine
TuringMachines-myppt.pptx
AUTOMATA AUTOMATA AUTOMATAAutomata9Chapter8.pptx
Theory of computation complete 5th module
TuringMachines.pdf
TuringMachines.pdf
TOA.docx
TOA.docx
souraj Toc.pptx
QB104544.pdf
Turing machines
Turing Machine.pptx
Unit-3_TOC theory of computation subj.ppt
Theory of Automata and formal languages Unit 5
Turing machine Introduction
Ad

More from Rahul Narang (8)

PPTX
OpAmps
PPT
Disk scheduling algo os
PPT
System of linear algebriac equations nsm
PPT
Program control
PPTX
Greeenhouse effects
PPTX
Embarking the journey to contributorship
PPTX
Laplace transforms
PPTX
View of data DBMS
OpAmps
Disk scheduling algo os
System of linear algebriac equations nsm
Program control
Greeenhouse effects
Embarking the journey to contributorship
Laplace transforms
View of data DBMS

Recently uploaded (20)

PPTX
additive manufacturing of ss316l using mig welding
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
CH1 Production IntroductoryConcepts.pptx
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPT
Project quality management in manufacturing
PDF
Well-logging-methods_new................
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPT
Mechanical Engineering MATERIALS Selection
PDF
Arduino robotics embedded978-1-4302-3184-4.pdf
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
Sustainable Sites - Green Building Construction
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Geodesy 1.pptx...............................................
PPTX
Lesson 3_Tessellation.pptx finite Mathematics
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
Welding lecture in detail for understanding
additive manufacturing of ss316l using mig welding
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
CH1 Production IntroductoryConcepts.pptx
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Project quality management in manufacturing
Well-logging-methods_new................
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
UNIT 4 Total Quality Management .pptx
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Mechanical Engineering MATERIALS Selection
Arduino robotics embedded978-1-4302-3184-4.pdf
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
Sustainable Sites - Green Building Construction
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
CYBER-CRIMES AND SECURITY A guide to understanding
Geodesy 1.pptx...............................................
Lesson 3_Tessellation.pptx finite Mathematics
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Welding lecture in detail for understanding

Turing Machine

  • 1. Theory of Computation Topic: Definition of Turing Machine
  • 2. INTRODUCING TURING MACHINES Introduced by Alan Turing in 1936. A simple mathematical model of a computer. Models the computing capability of a computer.
  • 3. DEFINITION A Turing machine (TM) is a finite-state machine with an infinite tape and a tape head that can read or write one tape cell and move left or right. It normally accepts the input string, or completes its computation, by entering a final or accepting state. Tape is use for input and working storage.
  • 4. Representation of Turing Machine • Turing Machine is represented by- • M=(Q,Σ, Γ,δ,q0,B,F) , • Where • Q is the finite state of states • Σ a set of τ not including B, is the set of input symbols, • τ is the finite state of allowable tape symbols, • δ is the next move function, a mapping from Q × Γ to • Q × Γ ×{L,R} • Q0 in Q is the start state, • B a symbol of Γ is the blank, • F is the set of final states.
  • 5. THE TURING MACHINE MODELTHE TURING MACHINE MODEL
  • 6. Transition function One move (denoted by |---) in a TM does the following: δ(q , X) = (p ,Y ,R/L) • q is the current state • X is the current tape symbol pointed by tape head • State changes from q to p
  • 7. Turing machine as language acceptors A Turing machine halts when it no longer has available moves.  If it halts in a final state, it accepts its input, otherwise it rejects its input. For language accepted by M ,we define L(M)={ w ε ∑+ : q0w |– x1qfx2 for some qf ε F , x1 ,x2ε Γ * }
  • 8. Turing machine as transducers • To use a Turing machine as a transducer, treat the entire nonblank portion of the initial tape as input • Treat the entire nonblank portion of the tape when the machine halts as output. A Turing machine defines a function y = f (x) for strings x, y ε ∑* if q0x |*– qf y • A function index is “Turing computable” if there exists a Turing machine that can perform the above task.
  • 9. ID of a TMID of a TM • Instantaneous Description or ID :  X1 X2…Xi-1 q Xi Xi+1 …Xn Means:  q is the current state  Tape head is pointing to Xi  X1X2…Xi-1XiXi+1… Xn are the current tape symbols  δ (q , Xi ) = (p ,Y , R ) is same as:δ (q , Xi ) = (p ,Y , R ) is same as: X1 X2…Xi-1 q Xi Xi+1 …Xn|---- X1 X2…Xi-1 YY pp Xi+1…Xn  δδ (q Xi) = (p Y L) same as:(q Xi) = (p Y L) same as: X1 X2…Xi-1 q Xi Xi+1 …Xn|---- X1 X2…ppXi-1YY Xi+1 …Xn
  • 10. VARIATIONS OF TURING MACHINESVARIATIONS OF TURING MACHINES Multitape Turing Machines Non deterministic Turing machines Multihead Turing Machines Off-line Turing machines Multidimensional Turing machines
  • 11. MULTITAPE TURING MACHINES A Turing Machine with several tapes  Every Tape’s have their Controlled own R/W Head  For N- tape TM M=(Q,Σ, Γ,δ,q0,B,F) • we define δ : Q X ΓN Q X ΓN X { L , R} N
  • 12. NON DETERMINISTIC TURINGNON DETERMINISTIC TURING MACHINESMACHINES It is similar to DTM except that for any input symbol and current state it has a number of choices A string is accepted by a NDTM if there is a sequence of moves that leads to a final state The transaction function δ : Q X Γ 2 QXΓ X{L,R}
  • 13. MULTIHEAD TURING MACHINEMULTIHEAD TURING MACHINE Multihead TM has a number of heads instead of one.  Each head indepently read/ write symbols and move left / right or keep stationery.
  • 14. OFF- LINE TURING MACHINEOFF- LINE TURING MACHINE An Offline Turing Machine has two tapes 1. One tape is read-only and contains the input 2. The other is read-write and is initially blank.
  • 15. MULTIDIMENSIONAL TURINGMULTIDIMENSIONAL TURING MACHINEMACHINE A Multidimensional TM has a multidimensional tape. • For example, a two-dimensional Turing machine would read and write on an infinite plane divided into squares, like a checkerboard.  For a two- Dimensional Turing Machine transaction function define as: • δ : Q X Γ Q X Γ X { L , R,U,D}
  • 16. Applications of TM • Check Decidability If TM cannot solve a problem in countable time  then there could not be any algorithm which could solve that  problem (That is the problem is undecidable).For a decision problem  if its TM halt in countable time for all finite length inputs then we can  say that the problem could be solved by an algorithm in countable  time. • Classify Problem TM helps to classify decidable problems into classes  of Polynomial Hierarchy. Suppose we found that the problem is  decidable. Then out target become how efficiently we can solve it.  The efficiency been calculated in number of steps, extra space used ,  length of the code/size of the FSM. • Design and Implement Algorithm for Practical Machines TM helps to  propagate idea of algorithm in other practical machines. After the  successful check of 1,2 criteria we can use our practical  devices/computers to design and implement algorithm.