SlideShare a Scribd company logo
Two-Dimensional Geometric
Transformations
• Basic Transformations
• Translation
• Rotation
• Scaling
• Composite Transformations
• Other transformations
• Reflection
• Shear
07/09/25 1
Translation
• Translation transformation
• Translation vector or shift vector T = (tx, ty)
• Rigid-body transformation
• Moves objects without deformation
x
t
x
x 

'
y
t
y
y 

'
x
y
p
P’
T
x
y
T
07/09/25 2
Rotation
 Rotation transformation
x
y
P(x,y)
P’ (x’,y’)
r
θ
Φ
x’=rcos(Φ+θ)= rcos Φ cos θ -rsin Φ sin θ
y’=rsin(Φ+θ)= rcos Φ sin θ+rsin Φ cos θ
x=rcos Φ y=rsin Φ
x’=x cos θ -ysin θ
y’=xsin θ +ycos θ
P’= R· P 




 





cos
sin
sin
cos
R
07/09/25 3
Rotation
 Pivot point
x
y
P(x,y)
P’ (x’,y’)
r
(xr,yr)
x’=xr+(x- xr)cos θ -(y- yr)sin θ
y’=yr+(x- xr)sin θ +(y- yr)cos θ
θ
Φ
07/09/25 4
Scaling
 Scaling transformation
 Scaling factors, sx and sy
 Uniform scaling
x
s
x
x 

'
y
s
y
y 

' 



















y
x
s
s
y
x
y
x
0
0
'
'
P
S
P 

'
x
y
x
y
2

x
s
1

y
s
07/09/25 5
Scaling
 Fixed point
x
f
f s
x
x
x
x 


 )
(
'
y
f
f s
y
y
y
y 


 )
(
'
)
1
(
'
x
f
x s
x
s
x
x 



)
1
(
'
y
f
y s
y
s
y
y 



07/09/25 6
Matrix Representations and
Homogeneous Coordinates
• Homogeneous Coordinates
• Matrix representations
• Translation
)
,
,
(
)
,
( h
y
x
y
x h
h
 h
x
x h

h
y
y h
































1
1
0
0
1
0
0
1
1
'
'
y
x
t
t
y
x
y
x
07/09/25 7
Matrix Representations
 Matrix representations
 Scaling
 Rotation































1
1
0
0
0
0
0
0
1
'
'
y
x
s
s
y
x
y
x



















 











1
1
0
0
0
cos
sin
0
sin
cos
1
'
'
y
x
y
x




07/09/25
8
Composite Transformations
 Translations


































1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
2
1
2
1
1
1
2
2
y
y
x
x
y
x
y
x
t
t
t
t
t
t
t
t
}
)
,
(
{
)
,
( 1
1
2
2
'
P
t
t
T
t
t
T
P y
x
y
x 


P
t
t
T
t
t
T y
x
y
x 

 )}
,
(
)
,
(
{ 1
1
2
2
)
,
(
)
,
(
)
,
( 2
1
2
1
1
1
2
2 y
y
x
x
y
x
y
x t
t
t
t
T
t
t
T
t
t
T 



07/09/25 9
Composite Transformations
 Scaling


































1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
2
1
2
1
1
1
2
2
y
y
x
x
y
x
y
x
s
s
s
s
s
s
s
s
)
,
(
)
,
(
)
,
( 2
1
2
1
1
1
2
2 y
y
x
x
y
x
y
x s
s
s
s
S
s
s
S
s
s
S 



07/09/25 10
Composite Transformations
 Rotations
}
)
(
{
)
( 1
2
'
P
R
R
P 

 

P
R
R 

 )}
(
)
(
{ 1
2 

)
(
)
(
)
( 2
1
1
2 


 

 R
R
R

























 










 
1
0
0
0
)
cos(
)
sin(
0
)
sin(
)
cos(
1
0
0
0
cos
sin
0
sin
cos
1
0
0
0
cos
sin
0
sin
cos
2
1
2
1
2
1
2
1
1
1
1
1
2
2
2
2
















07/09/25 11
General Pivot-Point Rotation
• Rotations about any selected pivot point (xr,yr)
• Translate-rotate-translate
07/09/25 12
General Pivot-Point Rotation






















 











1
0
0
1
0
0
1
1
0
0
0
cos
sin
0
sin
cos
1
0
0
1
0
0
1
r
r
r
r
y
x
y
x




















1
0
0
sin
)
cos
1
(
cos
sin
sin
)
cos
1
(
sin
cos








r
r
r
r
x
y
y
x
)
,
,
(
)
,
(
)
(
)
,
( 
 r
r
r
r
r
r y
x
R
y
x
T
R
y
x
T 




07/09/25 13
General Fixed-Point Scaling
Scaling with respect to a selected fixed position (xf,yf)
07/09/25 14
General Fixed-Point Scaling
 Translate-scale-translate


































1
0
0
1
0
0
1
1
0
0
0
0
0
0
1
0
0
1
0
0
1
r
r
y
x
r
r
y
x
s
s
y
x













1
0
0
)
1
(
0
)
1
(
0
y
f
y
x
f
x
s
y
s
s
x
s
)
,
,
,
(
)
,
(
)
,
(
)
,
( r
r
f
f
f
f
y
x
f
f y
x
y
x
S
y
x
T
s
s
S
y
x
T 




07/09/25 15
General Scaling Directions
 Scaling factors sx and sy scale objects along the x and y
directions.
 We scale an object in other directions with scaling
factors s1 and s2
07/09/25 16
General Scaling Directions
07/09/25 17
Concatenation Properties
 Matrix multiplication is associative.
A·B ·C = (A·B )·C = A·(B ·C)
 Transformation products may not be commutative
 Be careful about the order in which the composite matrix
is evaluated.
 Except for some special cases:
 Two successive rotations
 Two successive translations
 Two successive scalings
 rotation and uniform scaling
07/09/25 18
Concatenation Properties
 Reversing the order
 A sequence of transformations is performed may affect
the transformed position of an object.
07/09/25 19
General Composite Transformations and
Computer Efficiency
 A general two-dimensional transformation
 Rotation-scaling terms rsij
 Translational terms trsx and trsy
 Minimum number of computations
 Four multiplications
 Four additions































1
1
0
0
1
'
'
y
x
trs
rs
rs
trs
rs
rs
y
x
y
yy
yx
x
xy
xx
x
xy
xx trs
rs
y
rs
x
x 




'
y
yy
yx trs
rs
y
rs
x
y 




'
07/09/25 20
Rigid-Body Transformation
 Rigid-body transformation matrix
 The upper-left 2-by-2 submatrix is an orthogonal matrix
 Two vectors (rxx, rxy) and (ryx, ryy) form an orthogonal set of unit
vectors.










1
0
0
y
yy
yx
x
xy
xx
tr
r
r
tr
r
r
Multiplicative rotation terms rij
Translational terms trx and try
1
2
2
2
2



 yy
yx
xy
xx r
r
r
r
0

 yy
xy
yx
xx r
r
r
r
07/09/25 21
Rigid-Body Transformation
 The orthogonal property of rotation matrices
 We know the final orientation of an object
Construct the desired transformation by assigning the elements of u’ to
the first row of the rotation matrix and the elements of v’ to the second
row.
07/09/25 22
Computational Efficiency
 Use approximations and iterative calculations to
reduce computations
 Approximate the trigonometric functions based on the
first few terms of their power-series expansions.
 For small enough angles (< 100
), cos is approximately
1.sin is approximately 
 Accumulated error control
 Estimate the error in x’ and y’ at each step
 Reset object positions when the error accumulation becomes too
great
07/09/25 23
Reflection
 A transformation produces a mirror image of an object.
 Axis of reflection
 A line in the xy plane
 A line perpendicular to the xy plane
 The mirror image is obtained by rotating the object 1800
about
the reflection axis.
 Rotation path
 Axis in xy plane: in a plane perpendicular to the xy plane.
 Axis perpendicular to xy plane: in the xy plane.
07/09/25 24
Reflection
 Reflection about the x axis
07/09/25 25
Reflection
 Reflection about the y axis
07/09/25 26
Reflection
 Reflection relative to the coordinate origin
07/09/25 27
Reflection
 Reflection of an object relative to an axis perpendicular to
the xy plane through Prfl
07/09/25 28
Reflection
 Reflection about the line y = x
07/09/25 29
Shear
 The x-direction shear relative to x axis










1
0
0
0
1
0
0
1 x
sh y
sh
x
x x 


'
y
y 
'
If shx = 2:
07/09/25 30
Shear
 The x-direction shear relative to y = yref









 

1
0
0
0
1
0
1 ref
x
x y
sh
sh )
(
'
ref
x y
y
sh
x
x 



y
y 
'
If shx = ½ yref = -1:
1 1/2 3/2
07/09/25 31
Shear
 The y-direction shear relative to x = xref












1
0
0
1
0
0
1
ref
y
y x
sh
sh
x
x 
'
y
x
x
sh
y ref
y 

 )
(
'
If shy = ½ xref = -1:
1
1/2
3/2
07/09/25 32
Transformations between
Coordinate Systems
x
y
y’
x’
x0
y0
θ
x
y
y’
x’
θ
07/09/25 33
Transformations between
Coordinate Systems















1
0
0
1
0
0
1
)
,
( 0
0
0
0 y
x
y
x
T













1
0
0
0
cos
sin
0
sin
cos
)
( 




R
)
,
(
)
( 0
0
'
'
, y
x
T
R
M y
x
xy 



 
Method 1:
Method 2:
)
,
( y
x v
v
V
V
v 

)
,
(
)
,
( y
x
x
y u
u
v
v
u 

 










1
0
0
0
0
y
x
y
x
v
v
u
u
R
07/09/25 34

More Related Content

PPTX
Two dimensionaltransformations
PPT
2 d transformations by amit kumar (maimt)
PPT
2d transformation
PPT
Two dimentional transform
PDF
2-D Transformations.pdf
PPT
2 d transformation
DOC
Unit 3 notes
PPT
2D_transformatiomcomputer graphics 2d translation, rotation and scaling trans...
Two dimensionaltransformations
2 d transformations by amit kumar (maimt)
2d transformation
Two dimentional transform
2-D Transformations.pdf
2 d transformation
Unit 3 notes
2D_transformatiomcomputer graphics 2d translation, rotation and scaling trans...

Similar to Two dimensional_Transformations Notes.ppt (20)

PPT
06.Transformation.ppt
PPTX
2D Transformation
PPT
2D-Transformations-Transformations are the operations applied to geometrical ...
PPTX
Computer Graphic - Transformations in 2D
PPTX
Computer Graphics - transformations in 2d
PPT
SJT_TWO DIMENSIONAL TRANSFORMATIONNn.ppt
PDF
Unit-3 overview of transformations
PPT
Modeling Transformations
PDF
2D Translation.pdf
PPT
2D_Transformations in computer graphicsCG
PPTX
Transformations computer graphics
PPTX
2hjsakhvchcvj hSKchvsABJChjSVCHjhvcvdxz.pptx
PPTX
Computer Graphics Unit 2
PPTX
Computer graphics basic transformation
PDF
2D Transformation
PPT
“Transformations are the operations applied to geometrical description of an ...
PPT
2 d geometric transformations
PPT
Transformations in Computer Graphics
PPT
transformation IT.ppt
PPTX
Part 3- Manipulation and Representation of Curves.pptx
06.Transformation.ppt
2D Transformation
2D-Transformations-Transformations are the operations applied to geometrical ...
Computer Graphic - Transformations in 2D
Computer Graphics - transformations in 2d
SJT_TWO DIMENSIONAL TRANSFORMATIONNn.ppt
Unit-3 overview of transformations
Modeling Transformations
2D Translation.pdf
2D_Transformations in computer graphicsCG
Transformations computer graphics
2hjsakhvchcvj hSKchvsABJChjSVCHjhvcvdxz.pptx
Computer Graphics Unit 2
Computer graphics basic transformation
2D Transformation
“Transformations are the operations applied to geometrical description of an ...
2 d geometric transformations
Transformations in Computer Graphics
transformation IT.ppt
Part 3- Manipulation and Representation of Curves.pptx
Ad

More from SubburamSivakumar1 (9)

PPT
Basic fundamentals of Digital Image Processing.ppt
PPTX
Attributes of Output Primitives Computer Graphhics.pptx
PPT
To dimensional clipping brief notes.ppt
PPT
Introduction to Domain Calculus Notes.ppt
PPT
Introduction to Transaction Management Overview.ppt
PPT
Security and Authorization introductory notes.ppt
PPT
Introduction to Schema refinement lecture notes.ppt
PPT
Relational Algebra brief lecture notes for SQL.ppt
PPT
Introduction to SQL brief notes for academic.ppt
Basic fundamentals of Digital Image Processing.ppt
Attributes of Output Primitives Computer Graphhics.pptx
To dimensional clipping brief notes.ppt
Introduction to Domain Calculus Notes.ppt
Introduction to Transaction Management Overview.ppt
Security and Authorization introductory notes.ppt
Introduction to Schema refinement lecture notes.ppt
Relational Algebra brief lecture notes for SQL.ppt
Introduction to SQL brief notes for academic.ppt
Ad

Recently uploaded (20)

PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
01-Introduction-to-Information-Management.pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
Classroom Observation Tools for Teachers
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPTX
Lesson notes of climatology university.
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Pre independence Education in Inndia.pdf
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Institutional Correction lecture only . . .
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
GDM (1) (1).pptx small presentation for students
Microbial disease of the cardiovascular and lymphatic systems
01-Introduction-to-Information-Management.pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
O5-L3 Freight Transport Ops (International) V1.pdf
Classroom Observation Tools for Teachers
Abdominal Access Techniques with Prof. Dr. R K Mishra
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Lesson notes of climatology university.
PPH.pptx obstetrics and gynecology in nursing
Computing-Curriculum for Schools in Ghana
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Pre independence Education in Inndia.pdf
FourierSeries-QuestionsWithAnswers(Part-A).pdf
human mycosis Human fungal infections are called human mycosis..pptx
VCE English Exam - Section C Student Revision Booklet
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Institutional Correction lecture only . . .
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
GDM (1) (1).pptx small presentation for students

Two dimensional_Transformations Notes.ppt