SlideShare a Scribd company logo
UAV-Based High-Resolution Remote Sensing as
an Innovative Monitoring Tool for Effective Crop
                Management

               Christian Knoth, Torsten Prinz
   Institute for Geoinformatics, University of Muenster



      Crop Resource Use Efficiency and Field Phenotyping
                 Grantham, Lincs, 2013-03-26



                http://ifgicopter.uni-muenster.de
Overview


    I.   Introduction
    II. Quadrotor Sensor Platforms
    III. Infrared Imaging
    IV. Monitoring of Bog Ecosystems
    V. Precision Agriculture
    VI. Perspectives for Field Phenotyping




2                       http://ifgicopter.uni-muenster.de
Introduction


    The ifgicopter project:
    Aim: using multicopters as platforms for gathering all kinds of sensor data


         •   high flexibility

         •   VTOL (hovering)

         •   little operating costs

         •   variable spatial
             and temporal resolution




3                               http://ifgicopter.uni-muenster.de
Introduction


    Fields of work:
    •   flight planning software
    •   communication framework
    •   accurate positioning via enhanced differential GPS (DGPS)
    •   creation of (infrared) remote sensing products
    •   analysis of climate phenomena
    •   …




4                           http://ifgicopter.uni-muenster.de
Quadrotor Sensor Platforms




          “Mikrokopter”                           “Microdrones”
           (building kit)                     (ready-to-use product)
     carries e.g. IXUS400 or                carries e.g. IXUS 100IS
     (NIR only, natural colour)                      (VIS-NIR)



        autonomous navigation via GPS and flight planning software


5                     http://ifgicopter.uni-muenster.de
Infrared Imaging


    Sensor Technique:
    •   modified digital compact
        camera
    •   hot mirror removed
    •   captures light between 400
        and 1100 nm wavelength
    •   natural colour, NIR or CIR
        images (external filter)




6                            http://ifgicopter.uni-muenster.de
Infrared Imaging

    Outcomes:                      colour infrared     near infrared




    •   bog under restoration




                                    RGB true colour        CIR composite (NIR/B)



    •   turnip field




7                      http://ifgicopter.uni-muenster.de
Monitoring of Bog Ecosystems

    object-based classification
    ●   waterlogged bare peat
    ●   birch trees
        (Betula pubescens)
    ●   cotton grass
        (Eriophorum vaginatum)
    ●   sphagnum moss
        (Sphagnum spec.)
    ●   result




8                       http://ifgicopter.uni-muenster.de
Precision Agriculture

Nitrogen Management

                                               • CIR Image




                                                             m
                            25          50



9                 http://ifgicopter.uni-muenster.de
Precision Agriculture

Nitrogen Management

                                               • CIR Image

                                               • classified GNDVI




                                                                    m
                            25          50



10                http://ifgicopter.uni-muenster.de
Precision Agriculture

Nitrogen Management

                                               • CIR Image

                                               • classified GNDVI

                                               • application map




                                                                    m
                            25          50



11                http://ifgicopter.uni-muenster.de
Precision Agriculture
     Weed Detection
                                                                         m
                                                               25   50

     • CIR Image

     • high resolution image




12                         http://ifgicopter.uni-muenster.de
Precision Agriculture
     Weed Detection
                                                                          m
                                                                25   50

     • CIR Image

     • high resolution image

     • crop row detection




13                          http://ifgicopter.uni-muenster.de
Precision Agriculture
     Weed Detection
                                                                          m
                                                                25   50

     • CIR Image

     • high resolution image

     • crop row detection

     • weed detection




14                          http://ifgicopter.uni-muenster.de
Precision Agriculture
     Weed Detection
                                                                          m
                                                                25   50

     • CIR Image

     • high resolution image

     • crop row detection

     • weed detection

     • application map




15                          http://ifgicopter.uni-muenster.de
Precision Agriculture

      Multicopter UAV „Hexe“
     (University of Hohenheim)
                                                                                    • point spectrometer MMS1
                                                                                      (tec5) + webcam

                                                                                    • temperature and humidity
                                                                                      sensors

                                                                                    • data transfer via W-LAN




     © Jakob Geipel/Institute for Crop Sciences/Agronomy, University of Hohenheim



16                                            http://ifgicopter.uni-muenster.de
Precision Agriculture

      Multicopter UAV „Hexe“
     (University of Hohenheim)
                                                                                    • point spectrometer MMS1
                                                                                      (tec5) + webcam

                                                                                    • temperature and humidity
                                                                                      sensors

                                                                                    • data transfer via W-LAN




     © Jakob Geipel/Institute for Crop Sciences/Agronomy, University of Hohenheim



17                                            http://ifgicopter.uni-muenster.de
Precision Agriculture

 Fixed-wing UAV „E-Trainer“
 (University of Hohenheim)
                                                                                    Spectrometer readings




     © Johanna Link-Dolezal/Institute for Crop Sciences/Agronomy, University of Hohenheim



18                                            http://ifgicopter.uni-muenster.de
Perspectives for Field Phenotyping


potential of using multicopters ?
                                                mean NIR/Blue ratio (OBIA)
     ●   non-invasive
     ●   variable flight level and
         ground resolution
     ●   VTOL capability
     ●   piloting easy to learn
     ●   reliable
     ●   customizable
             sensors
             flight equipment
             interfaces


19                                http://ifgicopter.uni-muenster.de
Perspectives for Field Phenotyping

 Lightweight Sensors ?


     ●   multispectral sensors
                                                  www.tetracam.com



     ●   3D cameras
                                                                          www.digitalkamera.de



     ●   hyperspectral imaging sensors


     ●   thermal imaging sensors
                                             www.headwallphotonics.com



     ●   …
                                                                         www.thermoteknix.com




20                                 http://ifgicopter.uni-muenster.de
Perspectives for Field Phenotyping

 Automation of data handling and processing ?


                      data
                   acquisition




                                                          analysis of
                                                          phenotypic
                                                            traits




                         subsequent
                            crop
                         management

21                    http://ifgicopter.uni-muenster.de
Perspectives for Field Phenotyping

 Automation of data handling and processing ?
  might look like this: “Sensor Platform Framework”1


                                                                                                ●     communication with multi-
                                                                                                      sensor equipped UAVs
                                                                                                ●     synchronizes and couples
                                                                                                      data from different sensors
                                                                                                      (e.g. sensor measurement +
                                                                                                      position information)
                                                                                                ●     provides interface for
                                                                                                      additional output plugins



     1Rieke (2010): Entwicklung eines Frameworks zur Anbindung von Multi-Sensor-Plattformen an das Sensor Web
     https://wiki.52north.org/bin/view/SensorWeb/SensorPlatformFramework


22                                                 http://ifgicopter.uni-muenster.de
Perspectives for Field Phenotyping

 Automation of data handling and processing ?
  might look like this: “Sensor Platform Framework”1


                                                                                                ●     communication with multi-
                                                                                                      sensor equipped UAVs
                                                                                                ●     synchronizes and couples
                                                                                                      data from different sensors
                                                                                                      (e.g. sensor measurement +
                                                                                                      position information)
                                                                                                ●     provides interface for
                                                                                                      additional output plugins



     1Rieke (2010): Entwicklung eines Frameworks zur Anbindung von Multi-Sensor-Plattformen an das Sensor Web
     https://wiki.52north.org/bin/view/SensorWeb/SensorPlatformFramework


23                                                 http://ifgicopter.uni-muenster.de
Perspectives for Field Phenotyping

 Automation of data handling and processing ?
  might look like this: Framework for automatic processing1

                                                            ●     automatic processing (biomass
                                                                  mapping / weed detection) and
                                                                  integration of results into
                                                                  subsequent applications
                                                            ●     web-based  easy access
                                                                  and interoperability
                                                            ●     extensible




                     1Drerup (2012):An   automatic web-based framework to integrate UAV-based data into precision farming applications



24                    http://ifgicopter.uni-muenster.de
Conclusion

     •   promising means of data acquisition also for field phenotyping
     •   flight duration and payload is constantly being enhanced
     •   increasing number of applicable sensors and data
         processing/management techniques
     •   application development needed




25                      http://ifgicopter.uni-muenster.de
Thank you for your kind attention!


     Questions?




                http://ifgicopter.uni-muenster.de


26

More Related Content

PPTX
UAV-Based Close Range Remote Sensing as a Monitoring Tool for the Restoration...
PPTX
ERMEX NG: Estación de Recepción México Nueva Generación: Reception Station M...
PDF
Insurance through RS
PPTX
Precision Agriculture for smallholder farmers: An option?
PDF
Efficacy of preservatives on microbial growth and beta carotene retension in...
PPTX
Forecasting Wheat Yield and Production for Punjab Province, Pakistan from Sat...
PPTX
Air-borne remote sensing as a monitoring tool for smallholder's cropping syst...
PDF
UAV-based remote sensing as a monitoring tool for smallholder cropping systems
UAV-Based Close Range Remote Sensing as a Monitoring Tool for the Restoration...
ERMEX NG: Estación de Recepción México Nueva Generación: Reception Station M...
Insurance through RS
Precision Agriculture for smallholder farmers: An option?
Efficacy of preservatives on microbial growth and beta carotene retension in...
Forecasting Wheat Yield and Production for Punjab Province, Pakistan from Sat...
Air-borne remote sensing as a monitoring tool for smallholder's cropping syst...
UAV-based remote sensing as a monitoring tool for smallholder cropping systems

Similar to UAV-Based High-Resolution Remote Sensing as an Innovative Monitoring Tool for Effective Crop Management (20)

PDF
上海必和 2009 july-spie_professional_agriphotonics超光谱高光谱多光谱
PDF
Icpa abstract id 2062 (full paper)v1.1
PPTX
High throughput field phenotyping for plant breeding
PDF
Saura, Reyes-Menendez & Palos-Sanchez, 2019 Helyon.pdf
PPT
From gigapixel timelapse cameras to unmanned aerial vehicles to smartphones: ...
PDF
Ifgicopter presentation @ itc visit
PPTX
Technical Paper ppt.pptx
PPTX
Master Seminar presentation.pptx
PPTX
High Throughput Plant Phenotyping in Crop Improvement
PDF
Drones in Agriculture | EquiAgra
PDF
BIOSCOPE User Requirements
PDF
Choosing the Best UAV Drones for Precision Agriculture and Smart Farming: Agr...
PDF
Larry Barone and Gary Martin - Leveraging a Space Agency's View Of Earth To A...
PDF
iaetsd Unmanned aerial vehicle in the field of agriculture
PPTX
DGPS- and INS-Based Orthophotogrammetry on Micro UAV Platforms for Precision ...
PDF
IRJET- Soil, Water and Air Quality Monitoring System using IoT
PPTX
Kasper Johansen_Field and airborne data collection by AusCover: a tropical ra...
PDF
SLOPE 1st workshop - presentation 6
PDF
Lidar hsi datafusion ilmf 2010
PDF
Crop classification using object-oriented method and Google Earth Engine
上海必和 2009 july-spie_professional_agriphotonics超光谱高光谱多光谱
Icpa abstract id 2062 (full paper)v1.1
High throughput field phenotyping for plant breeding
Saura, Reyes-Menendez & Palos-Sanchez, 2019 Helyon.pdf
From gigapixel timelapse cameras to unmanned aerial vehicles to smartphones: ...
Ifgicopter presentation @ itc visit
Technical Paper ppt.pptx
Master Seminar presentation.pptx
High Throughput Plant Phenotyping in Crop Improvement
Drones in Agriculture | EquiAgra
BIOSCOPE User Requirements
Choosing the Best UAV Drones for Precision Agriculture and Smart Farming: Agr...
Larry Barone and Gary Martin - Leveraging a Space Agency's View Of Earth To A...
iaetsd Unmanned aerial vehicle in the field of agriculture
DGPS- and INS-Based Orthophotogrammetry on Micro UAV Platforms for Precision ...
IRJET- Soil, Water and Air Quality Monitoring System using IoT
Kasper Johansen_Field and airborne data collection by AusCover: a tropical ra...
SLOPE 1st workshop - presentation 6
Lidar hsi datafusion ilmf 2010
Crop classification using object-oriented method and Google Earth Engine
Ad

Recently uploaded (20)

PDF
project resource management chapter-09.pdf
PPTX
A Presentation on Artificial Intelligence
PDF
Getting Started with Data Integration: FME Form 101
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Encapsulation theory and applications.pdf
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PDF
Web App vs Mobile App What Should You Build First.pdf
PDF
DP Operators-handbook-extract for the Mautical Institute
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
Mushroom cultivation and it's methods.pdf
PPTX
OMC Textile Division Presentation 2021.pptx
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
WOOl fibre morphology and structure.pdf for textiles
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PPTX
A Presentation on Touch Screen Technology
project resource management chapter-09.pdf
A Presentation on Artificial Intelligence
Getting Started with Data Integration: FME Form 101
A comparative analysis of optical character recognition models for extracting...
Encapsulation theory and applications.pdf
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
Web App vs Mobile App What Should You Build First.pdf
DP Operators-handbook-extract for the Mautical Institute
NewMind AI Weekly Chronicles - August'25-Week II
Mushroom cultivation and it's methods.pdf
OMC Textile Division Presentation 2021.pptx
Digital-Transformation-Roadmap-for-Companies.pptx
WOOl fibre morphology and structure.pdf for textiles
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
SOPHOS-XG Firewall Administrator PPT.pptx
Unlocking AI with Model Context Protocol (MCP)
Zenith AI: Advanced Artificial Intelligence
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
Agricultural_Statistics_at_a_Glance_2022_0.pdf
A Presentation on Touch Screen Technology
Ad

UAV-Based High-Resolution Remote Sensing as an Innovative Monitoring Tool for Effective Crop Management

  • 1. UAV-Based High-Resolution Remote Sensing as an Innovative Monitoring Tool for Effective Crop Management Christian Knoth, Torsten Prinz Institute for Geoinformatics, University of Muenster Crop Resource Use Efficiency and Field Phenotyping Grantham, Lincs, 2013-03-26 http://ifgicopter.uni-muenster.de
  • 2. Overview I. Introduction II. Quadrotor Sensor Platforms III. Infrared Imaging IV. Monitoring of Bog Ecosystems V. Precision Agriculture VI. Perspectives for Field Phenotyping 2 http://ifgicopter.uni-muenster.de
  • 3. Introduction The ifgicopter project: Aim: using multicopters as platforms for gathering all kinds of sensor data • high flexibility • VTOL (hovering) • little operating costs • variable spatial and temporal resolution 3 http://ifgicopter.uni-muenster.de
  • 4. Introduction Fields of work: • flight planning software • communication framework • accurate positioning via enhanced differential GPS (DGPS) • creation of (infrared) remote sensing products • analysis of climate phenomena • … 4 http://ifgicopter.uni-muenster.de
  • 5. Quadrotor Sensor Platforms “Mikrokopter” “Microdrones” (building kit) (ready-to-use product)  carries e.g. IXUS400 or  carries e.g. IXUS 100IS (NIR only, natural colour) (VIS-NIR) autonomous navigation via GPS and flight planning software 5 http://ifgicopter.uni-muenster.de
  • 6. Infrared Imaging Sensor Technique: • modified digital compact camera • hot mirror removed • captures light between 400 and 1100 nm wavelength • natural colour, NIR or CIR images (external filter) 6 http://ifgicopter.uni-muenster.de
  • 7. Infrared Imaging Outcomes:  colour infrared  near infrared • bog under restoration  RGB true colour  CIR composite (NIR/B) • turnip field 7 http://ifgicopter.uni-muenster.de
  • 8. Monitoring of Bog Ecosystems object-based classification ● waterlogged bare peat ● birch trees (Betula pubescens) ● cotton grass (Eriophorum vaginatum) ● sphagnum moss (Sphagnum spec.) ● result 8 http://ifgicopter.uni-muenster.de
  • 9. Precision Agriculture Nitrogen Management • CIR Image m 25 50 9 http://ifgicopter.uni-muenster.de
  • 10. Precision Agriculture Nitrogen Management • CIR Image • classified GNDVI m 25 50 10 http://ifgicopter.uni-muenster.de
  • 11. Precision Agriculture Nitrogen Management • CIR Image • classified GNDVI • application map m 25 50 11 http://ifgicopter.uni-muenster.de
  • 12. Precision Agriculture Weed Detection m 25 50 • CIR Image • high resolution image 12 http://ifgicopter.uni-muenster.de
  • 13. Precision Agriculture Weed Detection m 25 50 • CIR Image • high resolution image • crop row detection 13 http://ifgicopter.uni-muenster.de
  • 14. Precision Agriculture Weed Detection m 25 50 • CIR Image • high resolution image • crop row detection • weed detection 14 http://ifgicopter.uni-muenster.de
  • 15. Precision Agriculture Weed Detection m 25 50 • CIR Image • high resolution image • crop row detection • weed detection • application map 15 http://ifgicopter.uni-muenster.de
  • 16. Precision Agriculture Multicopter UAV „Hexe“ (University of Hohenheim) • point spectrometer MMS1 (tec5) + webcam • temperature and humidity sensors • data transfer via W-LAN © Jakob Geipel/Institute for Crop Sciences/Agronomy, University of Hohenheim 16 http://ifgicopter.uni-muenster.de
  • 17. Precision Agriculture Multicopter UAV „Hexe“ (University of Hohenheim) • point spectrometer MMS1 (tec5) + webcam • temperature and humidity sensors • data transfer via W-LAN © Jakob Geipel/Institute for Crop Sciences/Agronomy, University of Hohenheim 17 http://ifgicopter.uni-muenster.de
  • 18. Precision Agriculture Fixed-wing UAV „E-Trainer“ (University of Hohenheim)  Spectrometer readings © Johanna Link-Dolezal/Institute for Crop Sciences/Agronomy, University of Hohenheim 18 http://ifgicopter.uni-muenster.de
  • 19. Perspectives for Field Phenotyping potential of using multicopters ?  mean NIR/Blue ratio (OBIA) ● non-invasive ● variable flight level and ground resolution ● VTOL capability ● piloting easy to learn ● reliable ● customizable  sensors  flight equipment  interfaces 19 http://ifgicopter.uni-muenster.de
  • 20. Perspectives for Field Phenotyping Lightweight Sensors ? ● multispectral sensors www.tetracam.com ● 3D cameras www.digitalkamera.de ● hyperspectral imaging sensors ● thermal imaging sensors www.headwallphotonics.com ● … www.thermoteknix.com 20 http://ifgicopter.uni-muenster.de
  • 21. Perspectives for Field Phenotyping Automation of data handling and processing ? data acquisition analysis of phenotypic traits subsequent crop management 21 http://ifgicopter.uni-muenster.de
  • 22. Perspectives for Field Phenotyping Automation of data handling and processing ?  might look like this: “Sensor Platform Framework”1 ● communication with multi- sensor equipped UAVs ● synchronizes and couples data from different sensors (e.g. sensor measurement + position information) ● provides interface for additional output plugins 1Rieke (2010): Entwicklung eines Frameworks zur Anbindung von Multi-Sensor-Plattformen an das Sensor Web https://wiki.52north.org/bin/view/SensorWeb/SensorPlatformFramework 22 http://ifgicopter.uni-muenster.de
  • 23. Perspectives for Field Phenotyping Automation of data handling and processing ?  might look like this: “Sensor Platform Framework”1 ● communication with multi- sensor equipped UAVs ● synchronizes and couples data from different sensors (e.g. sensor measurement + position information) ● provides interface for additional output plugins 1Rieke (2010): Entwicklung eines Frameworks zur Anbindung von Multi-Sensor-Plattformen an das Sensor Web https://wiki.52north.org/bin/view/SensorWeb/SensorPlatformFramework 23 http://ifgicopter.uni-muenster.de
  • 24. Perspectives for Field Phenotyping Automation of data handling and processing ?  might look like this: Framework for automatic processing1 ● automatic processing (biomass mapping / weed detection) and integration of results into subsequent applications ● web-based  easy access and interoperability ● extensible 1Drerup (2012):An automatic web-based framework to integrate UAV-based data into precision farming applications 24 http://ifgicopter.uni-muenster.de
  • 25. Conclusion • promising means of data acquisition also for field phenotyping • flight duration and payload is constantly being enhanced • increasing number of applicable sensors and data processing/management techniques • application development needed 25 http://ifgicopter.uni-muenster.de
  • 26. Thank you for your kind attention! Questions? http://ifgicopter.uni-muenster.de 26