SlideShare a Scribd company logo
15
Most read
18
Most read
20
Most read
Ultimate Guide to
Multiplying & Dividing
Monomials with
Exponents
Monomials
 Multiplying &
Dividing Monomials
 Applying Exponent
Rules to Monomials
Vocabulary
 Monomials - a number, a variable, or a product of a number
and one or more variables
4x, 20x2yw3, -3, a2b3, and 3yz are all monomials.
 Constant – a monomial that is a number without a variable.
 Base – In an expression of the form xn, the base is x.
 Exponent – In an expression of the form xn, the exponent is
n.
Writing Expressions Using Exponents
Write the expression with exponents
(as multiplication):
8a3b38 ● a ● a ● a ● b ● b ● b =
Could the above expression be
written as a power of a product?
( )x
x x x x y  y y y
xy xy xy xy xy 4
or
Simplify the following expression: (5a2)(a5)
Step 1: Write out the expressions in expanded form.
Step 2: Rewrite using exponents.
Product Rule
5a
2
 a
5
  5 a  a  a a  a  a a
How many terms are there?
What operation is being performed? Multiplication!
5a
2
 a
5
  5 a
7
 5a
7
Multiplying Monomials: The Product Rule
4) 3k
5
mn
4
 7k
3
m
3
n
3
 
5) 12 x
2
y
3
 2xy
2
  24x3
y5
21k8
m4
n7
If the monomials have coefficients, multiply
those, but still add powers of common bases.
If the monomial inside the parentheses has more than one
variable, raise each variable to the outside power using
the power of a power rule.
(ab)m = am•bm
(9xy)2 = (-5x)2 = -(5x)2 =
Simplify the following: ( x3 )4
Note: 3 x 4 = 12
The monomial is the term inside the parentheses.
1. Multiply the exponents, write the simplified monomial
x
3
 
4
 x
12
For any number, a, and all integers m and n, am
 
n
 amn
.
1) b
9
 
10
 b90
2) c
3
 
3
 c9
1) 2b
9
 
3
 8b27
2) 5c
3
 
3
 125c9
3) 7w
12
 
2
 49w24
If the monomial inside the parentheses has a
coefficient, raise the coefficient to the power, but still
multiply the variable powers.
Dividing
Monomials
For all integers “m” and “n” and any nonzero
number “a” ……
Let's review the rules.
m
n
a
a
m n
a 

When the problems look like this,
and the bases are the same, you will
subtract the exponents.
0
1a 
ANY number raised to the zero power
is equal to ONE.
n
a 1
n
a

If the exponent is negative, it is written
on the wrong side of the fraction bar,
move it to the other side, and change the
sign.
1.
3 2 2
f g h
fgh
 3 1 2 1 2 1
f g h  
  2 1 1
f g h 
2.
3 5
7
24
6
x y
xy
Subtract the exponents
 4 2
x
2
y
Reminder: Never finish a
problem with negative
exponents
3. 0 4 2
2 3 2
5 t wu
t w u
1

4.
4 5
2 6
27
9
x y
x y


Subtract the exponents
 3 2
x
y
U’s cancel
Each other
2
t
2
w
5.
9 3
6 2
x y
xw u
 
Remember, if the exponent is negative, move it to the
other side of the fraction bar and make it positive.
 1
10
x 6 2 3
w u y
6.
6
8
x
x

  6
x
8
x
Now
Subtract
The
Exponents
 
2
x
1
2
x
7.
6
3
40
10
x
x
Fix the
negative
exponent

6
40x
10
3
x 
Now divide the coefficients but ADD the exponents
4 9
x
1
 9
4x
8.
0 8 4 6
6 2
5 x w u
xw u

ANY number raised to the zero power is
equal to ONE.
1 7
x 2
w
4
u
9.
10 2 16
5 6 4
30
5
x y z
x y z

 
Fix the
negative
exponents
 30
5
5
x
10
x
2 16
y z
6
y
4
z

Now divide the coefficients and combine the exponents
6
5
x 4
y
20
z
10. 54
3
b
c
 
 
 
20
15
b
c

11.
2
9 3
6
v
w
 
 
 
6
v
 4
w
2 6 5
8 3
( )( )
( )
x y x y
x y
12. 
7
x 7
y
Then the
denominator
24
x 3
y
Now
Subtract
The
Exponents

4
y
17
x
First – Simplify the
numerator!!
2 8 4
9 2
( )( )
( )
x y x y
x y
13. 
6
x 9
y
Then the
denominator
18
x 2
y
Now
Subtract
The
Exponents

7
y
12
x
First – Simplify the
numerator!!
14.
45 4 0
4 3 3
7
5
a b c
a b c

 
 
 
Exponents OUTSIDE
And INSIDE …… Distribute!!

4
( 7)
 20
a 16
b 0
c
4
5 16
a 12
b 12
c 
Fix your
Negative exponents
4
( 7)
4
5
20
a
16
a
16
b
12
b 12
c0
c

4
5
4
7
4
a 4
b
12
c
Now
Subtract
The
Exponents
15.
64 3 0
2 2 4
4
3
a b c
a b c

 
 
 
Exponents OUTSIDE
And INSIDE …… Distribute!!

6
( 4)
 24
a 18
b 0
c
6
3 12
a 12
b 24
c 
Fix your
Negative exponents
6
( 4)
6
3
24
a
12
a
18
b
12
b 24
c0
c

6
3
6
4
12
a 6
b
24
c
Now
Subtract
The
Exponents
16.
3 5 4 2
5 1 5 4
(4 )
(4 )
x y
x y

 

6
4 10
x 8
y
20
4 4
x 20
y
 6
4
20
4
10
x 4
x
8
y
20
y

14
4
14
x
12
y
17.
3 7 6 3
4 1 7 5
(2 )
(2 )
x y
x y

 

9
2 21
x 18
y
20
2 5
x 35
y
 9
2
20
2
21
x 5
x
18
y
35
y

11
2
26
x
17
y

More Related Content

PPTX
February 24, 2015
PPT
Synthetic division
PPT
Synthetic Division Notes
PPTX
Special Cases in Simplex Method
PPT
Polynomial and thier graphs
PPTX
Lecture 7 (inequalities)
PPTX
Algebraic fractions (2)
PPT
Linear inequalities
February 24, 2015
Synthetic division
Synthetic Division Notes
Special Cases in Simplex Method
Polynomial and thier graphs
Lecture 7 (inequalities)
Algebraic fractions (2)
Linear inequalities

What's hot (20)

PPT
Graphing polynomials
PPTX
Synthetic Division
PPT
Graphing sytems inequalities
PPT
Math Project 2ppt
PPTX
February 7, 2014
ODP
Which method is best
PPTX
5.7 Quadratic Inequalities
PPT
4.2 vertex and intercept form
PPT
A25-7 Quadratic Inequalities
PPTX
February 3, 2015
PDF
Algebra 1 Lesson Plan
PPT
Graphs linear equations and functions
PPT
Polynomial functions
PPTX
Linear functions
PPT
Rational Equations and Inequalities
PPT
Linear equation
PDF
11/1 - HW question #7
PPT
Saif's project
PPT
3 1 Quadratic Functions
PPTX
Mutiplyin and dividing expressions
Graphing polynomials
Synthetic Division
Graphing sytems inequalities
Math Project 2ppt
February 7, 2014
Which method is best
5.7 Quadratic Inequalities
4.2 vertex and intercept form
A25-7 Quadratic Inequalities
February 3, 2015
Algebra 1 Lesson Plan
Graphs linear equations and functions
Polynomial functions
Linear functions
Rational Equations and Inequalities
Linear equation
11/1 - HW question #7
Saif's project
3 1 Quadratic Functions
Mutiplyin and dividing expressions
Ad

Similar to Ultimate guide monomials exponents (20)

PPTX
Multiplication and Division of Monomials, Binomials,.pptx
PDF
Math for 800 08 algebra
PPTX
Mutiplyin and dividing expressions
PPTX
PPT
31 algebraic fractions (1)
PPTX
Multiplying Monomials
PPT
Hprec2 5
PDF
1.3.2C Equations of Lines
PDF
Linearprog, Reading Materials for Operational Research
PPT
part3for food and accelerationpresentation.ppt
PDF
Adding and Subtracting Monomials - CYU.pdf
PPT
Solving Quadratic Equation by Factoring.ppt
PPT
Solving Quadratic Equation by Factoring.ppt
PPTX
MIT Math Syllabus 10-3 Lesson 2 : Polynomials
PDF
Chapter 3: Linear Systems and Matrices - Part 2/Slides
PPT
Syntheticdivision with long and factor.ppt
PPTX
math 8 quarter 1Factoring Perfect Square Trinomials (1).pptx
PPSX
Chapter 4- Learning Outcome 1_Mathematics for Technologists
PDF
Ch9-Gauss_Elimination4.pdf
PPT
Chapter4.4
Multiplication and Division of Monomials, Binomials,.pptx
Math for 800 08 algebra
Mutiplyin and dividing expressions
31 algebraic fractions (1)
Multiplying Monomials
Hprec2 5
1.3.2C Equations of Lines
Linearprog, Reading Materials for Operational Research
part3for food and accelerationpresentation.ppt
Adding and Subtracting Monomials - CYU.pdf
Solving Quadratic Equation by Factoring.ppt
Solving Quadratic Equation by Factoring.ppt
MIT Math Syllabus 10-3 Lesson 2 : Polynomials
Chapter 3: Linear Systems and Matrices - Part 2/Slides
Syntheticdivision with long and factor.ppt
math 8 quarter 1Factoring Perfect Square Trinomials (1).pptx
Chapter 4- Learning Outcome 1_Mathematics for Technologists
Ch9-Gauss_Elimination4.pdf
Chapter4.4
Ad

More from khyps13 (20)

PPTX
August 23, 2016
PPTX
August 22, 2016
PPTX
August 19, 2016
PPTX
August 18, 2016
PPTX
Aug 17, 2016
PPTX
Ultimate guide to systems of equations
PPTX
March 29, 2016
PPTX
March 28, 2016
PPTX
March 31, 2016
PPTX
March 30, 2016
PPTX
March 21, 2016
PPTX
April 5, 2016
PPTX
April 4, 2016
PPTX
April 6, 2016
PPTX
April 1, 2016
PPTX
February 17 2015
PPTX
February 18 2016
PPTX
February 16 2016
PPTX
February 9 2016
PPTX
February 10 2016
August 23, 2016
August 22, 2016
August 19, 2016
August 18, 2016
Aug 17, 2016
Ultimate guide to systems of equations
March 29, 2016
March 28, 2016
March 31, 2016
March 30, 2016
March 21, 2016
April 5, 2016
April 4, 2016
April 6, 2016
April 1, 2016
February 17 2015
February 18 2016
February 16 2016
February 9 2016
February 10 2016

Ultimate guide monomials exponents

  • 1. Ultimate Guide to Multiplying & Dividing Monomials with Exponents
  • 2. Monomials  Multiplying & Dividing Monomials  Applying Exponent Rules to Monomials
  • 3. Vocabulary  Monomials - a number, a variable, or a product of a number and one or more variables 4x, 20x2yw3, -3, a2b3, and 3yz are all monomials.  Constant – a monomial that is a number without a variable.  Base – In an expression of the form xn, the base is x.  Exponent – In an expression of the form xn, the exponent is n.
  • 4. Writing Expressions Using Exponents Write the expression with exponents (as multiplication): 8a3b38 ● a ● a ● a ● b ● b ● b = Could the above expression be written as a power of a product? ( )x x x x x y  y y y xy xy xy xy xy 4 or
  • 5. Simplify the following expression: (5a2)(a5) Step 1: Write out the expressions in expanded form. Step 2: Rewrite using exponents. Product Rule 5a 2  a 5   5 a  a  a a  a  a a How many terms are there? What operation is being performed? Multiplication! 5a 2  a 5   5 a 7  5a 7
  • 6. Multiplying Monomials: The Product Rule 4) 3k 5 mn 4  7k 3 m 3 n 3   5) 12 x 2 y 3  2xy 2   24x3 y5 21k8 m4 n7 If the monomials have coefficients, multiply those, but still add powers of common bases.
  • 7. If the monomial inside the parentheses has more than one variable, raise each variable to the outside power using the power of a power rule. (ab)m = am•bm (9xy)2 = (-5x)2 = -(5x)2 =
  • 8. Simplify the following: ( x3 )4 Note: 3 x 4 = 12 The monomial is the term inside the parentheses. 1. Multiply the exponents, write the simplified monomial x 3   4  x 12 For any number, a, and all integers m and n, am   n  amn . 1) b 9   10  b90 2) c 3   3  c9
  • 9. 1) 2b 9   3  8b27 2) 5c 3   3  125c9 3) 7w 12   2  49w24 If the monomial inside the parentheses has a coefficient, raise the coefficient to the power, but still multiply the variable powers.
  • 11. For all integers “m” and “n” and any nonzero number “a” …… Let's review the rules. m n a a m n a   When the problems look like this, and the bases are the same, you will subtract the exponents. 0 1a  ANY number raised to the zero power is equal to ONE. n a 1 n a  If the exponent is negative, it is written on the wrong side of the fraction bar, move it to the other side, and change the sign.
  • 12. 1. 3 2 2 f g h fgh  3 1 2 1 2 1 f g h     2 1 1 f g h  2. 3 5 7 24 6 x y xy Subtract the exponents  4 2 x 2 y Reminder: Never finish a problem with negative exponents
  • 13. 3. 0 4 2 2 3 2 5 t wu t w u 1  4. 4 5 2 6 27 9 x y x y   Subtract the exponents  3 2 x y U’s cancel Each other 2 t 2 w
  • 14. 5. 9 3 6 2 x y xw u   Remember, if the exponent is negative, move it to the other side of the fraction bar and make it positive.  1 10 x 6 2 3 w u y 6. 6 8 x x    6 x 8 x Now Subtract The Exponents   2 x 1 2 x
  • 15. 7. 6 3 40 10 x x Fix the negative exponent  6 40x 10 3 x  Now divide the coefficients but ADD the exponents 4 9 x 1  9 4x 8. 0 8 4 6 6 2 5 x w u xw u  ANY number raised to the zero power is equal to ONE. 1 7 x 2 w 4 u
  • 16. 9. 10 2 16 5 6 4 30 5 x y z x y z    Fix the negative exponents  30 5 5 x 10 x 2 16 y z 6 y 4 z  Now divide the coefficients and combine the exponents 6 5 x 4 y 20 z
  • 17. 10. 54 3 b c       20 15 b c  11. 2 9 3 6 v w       6 v  4 w
  • 18. 2 6 5 8 3 ( )( ) ( ) x y x y x y 12.  7 x 7 y Then the denominator 24 x 3 y Now Subtract The Exponents  4 y 17 x First – Simplify the numerator!!
  • 19. 2 8 4 9 2 ( )( ) ( ) x y x y x y 13.  6 x 9 y Then the denominator 18 x 2 y Now Subtract The Exponents  7 y 12 x First – Simplify the numerator!!
  • 20. 14. 45 4 0 4 3 3 7 5 a b c a b c        Exponents OUTSIDE And INSIDE …… Distribute!!  4 ( 7)  20 a 16 b 0 c 4 5 16 a 12 b 12 c  Fix your Negative exponents 4 ( 7) 4 5 20 a 16 a 16 b 12 b 12 c0 c  4 5 4 7 4 a 4 b 12 c Now Subtract The Exponents
  • 21. 15. 64 3 0 2 2 4 4 3 a b c a b c        Exponents OUTSIDE And INSIDE …… Distribute!!  6 ( 4)  24 a 18 b 0 c 6 3 12 a 12 b 24 c  Fix your Negative exponents 6 ( 4) 6 3 24 a 12 a 18 b 12 b 24 c0 c  6 3 6 4 12 a 6 b 24 c Now Subtract The Exponents
  • 22. 16. 3 5 4 2 5 1 5 4 (4 ) (4 ) x y x y     6 4 10 x 8 y 20 4 4 x 20 y  6 4 20 4 10 x 4 x 8 y 20 y  14 4 14 x 12 y
  • 23. 17. 3 7 6 3 4 1 7 5 (2 ) (2 ) x y x y     9 2 21 x 18 y 20 2 5 x 35 y  9 2 20 2 21 x 5 x 18 y 35 y  11 2 26 x 17 y