SlideShare a Scribd company logo
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266908536
Ultrashort Laser Pulse Phenomena Fundamentals,
Techniques, and Applications an a Femtosecond Time
Scale Second Edition
Article · January 1996
CITATIONS
239
READS
3,709
2 authors, including:
Jean-Claude Diels
University of New Mexico
467 PUBLICATIONS 5,962 CITATIONS
SEE PROFILE
All content following this page was uploaded by Jean-Claude Diels on 21 June 2016.
The user has requested enhancement of the downloaded file.
Ultrashort Laser Pulse Phenomena
Fundamentals, Techniques, and Applications an a
Femtosecond Time Scale
Second Edition
JEAN-CLAUDE DIELS
Department of Physics and Astronomy
University of New Mexico
Albuquerque, NM
WOLFGANG RUDOLPH
Department of Physics and Astronomy
University of New Mexico
Albuquerque, NM
AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO
SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
ELSEVIER Academic Press is an immint of Elsevier
Contents
Preface xv
Preface to the First Edition xvii
Chapter 1 Fundamentals 1
1.1. Characteristics of Femtosecond Light Pulses 1
1.1.1. Complex Representation of the Electric Field 1
1.1.2. Power, Energy, and Related Quantities 6
1.1.3. Pulse Duration and Spectral Width 9
1.1.4. Wigner Distribution, Second-Order Moments,
Uncertainty Relations 12
1.2. Pulse Propagation 20
1.2.1. The Reduced Wave Equation 21
1.2.2. Retarded Frame of Reference 26
1.2.3. Dispersion 30
1.2.4. Gaussian Pulse Propagation 33
1.2.5. Complex Dielectric Constant 38
1.3. Interaction of Light Pulses with Linear Optical Elements 42
1.4. Generation of Phase Modulation 44
1.5. Beam Propagation 46
1.5.1. General 46
1.5.2. Analogy between Pulse and Beam Propagation 49
1.5.3. Analogy between Spatial and Temporal
Imaging 50
1.6. Numerical Modeling of Pulse Propagation 53
1.7. Space–Time Effects 56
1.8. Problems 57
Bibliography 58
Chapter 2 Femtosecond Optics 61
2.1. Introduction 61
2.2. White Light and Short Pulse Interferometry 64
vi Contents
2.3. Dispersion of Interferometric Structures 70
2.3.1. Mirror Dispersion 70
2.3.2. Fabry–Perot and Gires–Tournois Interferometer 73
2.3.3. Chirped Mirrors 80
2.4. Focusing Elements 82
2.4.1. Singlet Lenses 82
2.4.2. Space–Time Distribution of the Pulse
Intensity at the Focus of a Lens 86
2.4.3. Achromatic Doublets 91
2.4.4. Focusing Mirrors 92
2.5. Elements with Angular Dispersion 94
2.5.1. Introduction 94
2.5.2. Tilting of Pulse Fronts 95
2.5.3. GVD through Angular Dispersion—General 100
2.5.4. GVD of a Cavity Containing a Single Prism 102
2.5.5. Group Velocity Control with Pairs of Prisms 105
2.5.6. GVD Introduced by Gratings 117
2.5.7. Grating Pairs for Pulse Compressors 120
2.5.8. Combination of Focusing and Angular
Dispersive Elements 122
2.6. Wave-Optical Description of Angular Dispersive
Elements 124
2.7. Optical Matrices for Dispersive Systems 130
2.8. Numerical Approaches 136
2.9. Problems 136
Bibliography 140
Chapter 3 Light–Matter Interaction 143
3.1. Density Matrix Equations 144
3.2. Pulse Shaping with Resonant Particles 154
3.2.1. General 154
3.2.2. Pulses Much Longer Than the Phase
Relaxation Time (i, » T2) 156
3.2.3. Phase Modulation by Quasi-Resonant
Interactions 161
3.2.4. Pulse Durations Comparable with or Longer
Than the Phase Relaxation Time (rp > T2) 165
3.3. Nonlinear, Nonresonant Optical Processes 166
3.3.1. General 166
3.3.2. Noninstantaneous Response 168
3.3.3. Pulse Propagation 170
Contents vii
3.4. Second Harmonie Generation (SHG) 172
3.4.1. Type I Second Harmonie Generation 173
3.4.2. Second Harmonie Type II: Equations for
Arbitrary Phase Mismatch and
Conversion Efficiencies 180
3.4.3. Pulse Shaping in Second Harmonie
Generation (Type II) 183
3.4.4. Group Velocity Control in SHG through
Pulse Front Tilt 185
3.5. Optical Parametric Interaction 188
3.5.1. Coupled Field Equations 188
3.5.2. Synchronous Pumping 190
3.5.3. Chirp Amplification 190
3.6. Third-Order Susceptibility 192
3.6.1. Fundamentals 192
3.6.2. Short Samples with Instantaneous Response 195
3.6.3. Short Samples and Noninstantaneous
Response 197
3.6.4. Counter-Propagating Pulses and Third-Order
Susceptibility 199
3.7. Continuum Generation 202
3.8. Self-Focusing 205
3.8.1. Critical Power 205
3.8.2. The Nonlinear Schrödinger Equation 208
3.9. Beam Trapping and Filaments 209
3.9.1. Beam Trapping 209
3.9.2. Ultrashort Pulse Self-Focusing 212
3.10. Problems 213
Bibliography 215
Chapter 4 Coherent Phenomena 221
4.1. From Coherent to Incoherent Interactions 221
4.2. Coherent Interactions with Two-Level Systems 225
4.2.1. Maxwell—Bloch Equations 225
4.2.2. Rate Equations 229
4.2.3. Evolution Equations 230
4.2.4. Steady-State Pulses 239
4.3. Multiphoton Coherent Interaction 243
4.3.1. Introduction 243
4.3.2. Multiphoton Multilevel Transitions 245
4.3.3. Simplifying a N-Level System to a
Two-Level Transition 258
viii Contents
4.3.4. Four Photon Resonant Coherent Interaction 262
4.3.5. Miscellaneous Applications 268
4.4. Problems 272
Bibliography 273
Chapter 5 Ultrashort Sources I: Fundamentals 277
5.1. Introduction 277
5.1.1. Superposition of Cavity Modes 277
5.1.2. Cavity Modes and Modes of a
Mode-Locked Laser 280
5.1.3. The "Perfect" Mode-Locked Laser 283
5.1.4. The "Common" Mode-Locked Laser 285
5.1.5. Basic Elements and Operation of a fs Laser 291
5.2. Circulating Pulse Model 293
5.2.1. General Round-Trip Model 293
5.2.2. Continuous Model 295
5.2.3. Elements of a Numerical Treatment 298
5.2.4. Elements of an Analytical Treatment 300
5.3. Evolution of the Pulse Energy 303
5.3.1. Rate Equations for the Evolution of the
Pulse Energy 304
5.3.2. Connection of the Model to Microscopic
Parameters 311
5.4. Pulse Shaping in Intracavity Elements 314
5.4.1. Saturation 315
5.4.2. Nonlinear Nonresonant Elements 317
5.4.3. Self-Lensing 320
5.4.4. Summary of Compression Mechanisms 323
5.4.5. Dispersion 323
5.5. Cavities 325
5.5.1. Cavity Modes and ABCD Matrix Analysis 325
5.5.2. Astigmatism and Its Compensation 328
5.5.3. Cavity with a Kerr Lens 332
5.6. Problems 335
Bibliography 337
Chapter 6 Ultrashort Sources II: Examples 341
6.1. Synchronous Mode-Locking 341
6.2. Hybrid Mode-Locking 345
6.3. Additive Pulse Mode-Locking 346
6.3.1. Generalities 346
6.3.2. Analysis of APML 348
Contents ix
6.4. Mode-Locking Based an Nonresonant Nonlinearity 349
6.4.1. Nonlinear Mirror 349
6.4.2. Polarization Rotation 351
6.5. Negative Feedback 352
6.6. Semiconductor-Based Saturable Absorbers 356
6.7. Solid-State Lasers 358
6.7.1. Generalities 358
6.7.2. Ti:sapphire Laser 360
6.7.3. Cr:LiSAF, Cr:LiGAF, Cr:LiSGAF,
and Alexandrite 364
6.7.4. Cr:Forsterite and Cr:Cunyite Lasers 366
6.7.5. YAG Lasers 367
6.7.6. Nd:YVO4 and Nd:YLF 370
6.8. Semiconductor and Dye Lasers 371
6.8.1. Dye Lasers 371
6.8.2. Semiconductor Lasers 374
6.9. Fiber Lasers 378
6.9.1. Introduction 378
6.9.2. Raman Soliton Fiber Lasers 379
6.9.3. Doped Fiber Lasers 380
6.9.4. Mode-Locking through Polarization Rotation 381
6.9.5. Figure-Eight Laser 384
Bibliography 386
Chapter 7 Femtosecond Pulse Amplification 395
7.1. Introduction 395
7.2. Fundamentals 396
7.2.1. Gain Factor and Saturation 396
7.2.2. Shaping in Amplifiers 400
7.2.3. Amplified Spontaneous Emission (ASE) 404
7.3. Nonlinear Refractive Index Effects 406
7.3.1. General 406
7.3.2. Self-Focusing 409
7.3.3. Thermal Noise 410
7.3.4. Combined Pulse Amplification and Chirping 411
7.4. Chirped Pulse Amplification (CPA) 412
7.5. Amplifier Design 414
7.5.1. Gain Media and Pump Pulses 414
7.5.2. Amplifier Configurations 416
7.5.3. Single-Stage, Multipass Amplifiers 418
7.5.4. Regenerative Amplifiers 421
7.5.5. Traveling Wave Amplification 422
x Contents
7.6. Optical Parametric Chirped Pulse Amplification
(OPCPA) 426
7.7. Problems 427
Bibliography 429
Chapter 8 Pulse Shaping 433
8.1. Pulse Compression 433
8.1.1. General 433
8.1.2. The Fiber Compressor 437
8.1.3. Pulse Compression Using Bulk Materials 450
8.2. Shaping through Spectral Filtering 451
8.3. Problems 454
Bibliography 455
Chapter 9 Diagnostic Techniques 457
9.1. Intensity Correlations 458
9.1.1. General Properties 458
9.1.2. The Intensity Autocorrelation 458
9.1.3. Intensity Correlations of Higher Order 459
9.2. Interferometric Correlations 459
9.2.1. General Expression 459
9.2.2. Interferometric Autocorrelation 462
9.3. Measurement Techniques 466
9.3.1. Nonlinear Optical Processes for Measuring
Femtosecond Pulse Correlations 466
9.3.2. Recurrent Signals 466
9.3.3. Single Shot Measurements 468
9.4. Pulse Amplitude and Phase Reconstruction 473
9.4.1. Introduction 473
9.4.2. Methods for Full-Field Characterization of
Ultrashort Light Pulses 474
9.4.3. Retrieval from Correlation and Spectrum 477
9.4.4. Frequency Resolved Optical Gating (FROG) 480
9.4.5. Spectral Phase Interferometry for Direct
Electric Field Reconstruction (SPIDER) 484
9.5. Problems 485
Bibliography 486
Chapter 10 Measurement Techniques of Femtosecond
Spectroscopy 491
10.1. Introduction 491
10.2. Data Deconvolutions 493
Contents xi
10.3. Beam Geometry and Temporal Resolution 494
10.4. Transient Absorption Spectroscopy 497
10.5. Transient Polarization Rotation 500
10.6. Transient Grating Techniques 503
10.6.1. General Technique 503
10.6.2. Degenerate Four Wave Mixing (DFWM) 506
10.7. Femtosecond Resolved Fluorescence 509
10.8. Photon Echoes 512
10.9. Zero Area Pulse Propagation 515
10.10. Impulsive Stimulated Raman Scattering 518
10.10.1. General Description 518
10.10.2. Detection 520
10.10.3. Theoretical Framework 522
10.10.4. Single Pulse Shaping Versus Mode-Locked
Train 524
10.11. Self-Action Experiments 526
10.12. Problems 528
Bibliography 529
Chapter 11 Examples of Ultrafast Processes in Matter 531
11.1. Introduction 531
11.2. Ultrafast Transients in Atoms 532
11.2.1. The Classical Limit of the Quantum
Mechanical Atom 532
11.2.2. The Radial Wave Packet 532
11.2.3. The Angularly Localized Wave Packet 534
11.3. Ultrafast Processes in Molecules 536
11.3.1. Observation of Molecular Vibrations 536
11.3.2. Chemical Reactions 540
11.3.3. Molecules in Solution 543
11.4. Ultrafast Processes in Solid-State Materials 544
11.4.1. Excitation across the Band Gap 544
11.4.2. Excitons 545
11.4.3. Intraband Relaxation 545
11.4.4. Phonon Dynamics 547
11.4.5. Laser-Induced Surface Disordering 549
11.5. Primary Steps in Photo–Biological Reactions 550
11.5.1. Femtosecond Isomerization of
Rhodopsin 550
11.5.2. Photosynthesis 551
Bibliography 553
xii Contents
Chapter 12 Generation of Extreme Wavelengths 557
12.1. Generation of Terahertz (THz) Radiation 558
12.2. Generation of Ultrafast X-Ray Pulses 565
12.2.1. Incoherent Bursts of X-Rays 565
12.2.2. High Harmonics (HH) and Attosecond
Pulse Generation 566
12.3. Generation of Ultrashort Acoustic Pulses 568
12.4. Generation of Ultrafast Electric Pulses 571
Bibliography 575
Chapter 13 Selected Applications 579
13.1. Imaging 579
13.1.1. Introduction 579
13.1.2. Range Gating with Ultrashort Pulses 580
13.1.3. Imaging through Scatterers 583
13.1.4. Prospects for Four-Dimensional Imaging 585
13.1.5. Microscopy 586
13.2. Solitons 590
13.2.1. Temporal Solitons 590
13.2.2. Spatial Solitons and Filaments 592
13.2.3. Spatial and Temporal Solitons 597
13.3. Sensors Based on fs Lasers 598
13.3.1. Description of the Operation 598
13.3.2. Inertial Measurements (Rotation and
Acceleration) 601
13.3.3. Measurement of Changes in Index 603
13.4. Stabilized Mode-Locked Lasers for Metrology 609
13.4.1. Measurement of the Carrier to Envelope
Offset (CEO) 610
13.4.2. Locking of fs Lasers to Stable
Reference Cavities 614
13.5. Problem 616
Bibliography 617
Appendix A The Uncertainty Principle 623
Appendix B Phase Shifts on Transmission and Reflection 625
B.1. The Symmetrical Interface 625
B.2. Coated Interface between Two Different
Dielectrics 626
Appendix C Slowly Evolving Wave Approximation 629
Contents xiii
Appendix D Four-Photon Coherent Interaction 633
Appendix E Kerr Lensing in a Cavity 637
E.1. Elementary Kerr Lensing Model 637
E.2. Example of a Nonlinear Cavity and Gaussian
Beam Analysis 638
Appendix F Abbreviations for Dyes 643
List of Symbols 645
Index 647
View publication stats

More Related Content

PDF
Introduction to-nonlinear-optics
PPT
6. Really Basic Optics.ppt
PDF
Supercontinuum Generation In Optical Fibers Dudley Jm Taylor Jr Eds
PDF
A method for controlling the bandwidth of high energy, fewoptical-cycle
PPTX
Laser,Optical Fibres and Ultrasonics
PPT
Components of Optical Instruments
PDF
Compact Sources Of Ultrashort Pulses Irl N Duling Iii
PPT
Optical sources laser
Introduction to-nonlinear-optics
6. Really Basic Optics.ppt
Supercontinuum Generation In Optical Fibers Dudley Jm Taylor Jr Eds
A method for controlling the bandwidth of high energy, fewoptical-cycle
Laser,Optical Fibres and Ultrasonics
Components of Optical Instruments
Compact Sources Of Ultrashort Pulses Irl N Duling Iii
Optical sources laser

Similar to Ultrashort_Laser_Pulse_Phenomena_Fundamentals_Tech.pdf (20)

PPTX
unit iii.pptx
PPTX
Applied Physics Unit 5 LASER and FIBRE OPTICS.pptx
PPTX
Unit iii (advances in metrology)
PDF
Coherence And Ultrashort Pulse Laser Emission F J Duarte
PDF
Progress in Optics Vol 44 1st Edition E. Wolf (Ed.)
PPTX
Biophotonics
PPTX
optical fiber and laser
PDF
Laser ii 3 ppt
PDF
Progress in Optics Vol 44 1st Edition E. Wolf (Ed.)
PDF
PDF
Pawley handbook chapter 5
PDF
Botonakis George Final Thesis
PPT
Nonlinear Optical Materials
PPTX
Lasers
PDF
Singlephoton Generation And Detection Physics And Applications 1st Edition Al...
PPTX
Laser and fiber optics
PDF
Fewcycle Laser Pulse Generation And Its Applications Franz X Kartner
PDF
Nonlinear optics
PPT
Lasers1.ppt
PPTX
Unit IV.pptx Digital Logic And Circuit Design
unit iii.pptx
Applied Physics Unit 5 LASER and FIBRE OPTICS.pptx
Unit iii (advances in metrology)
Coherence And Ultrashort Pulse Laser Emission F J Duarte
Progress in Optics Vol 44 1st Edition E. Wolf (Ed.)
Biophotonics
optical fiber and laser
Laser ii 3 ppt
Progress in Optics Vol 44 1st Edition E. Wolf (Ed.)
Pawley handbook chapter 5
Botonakis George Final Thesis
Nonlinear Optical Materials
Lasers
Singlephoton Generation And Detection Physics And Applications 1st Edition Al...
Laser and fiber optics
Fewcycle Laser Pulse Generation And Its Applications Franz X Kartner
Nonlinear optics
Lasers1.ppt
Unit IV.pptx Digital Logic And Circuit Design
Ad

Recently uploaded (20)

PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
Construction Project Organization Group 2.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
Well-logging-methods_new................
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
additive manufacturing of ss316l using mig welding
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
Geodesy 1.pptx...............................................
PPTX
web development for engineering and engineering
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
III.4.1.2_The_Space_Environment.p pdffdf
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PPT
Mechanical Engineering MATERIALS Selection
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
UNIT 4 Total Quality Management .pptx
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Construction Project Organization Group 2.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Well-logging-methods_new................
Automation-in-Manufacturing-Chapter-Introduction.pdf
bas. eng. economics group 4 presentation 1.pptx
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
additive manufacturing of ss316l using mig welding
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
R24 SURVEYING LAB MANUAL for civil enggi
Geodesy 1.pptx...............................................
web development for engineering and engineering
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
III.4.1.2_The_Space_Environment.p pdffdf
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
Mechanical Engineering MATERIALS Selection
Ad

Ultrashort_Laser_Pulse_Phenomena_Fundamentals_Tech.pdf

  • 1. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266908536 Ultrashort Laser Pulse Phenomena Fundamentals, Techniques, and Applications an a Femtosecond Time Scale Second Edition Article · January 1996 CITATIONS 239 READS 3,709 2 authors, including: Jean-Claude Diels University of New Mexico 467 PUBLICATIONS 5,962 CITATIONS SEE PROFILE All content following this page was uploaded by Jean-Claude Diels on 21 June 2016. The user has requested enhancement of the downloaded file.
  • 2. Ultrashort Laser Pulse Phenomena Fundamentals, Techniques, and Applications an a Femtosecond Time Scale Second Edition JEAN-CLAUDE DIELS Department of Physics and Astronomy University of New Mexico Albuquerque, NM WOLFGANG RUDOLPH Department of Physics and Astronomy University of New Mexico Albuquerque, NM AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO ELSEVIER Academic Press is an immint of Elsevier
  • 3. Contents Preface xv Preface to the First Edition xvii Chapter 1 Fundamentals 1 1.1. Characteristics of Femtosecond Light Pulses 1 1.1.1. Complex Representation of the Electric Field 1 1.1.2. Power, Energy, and Related Quantities 6 1.1.3. Pulse Duration and Spectral Width 9 1.1.4. Wigner Distribution, Second-Order Moments, Uncertainty Relations 12 1.2. Pulse Propagation 20 1.2.1. The Reduced Wave Equation 21 1.2.2. Retarded Frame of Reference 26 1.2.3. Dispersion 30 1.2.4. Gaussian Pulse Propagation 33 1.2.5. Complex Dielectric Constant 38 1.3. Interaction of Light Pulses with Linear Optical Elements 42 1.4. Generation of Phase Modulation 44 1.5. Beam Propagation 46 1.5.1. General 46 1.5.2. Analogy between Pulse and Beam Propagation 49 1.5.3. Analogy between Spatial and Temporal Imaging 50 1.6. Numerical Modeling of Pulse Propagation 53 1.7. Space–Time Effects 56 1.8. Problems 57 Bibliography 58 Chapter 2 Femtosecond Optics 61 2.1. Introduction 61 2.2. White Light and Short Pulse Interferometry 64
  • 4. vi Contents 2.3. Dispersion of Interferometric Structures 70 2.3.1. Mirror Dispersion 70 2.3.2. Fabry–Perot and Gires–Tournois Interferometer 73 2.3.3. Chirped Mirrors 80 2.4. Focusing Elements 82 2.4.1. Singlet Lenses 82 2.4.2. Space–Time Distribution of the Pulse Intensity at the Focus of a Lens 86 2.4.3. Achromatic Doublets 91 2.4.4. Focusing Mirrors 92 2.5. Elements with Angular Dispersion 94 2.5.1. Introduction 94 2.5.2. Tilting of Pulse Fronts 95 2.5.3. GVD through Angular Dispersion—General 100 2.5.4. GVD of a Cavity Containing a Single Prism 102 2.5.5. Group Velocity Control with Pairs of Prisms 105 2.5.6. GVD Introduced by Gratings 117 2.5.7. Grating Pairs for Pulse Compressors 120 2.5.8. Combination of Focusing and Angular Dispersive Elements 122 2.6. Wave-Optical Description of Angular Dispersive Elements 124 2.7. Optical Matrices for Dispersive Systems 130 2.8. Numerical Approaches 136 2.9. Problems 136 Bibliography 140 Chapter 3 Light–Matter Interaction 143 3.1. Density Matrix Equations 144 3.2. Pulse Shaping with Resonant Particles 154 3.2.1. General 154 3.2.2. Pulses Much Longer Than the Phase Relaxation Time (i, » T2) 156 3.2.3. Phase Modulation by Quasi-Resonant Interactions 161 3.2.4. Pulse Durations Comparable with or Longer Than the Phase Relaxation Time (rp > T2) 165 3.3. Nonlinear, Nonresonant Optical Processes 166 3.3.1. General 166 3.3.2. Noninstantaneous Response 168 3.3.3. Pulse Propagation 170
  • 5. Contents vii 3.4. Second Harmonie Generation (SHG) 172 3.4.1. Type I Second Harmonie Generation 173 3.4.2. Second Harmonie Type II: Equations for Arbitrary Phase Mismatch and Conversion Efficiencies 180 3.4.3. Pulse Shaping in Second Harmonie Generation (Type II) 183 3.4.4. Group Velocity Control in SHG through Pulse Front Tilt 185 3.5. Optical Parametric Interaction 188 3.5.1. Coupled Field Equations 188 3.5.2. Synchronous Pumping 190 3.5.3. Chirp Amplification 190 3.6. Third-Order Susceptibility 192 3.6.1. Fundamentals 192 3.6.2. Short Samples with Instantaneous Response 195 3.6.3. Short Samples and Noninstantaneous Response 197 3.6.4. Counter-Propagating Pulses and Third-Order Susceptibility 199 3.7. Continuum Generation 202 3.8. Self-Focusing 205 3.8.1. Critical Power 205 3.8.2. The Nonlinear Schrödinger Equation 208 3.9. Beam Trapping and Filaments 209 3.9.1. Beam Trapping 209 3.9.2. Ultrashort Pulse Self-Focusing 212 3.10. Problems 213 Bibliography 215 Chapter 4 Coherent Phenomena 221 4.1. From Coherent to Incoherent Interactions 221 4.2. Coherent Interactions with Two-Level Systems 225 4.2.1. Maxwell—Bloch Equations 225 4.2.2. Rate Equations 229 4.2.3. Evolution Equations 230 4.2.4. Steady-State Pulses 239 4.3. Multiphoton Coherent Interaction 243 4.3.1. Introduction 243 4.3.2. Multiphoton Multilevel Transitions 245 4.3.3. Simplifying a N-Level System to a Two-Level Transition 258
  • 6. viii Contents 4.3.4. Four Photon Resonant Coherent Interaction 262 4.3.5. Miscellaneous Applications 268 4.4. Problems 272 Bibliography 273 Chapter 5 Ultrashort Sources I: Fundamentals 277 5.1. Introduction 277 5.1.1. Superposition of Cavity Modes 277 5.1.2. Cavity Modes and Modes of a Mode-Locked Laser 280 5.1.3. The "Perfect" Mode-Locked Laser 283 5.1.4. The "Common" Mode-Locked Laser 285 5.1.5. Basic Elements and Operation of a fs Laser 291 5.2. Circulating Pulse Model 293 5.2.1. General Round-Trip Model 293 5.2.2. Continuous Model 295 5.2.3. Elements of a Numerical Treatment 298 5.2.4. Elements of an Analytical Treatment 300 5.3. Evolution of the Pulse Energy 303 5.3.1. Rate Equations for the Evolution of the Pulse Energy 304 5.3.2. Connection of the Model to Microscopic Parameters 311 5.4. Pulse Shaping in Intracavity Elements 314 5.4.1. Saturation 315 5.4.2. Nonlinear Nonresonant Elements 317 5.4.3. Self-Lensing 320 5.4.4. Summary of Compression Mechanisms 323 5.4.5. Dispersion 323 5.5. Cavities 325 5.5.1. Cavity Modes and ABCD Matrix Analysis 325 5.5.2. Astigmatism and Its Compensation 328 5.5.3. Cavity with a Kerr Lens 332 5.6. Problems 335 Bibliography 337 Chapter 6 Ultrashort Sources II: Examples 341 6.1. Synchronous Mode-Locking 341 6.2. Hybrid Mode-Locking 345 6.3. Additive Pulse Mode-Locking 346 6.3.1. Generalities 346 6.3.2. Analysis of APML 348
  • 7. Contents ix 6.4. Mode-Locking Based an Nonresonant Nonlinearity 349 6.4.1. Nonlinear Mirror 349 6.4.2. Polarization Rotation 351 6.5. Negative Feedback 352 6.6. Semiconductor-Based Saturable Absorbers 356 6.7. Solid-State Lasers 358 6.7.1. Generalities 358 6.7.2. Ti:sapphire Laser 360 6.7.3. Cr:LiSAF, Cr:LiGAF, Cr:LiSGAF, and Alexandrite 364 6.7.4. Cr:Forsterite and Cr:Cunyite Lasers 366 6.7.5. YAG Lasers 367 6.7.6. Nd:YVO4 and Nd:YLF 370 6.8. Semiconductor and Dye Lasers 371 6.8.1. Dye Lasers 371 6.8.2. Semiconductor Lasers 374 6.9. Fiber Lasers 378 6.9.1. Introduction 378 6.9.2. Raman Soliton Fiber Lasers 379 6.9.3. Doped Fiber Lasers 380 6.9.4. Mode-Locking through Polarization Rotation 381 6.9.5. Figure-Eight Laser 384 Bibliography 386 Chapter 7 Femtosecond Pulse Amplification 395 7.1. Introduction 395 7.2. Fundamentals 396 7.2.1. Gain Factor and Saturation 396 7.2.2. Shaping in Amplifiers 400 7.2.3. Amplified Spontaneous Emission (ASE) 404 7.3. Nonlinear Refractive Index Effects 406 7.3.1. General 406 7.3.2. Self-Focusing 409 7.3.3. Thermal Noise 410 7.3.4. Combined Pulse Amplification and Chirping 411 7.4. Chirped Pulse Amplification (CPA) 412 7.5. Amplifier Design 414 7.5.1. Gain Media and Pump Pulses 414 7.5.2. Amplifier Configurations 416 7.5.3. Single-Stage, Multipass Amplifiers 418 7.5.4. Regenerative Amplifiers 421 7.5.5. Traveling Wave Amplification 422
  • 8. x Contents 7.6. Optical Parametric Chirped Pulse Amplification (OPCPA) 426 7.7. Problems 427 Bibliography 429 Chapter 8 Pulse Shaping 433 8.1. Pulse Compression 433 8.1.1. General 433 8.1.2. The Fiber Compressor 437 8.1.3. Pulse Compression Using Bulk Materials 450 8.2. Shaping through Spectral Filtering 451 8.3. Problems 454 Bibliography 455 Chapter 9 Diagnostic Techniques 457 9.1. Intensity Correlations 458 9.1.1. General Properties 458 9.1.2. The Intensity Autocorrelation 458 9.1.3. Intensity Correlations of Higher Order 459 9.2. Interferometric Correlations 459 9.2.1. General Expression 459 9.2.2. Interferometric Autocorrelation 462 9.3. Measurement Techniques 466 9.3.1. Nonlinear Optical Processes for Measuring Femtosecond Pulse Correlations 466 9.3.2. Recurrent Signals 466 9.3.3. Single Shot Measurements 468 9.4. Pulse Amplitude and Phase Reconstruction 473 9.4.1. Introduction 473 9.4.2. Methods for Full-Field Characterization of Ultrashort Light Pulses 474 9.4.3. Retrieval from Correlation and Spectrum 477 9.4.4. Frequency Resolved Optical Gating (FROG) 480 9.4.5. Spectral Phase Interferometry for Direct Electric Field Reconstruction (SPIDER) 484 9.5. Problems 485 Bibliography 486 Chapter 10 Measurement Techniques of Femtosecond Spectroscopy 491 10.1. Introduction 491 10.2. Data Deconvolutions 493
  • 9. Contents xi 10.3. Beam Geometry and Temporal Resolution 494 10.4. Transient Absorption Spectroscopy 497 10.5. Transient Polarization Rotation 500 10.6. Transient Grating Techniques 503 10.6.1. General Technique 503 10.6.2. Degenerate Four Wave Mixing (DFWM) 506 10.7. Femtosecond Resolved Fluorescence 509 10.8. Photon Echoes 512 10.9. Zero Area Pulse Propagation 515 10.10. Impulsive Stimulated Raman Scattering 518 10.10.1. General Description 518 10.10.2. Detection 520 10.10.3. Theoretical Framework 522 10.10.4. Single Pulse Shaping Versus Mode-Locked Train 524 10.11. Self-Action Experiments 526 10.12. Problems 528 Bibliography 529 Chapter 11 Examples of Ultrafast Processes in Matter 531 11.1. Introduction 531 11.2. Ultrafast Transients in Atoms 532 11.2.1. The Classical Limit of the Quantum Mechanical Atom 532 11.2.2. The Radial Wave Packet 532 11.2.3. The Angularly Localized Wave Packet 534 11.3. Ultrafast Processes in Molecules 536 11.3.1. Observation of Molecular Vibrations 536 11.3.2. Chemical Reactions 540 11.3.3. Molecules in Solution 543 11.4. Ultrafast Processes in Solid-State Materials 544 11.4.1. Excitation across the Band Gap 544 11.4.2. Excitons 545 11.4.3. Intraband Relaxation 545 11.4.4. Phonon Dynamics 547 11.4.5. Laser-Induced Surface Disordering 549 11.5. Primary Steps in Photo–Biological Reactions 550 11.5.1. Femtosecond Isomerization of Rhodopsin 550 11.5.2. Photosynthesis 551 Bibliography 553
  • 10. xii Contents Chapter 12 Generation of Extreme Wavelengths 557 12.1. Generation of Terahertz (THz) Radiation 558 12.2. Generation of Ultrafast X-Ray Pulses 565 12.2.1. Incoherent Bursts of X-Rays 565 12.2.2. High Harmonics (HH) and Attosecond Pulse Generation 566 12.3. Generation of Ultrashort Acoustic Pulses 568 12.4. Generation of Ultrafast Electric Pulses 571 Bibliography 575 Chapter 13 Selected Applications 579 13.1. Imaging 579 13.1.1. Introduction 579 13.1.2. Range Gating with Ultrashort Pulses 580 13.1.3. Imaging through Scatterers 583 13.1.4. Prospects for Four-Dimensional Imaging 585 13.1.5. Microscopy 586 13.2. Solitons 590 13.2.1. Temporal Solitons 590 13.2.2. Spatial Solitons and Filaments 592 13.2.3. Spatial and Temporal Solitons 597 13.3. Sensors Based on fs Lasers 598 13.3.1. Description of the Operation 598 13.3.2. Inertial Measurements (Rotation and Acceleration) 601 13.3.3. Measurement of Changes in Index 603 13.4. Stabilized Mode-Locked Lasers for Metrology 609 13.4.1. Measurement of the Carrier to Envelope Offset (CEO) 610 13.4.2. Locking of fs Lasers to Stable Reference Cavities 614 13.5. Problem 616 Bibliography 617 Appendix A The Uncertainty Principle 623 Appendix B Phase Shifts on Transmission and Reflection 625 B.1. The Symmetrical Interface 625 B.2. Coated Interface between Two Different Dielectrics 626 Appendix C Slowly Evolving Wave Approximation 629
  • 11. Contents xiii Appendix D Four-Photon Coherent Interaction 633 Appendix E Kerr Lensing in a Cavity 637 E.1. Elementary Kerr Lensing Model 637 E.2. Example of a Nonlinear Cavity and Gaussian Beam Analysis 638 Appendix F Abbreviations for Dyes 643 List of Symbols 645 Index 647 View publication stats