Tests of significance are statistical methods used to assess evidence for or against claims based on sample data about a population. Every test of significance involves a null hypothesis (H0) and an alternative hypothesis (Ha). H0 represents the theory being tested, while Ha represents what would be concluded if H0 is rejected. A test statistic is computed and compared to a critical value to either reject or fail to reject H0. Type I and Type II errors can occur. Steps in hypothesis testing include stating hypotheses, selecting a significance level and test, determining decision rules, computing statistics, and interpreting the decision. Hypothesis tests are used to answer questions about differences in groups or claims about populations.