SlideShare a Scribd company logo
Name ___________________________________               Date _________________________
Mrs. Labuski / Mrs. Portsmore Period _____             Unit 4 Lesson 8
                                                       Distributive Property and Combining like Terms

      Essential Question: Why do we represent numbers in different ways?

Step 1 - Distribute
      (only to the numbers inside the parenthesis)

Step 2 - Combine Like Terms
      (leave your answer as an expression - "in terms of x")

Simplify by distributing and combining like terms. Show your work. The first one is done for you.

1. 3(x + 6) + 7x =                              2. 6m + 3(m + 5) + 7 =
   3 x + 18 + 7x =
      10x + 18


3. 7(2 + x) + 8 =                               4. 5(m + 9) + 4 =




5. 9 + 5(2x + 4) =                              6. 3m + 2(5 + m) =




7. 12 + 3(x + 8) =                              8. 6m + 14 + 3(m + 7) =




9. 3(7x + 2) + 8x =                             10. 4(m + 6) + 3(3 + m) =
Step 1 - Distribute
      (only to the numbers inside the parenthesis)

Step 2 - Combine Like Terms

Step 3 – Plug in given the value of the variable and solve

Simplify the expression first. Then evaluate the resulting expression for the given value of the variable.

11. 3x + 5(2x + 6) = _____ if x = 4               12. 9(2m + 1) + 2(5m + 3) = _____ if m = 2
   3x + 10x + 30 =
   13x + 30 =
   13(4) + 30 =     82



13. 4 + 6(2x + 7) = _____ if x = 3                14. 7(7 + 5m) + 4(m + 6) = _____ if m = 1




15. 8 + 5(9 + 4x) = _____ if x = 2                16. 2(4m + 5) + 8(3m + 1) = _____ if m = 3




17. 6(4x + 7) + x = _____ if x = 2                18. 5(8 + m) + 2(7m – 7) = ______ if m = 3
Name ___________________________________               Date _________________________
Mrs. Labuski / Mrs. Portsmore Period _____             Unit 4 Lesson 8
                                                       Distributive Property and Combining like Terms

      Essential Question: Why do we represent numbers in different ways?
Step 1 - Distribute
      (only to the numbers inside the parenthesis)

Step 2 - Combine Like Terms
      (leave your answer as an expression - "in terms of x")

Simplify by distributing and combining like terms. Show your work. The first one is done for you.

1. 3(x + 6) + 7x =                              2. 6m + 3(m + 5) + 7 =
   3 x + 18 + 7x =                              6m + 3m + 15 + 7 =
      10x + 18                                  9m + 22


3. 7(2 + x) + 8 =                               4. 5(m + 9) + 4 =
   14 + 7x + 8 =                                   5m + 45 + 4 =
      22 + 7x                                         5m + 49


5. 9 + 5(2x + 4) =                              6. 3m + 2(5 + m) =
   9 + 10x + 20 =                                    3m + 10 + 2m =
      29 + 10x                                       5m + 10


7. 12 + 3(x + 8) =                              8. 6m + 14 + 3(m + 7) =
   12 + 3x + 24 =                                  6m + 14 + 3m + 21=
   36 + 3x + 24 =                                  9m + 35=

9. 3(7x + 2) + 8x =                             10. 4(m + 6) + 3(3 + m) =
      21x + 6 + 8x =                              4m + 24 + 9 + 3m =
      29x + 6 =                                   7m + 33 =
Step 1 - Distribute
      (only to the numbers inside the parenthesis)

Step 2 - Combine Like Terms

Step 3 – Plug in given the value of the variable and solve


Simplify the expression first. Then evaluate the resulting expression for the given value of the variable.

11. 3x + 5(2x + 6) = _____ if x = 4               12. 9(2m + 1) + 2(5m + 3) = _____ if m = 2
   3x + 10x + 30 =                                    18m + 9 + 10m + 6 =
   13x + 30 =                                            28m + 15=
   13(4) + 30 =     82                                   18(2) + 15=
                                                         36+15 =
                                                         51

13. 4 + 6(2x + 7) = _____ if x = 3                14. 7(7 + 5m) + 4(m + 6) = _____ if m = 1
       4 + 12x + 42                                      49 + 35m + 4m + 24
       46 + 12x                                          73 + 39m
       46 + 12(3)                                        73 + 39(1)
       46 + 36                                           73 + 39(1)
       82                                                  112

15. 8 + 5(9 + 4x) = _____ if x = 2                16. 2(4m + 5) + 8(3m + 1) = _____ if m = 3
       8 + 45 + 20x =                              8m + 10 + 24m + 8
       53 + 20x =                                  32m + 18
       53 + 20(2)=                                 32(3) + 18
       53 + 40                                    96 + 18
       93                                         114

17. 6(4x + 7) + x = _____ if x = 2                18. 5(8 + m) + 2(7m – 7) = ______ if m = 3
        6(4x + 7) + x =                                  5(8 + m) + 2(7m – 7) =
       24x + 42 + x =                                    40 + 5m + 14m – 14 =
       24(2) + 42 + 2 =                                  40 + 5(3) + 14(3) – 14 =
       48 + 42 + 2                                       40 + 15 + 42 – 14
       90 + 2                                            55 + 42 – 14
       92                                                97 – 14
                                                         83

More Related Content

PPT
Adding and subtracting polynomials
PPT
Adding and subtracting polynomials
PPTX
PPTX
Adding and subtracting polynomials
PPSX
Lesson 6 subtraction of polynomials
PPTX
Sum and difference of two squares
PPTX
Multiplying monomial
PPT
Add/Subtract polynomials
Adding and subtracting polynomials
Adding and subtracting polynomials
Adding and subtracting polynomials
Lesson 6 subtraction of polynomials
Sum and difference of two squares
Multiplying monomial
Add/Subtract polynomials

What's hot (20)

PPTX
Operations on Polynomials
PPTX
Addition and subtraction in polynomials
PPTX
Foil method
PPT
Adding Polynomials
PPT
Multiplying polynomials
PPTX
Unit 3 polynomials
PPT
Adding & Subtracting Polynomials
PPTX
Addition and subtraction of polynomial functions
PPT
Section 3.5 inequalities involving quadratic functions
KEY
Notes 12.1 identifying, adding & subtracting polynomials
PPTX
Addition of polynomials
PPT
10 1 Adding Subtracting Polynomials
PPT
Multiplying polynomials
PPT
Operations on Polynomials
PDF
Algebraic Expression
PPTX
Addition and Subtraction of Polynomials
PPTX
Addition and subtraction of polynomials
PPT
Add/Subtracting Polynomials
PPTX
Zeros of a polynomial function
PPTX
Subtracting polynomials
Operations on Polynomials
Addition and subtraction in polynomials
Foil method
Adding Polynomials
Multiplying polynomials
Unit 3 polynomials
Adding & Subtracting Polynomials
Addition and subtraction of polynomial functions
Section 3.5 inequalities involving quadratic functions
Notes 12.1 identifying, adding & subtracting polynomials
Addition of polynomials
10 1 Adding Subtracting Polynomials
Multiplying polynomials
Operations on Polynomials
Algebraic Expression
Addition and Subtraction of Polynomials
Addition and subtraction of polynomials
Add/Subtracting Polynomials
Zeros of a polynomial function
Subtracting polynomials
Ad

Similar to Unit 4 lesson 8 dist property combining like terms (20)

DOC
Two step equations distributive
DOCX
สมการเชิงเส้นตัวแปรเดียว
DOCX
Unit 4 lesson 5 distributive property
DOCX
Unit 4 lesson 5 distributive property
DOC
Answers for practice for third period exam 2011
PPTX
BOMDAS-SADMOB
PPT
Chapter 2.5
PPTX
Algebra 1 lessonplan powerpoint
PDF
EJERCICIOS DE VERANO PARA SEGUNDO DE ESO
DOC
5th period review carta WITH ANSWERS
DOC
5th period review cartawithanswers
DOC
5th period review carta WITH ANSWERS
PPTX
Algebra
PDF
Order of operations basic practice
DOC
5th period review cart awithanswers
PDF
08 equação do primeiro grau
PPTX
Adición y sustracción de fracciones
DOC
MATH: QUIZ EQUALITIES
PDF
Ecuaciones de primer grado
PDF
Ecuaciones de primer grado
Two step equations distributive
สมการเชิงเส้นตัวแปรเดียว
Unit 4 lesson 5 distributive property
Unit 4 lesson 5 distributive property
Answers for practice for third period exam 2011
BOMDAS-SADMOB
Chapter 2.5
Algebra 1 lessonplan powerpoint
EJERCICIOS DE VERANO PARA SEGUNDO DE ESO
5th period review carta WITH ANSWERS
5th period review cartawithanswers
5th period review carta WITH ANSWERS
Algebra
Order of operations basic practice
5th period review cart awithanswers
08 equação do primeiro grau
Adición y sustracción de fracciones
MATH: QUIZ EQUALITIES
Ecuaciones de primer grado
Ecuaciones de primer grado
Ad

More from mlabuski (20)

DOC
Quiz week 1 & 2 study guide
DOC
Quiz week 1 & 2 practice
DOCX
Welcome to social studies
PDF
Team orion supply list 15 16
DOC
Literature letter graphic organizer
PDF
Team orion supply list 15 16
DOC
Literature letters revised
PDF
Final exam review sheet # 2 2015
PDF
Final exam review sheet # 3 2015
PDF
Final exam review sheet # 1 2015
DOCX
Lessons 12 13 merged
PDF
Mod 5 lesson 12 13
DOCX
G6 m5-c-lesson 13-t
DOCX
G6 m5-c-lesson 13-s
DOCX
G6 m5-c-lesson 12-t
DOCX
G6 m5-c-lesson 12-s
PDF
Mod 5 lesson 9
DOCX
G6 m5-b-lesson 9-t
DOCX
G6 m5-b-lesson 9-s
PDF
Mod 5 lesson 8
Quiz week 1 & 2 study guide
Quiz week 1 & 2 practice
Welcome to social studies
Team orion supply list 15 16
Literature letter graphic organizer
Team orion supply list 15 16
Literature letters revised
Final exam review sheet # 2 2015
Final exam review sheet # 3 2015
Final exam review sheet # 1 2015
Lessons 12 13 merged
Mod 5 lesson 12 13
G6 m5-c-lesson 13-t
G6 m5-c-lesson 13-s
G6 m5-c-lesson 12-t
G6 m5-c-lesson 12-s
Mod 5 lesson 9
G6 m5-b-lesson 9-t
G6 m5-b-lesson 9-s
Mod 5 lesson 8

Unit 4 lesson 8 dist property combining like terms

  • 1. Name ___________________________________ Date _________________________ Mrs. Labuski / Mrs. Portsmore Period _____ Unit 4 Lesson 8 Distributive Property and Combining like Terms Essential Question: Why do we represent numbers in different ways? Step 1 - Distribute (only to the numbers inside the parenthesis) Step 2 - Combine Like Terms (leave your answer as an expression - "in terms of x") Simplify by distributing and combining like terms. Show your work. The first one is done for you. 1. 3(x + 6) + 7x = 2. 6m + 3(m + 5) + 7 = 3 x + 18 + 7x = 10x + 18 3. 7(2 + x) + 8 = 4. 5(m + 9) + 4 = 5. 9 + 5(2x + 4) = 6. 3m + 2(5 + m) = 7. 12 + 3(x + 8) = 8. 6m + 14 + 3(m + 7) = 9. 3(7x + 2) + 8x = 10. 4(m + 6) + 3(3 + m) =
  • 2. Step 1 - Distribute (only to the numbers inside the parenthesis) Step 2 - Combine Like Terms Step 3 – Plug in given the value of the variable and solve Simplify the expression first. Then evaluate the resulting expression for the given value of the variable. 11. 3x + 5(2x + 6) = _____ if x = 4 12. 9(2m + 1) + 2(5m + 3) = _____ if m = 2 3x + 10x + 30 = 13x + 30 = 13(4) + 30 = 82 13. 4 + 6(2x + 7) = _____ if x = 3 14. 7(7 + 5m) + 4(m + 6) = _____ if m = 1 15. 8 + 5(9 + 4x) = _____ if x = 2 16. 2(4m + 5) + 8(3m + 1) = _____ if m = 3 17. 6(4x + 7) + x = _____ if x = 2 18. 5(8 + m) + 2(7m – 7) = ______ if m = 3
  • 3. Name ___________________________________ Date _________________________ Mrs. Labuski / Mrs. Portsmore Period _____ Unit 4 Lesson 8 Distributive Property and Combining like Terms Essential Question: Why do we represent numbers in different ways? Step 1 - Distribute (only to the numbers inside the parenthesis) Step 2 - Combine Like Terms (leave your answer as an expression - "in terms of x") Simplify by distributing and combining like terms. Show your work. The first one is done for you. 1. 3(x + 6) + 7x = 2. 6m + 3(m + 5) + 7 = 3 x + 18 + 7x = 6m + 3m + 15 + 7 = 10x + 18 9m + 22 3. 7(2 + x) + 8 = 4. 5(m + 9) + 4 = 14 + 7x + 8 = 5m + 45 + 4 = 22 + 7x 5m + 49 5. 9 + 5(2x + 4) = 6. 3m + 2(5 + m) = 9 + 10x + 20 = 3m + 10 + 2m = 29 + 10x 5m + 10 7. 12 + 3(x + 8) = 8. 6m + 14 + 3(m + 7) = 12 + 3x + 24 = 6m + 14 + 3m + 21= 36 + 3x + 24 = 9m + 35= 9. 3(7x + 2) + 8x = 10. 4(m + 6) + 3(3 + m) = 21x + 6 + 8x = 4m + 24 + 9 + 3m = 29x + 6 = 7m + 33 =
  • 4. Step 1 - Distribute (only to the numbers inside the parenthesis) Step 2 - Combine Like Terms Step 3 – Plug in given the value of the variable and solve Simplify the expression first. Then evaluate the resulting expression for the given value of the variable. 11. 3x + 5(2x + 6) = _____ if x = 4 12. 9(2m + 1) + 2(5m + 3) = _____ if m = 2 3x + 10x + 30 = 18m + 9 + 10m + 6 = 13x + 30 = 28m + 15= 13(4) + 30 = 82 18(2) + 15= 36+15 = 51 13. 4 + 6(2x + 7) = _____ if x = 3 14. 7(7 + 5m) + 4(m + 6) = _____ if m = 1 4 + 12x + 42 49 + 35m + 4m + 24 46 + 12x 73 + 39m 46 + 12(3) 73 + 39(1) 46 + 36 73 + 39(1) 82 112 15. 8 + 5(9 + 4x) = _____ if x = 2 16. 2(4m + 5) + 8(3m + 1) = _____ if m = 3 8 + 45 + 20x = 8m + 10 + 24m + 8 53 + 20x = 32m + 18 53 + 20(2)= 32(3) + 18 53 + 40 96 + 18 93 114 17. 6(4x + 7) + x = _____ if x = 2 18. 5(8 + m) + 2(7m – 7) = ______ if m = 3 6(4x + 7) + x = 5(8 + m) + 2(7m – 7) = 24x + 42 + x = 40 + 5m + 14m – 14 = 24(2) + 42 + 2 = 40 + 5(3) + 14(3) – 14 = 48 + 42 + 2 40 + 15 + 42 – 14 90 + 2 55 + 42 – 14 92 97 – 14 83