SlideShare a Scribd company logo
ME 6604 - GAS DYNAMICS AND JET PROPULSION
UNIT – I
BASIC CONCEPTS AND FUNDAMENTALS OF
COMPRESSIBLE FLOW
B.PRABHU
ASSISTANT PROFESSOR
DEPT OF MECHANICAL ENGG
KAMARAJ COLLEGE OF ENGINEERING
PART - A
• FUNDAMENTALS OF COMPRESSIBLE FLOW
• Energy and momentum equations for compressible
fluid flows, various regions of flows, reference
velocities, stagnation state, velocity of sound,
critical states, Mach number, critical Mach number,
types of waves, Mach cone, Mach angle, effect of
Mach number on compressibility.
•
PART – B
• Flow through variable area duct
• Isentropic flow through variable area ducts, T-s
and h-s diagrams for nozzle and diffuser flows,
area ratio as a function of Mach number, mass
flow rate through nozzles and diffusers, effect
of friction in flow through nozzles
FLOW THROUGH VARIABLE AREA DUCTS
FLOW THROUGH VARIABLE
AREA DUCTS
• As a gas is forced through a tube, the gas molecules are deflected by
the walls of the tube. If the speed of the gas is much less than the
speed of sound of the gas, the density of the gas remains constant
and the velocity of the flow increases. However, as the speed of the
flow approaches the speed of sound we must
consider compressibility effects on the gas. The density of the gas
varies from one location to the next. Considering flow through a
tube, as shown in the figure, if the flow is very gradually
compressed (area decreases) and then gradually expanded (area
increases), the flow conditions return to their original values. We say
that such a process is reversible. From a consideration of the second
law of thermodynamics, a reversible flow maintains a constant value
of entropy. Engineers call this type of flow an isentropicflow; a
combination of the Greek word "iso" (same) and entropy.
FLOW THROUGH VARIABLE
AREA DUCTS
FLOW THROUGH VARIABLE
AREA DUCTS
• The conservation of mass is a fundamental concept of
physics. Within some problem domain, the amount of
mass remains constant; mass is neither created or
destroyed. The mass of any object is simply the volume
that the object occupies times the density of the
object. For a fluid (a liquid or a gas) the density,
volume, and shape of the object can all change within
the domain with time and mass can move through the
domain.
• The conservation of mass (continuity) tells us that the
mass flow rate mdot through a tube is a constant and
equal to the product of the density r, velocity V, and
flow area A:
Conservation of mass
Conservation of mass
• Solid Mechanics
• The conservation of mass is a fundamental concept of physics along with the conservation of energy and
theconservation of momentum. Within some problem domain, the amount of mass remains constant--mass
is neither created nor destroyed. This seems quite obvious, as long as we are not talking about black holes
or very exotic physics problems. The mass of any object can be determined by multiplying the volume of
the object by the density of the object. When we move a solid object, as shown at the top of the slide, the
object retains its shape, density, and volume. The mass of the object, therefore, remains a constant between
state "a" and state "b."
• Fluid Statics
• In the center of the figure, we consider an amount of a static fluid , liquid or gas. If we change the fluid
from some state "a" to another state "b" and allow it to come to rest, we find that, unlike a solid, a fluid may
change its shape. The amount of fluid, however, remains the same. We can calculate the amount of fluid by
multiplying the density times the volume. Since the mass remains constant, the product of the density and
volume also remains constant. (If the density remains constant, the volume also remains constant.) The
shape can change, but the mass remains the same.
• Fluid Dynamics
• Finally, at the bottom of the slide, we consider the changes for a fluid that is moving through our domain.
There is no accumulation or depletion of mass, so mass is conserved within the domain. Since the fluid is
moving, defining the amount of mass gets a little tricky. Let's consider an amount of fluid that passes
through point "a" of our domain in some amount of time t. If the fluid passes through an area A at
velocity V, we can define the volume Vol to be:
• Vol = A * V * t
Conservation Laws for a Real Fluid
  0. 


V
t



    wqVe
t
e







.
    gVV
t
V
ij
ˆ.. 



 

iiij pij
 '

    gpVV
t
V
ij ˆ.. '




 

Conservation of Mass Applied to 1 D Steady Flow
  0. 


V
t



Conservation of Mass:
Conservation of Mass for Stead Flow:
  0.  V


Integrate from inlet to exit :
  onstant. CVdV
V



One Dimensional Stead Flow
A,
V

A+dA,
V+dV d
dl
  onstant.. CdxdAV
V



  onstant. Cdx
dx
VAd


  0VAd 
0
A
dA
V
dVd


Conservation of Momentum For A Real Fluid Flow
  pVV ij
 '
.. 

  VdpVdVdVV
VVV
ij   '
.. 

No body forces
One Dimensional Steady flow
A,
V

A+dA,
V+dV d
dl
  dAdxpdxdAdAdxVV
V
w
VV
ij   '
. 

     dx
dx
pAd
dx
dx
Ad
dx
dx
AVd ww
 
 2
     pAdAdAVd ww   2
Conservation of Energy Applied to 1 D Steady Flow
    wqVe
t
e







.
Steady flow with negligible Body Forces and no heat transfer is
adiabatic real flow
  wVe 

 .
For a real fluid the rate of work transfer is due to viscous stress and
pressure. Neglecting the the effect of viscous dissipation.
  VdAnpVe

.ˆ.  
For a total change from inlet to exit :
   
AV
VdAnpVdVe

.ˆ. 
Using gauss divergence theorem:
One dimensional flow
   
VV
VdVpVdVe

.. 
   
VV
dAdxVpdAdxVe

.. 
   
  dx
dx
pAVd
dx
dx
eVAd 
   pAVdeVAd 
2
2
V
ue 




























 AV
p
d
V
uVAd


2
2
0
2
2























Vp
uVAd

 0
2
2















V
hVAd 
Summary of Real Fluid Analysis
0
A
dA
V
dVd


     pAdAdAVd ww   2
0
2
2















V
hVAd 
Further Analysis of Momentum equation
     pAdAdVAdVVAVd ww  
   pAdAdVAdV ww  
   pAdPxddVm w  
   pAdAddVm ww  
pdAAdpPdxxdPPxddVm www  
Frictional Flow in A Constant Area Duct
0
V
dVd


AdpPdxPxddVm ww  
0
2
2















V
hVd 
Frictional Flow in A Constant Area Duct
AdpPdxdVm w  
w
The shear stress is defined as and average
viscous stress which is always opposite to the
direction of flow for the entire length dx.
AdpPdxPxddVm ww  
AdpPdxAVdV w  
AdpPdxAVdV w  
Divide by AV2
22
V
dp
dx
A
P
VV
dV w



0
V
dVd


00
2
2






 VdVdTC
V
hd p
One dimensional Frictional Flow of A Perfect Gas
0
V
dVd


0VdVdTCp
2
V
dp
dx
A
P
f
V
dV


T
dT
V
dV
p
dp
T
dTd
p
dp



Sonic Equation
2
22
2
2
2 2
2
RT
dTV
RT
VdV
MdM
RT
V
c
V
M


Differential form of above equation:
T
dT
V
dV
M
dM
2

T
dT
V
dV
p
dp

T
dT
M
dM
p
dp
2

 
  M
dM
M
M
T
dT














2
2
2
1
1
1


Energy equation can be modified as:
T
dT
M
dM
p
dp
2

 
  M
dM
M
M
M
dM
p
dp














2
2
2
1
1
1
2
1


1D steady real flow through constant area duct : momentum equation
022

V
dp
dx
A
P
VV
dV w


022

p
dp
V
p
dx
A
P
VV
dV w


022

p
dp
V
p
dx
A
P
VV
dV w


022

p
dp
V
p
dx
A
P
VV
dV w




022

p
dp
V
p
dx
A
P
VV
dV w




0
1
22

p
dp
M
dx
A
P
VV
dV w


0
1
22

p
dp
M
dx
A
P
VV
dV w


 
  M
dM
M
M
T
dT














2
2
2
1
1
1


 
  M
dM
M
M
M
dM
p
dp














2
2
2
1
1
1
2
1


T
dT
V
dV
M
dM
2

Differential Equations for Frictional Flow Through
Constant Area Duct
T
dT
M
dM
p
dp
2

0
1
22

p
dp
M
dx
A
P
VT
dT
M
dM w


 
 
 
  0
2
1
1
1
2
11
2
1
1
1
2
2
22
2
2









































M
dM
M
M
M
dM
M
dx
A
P
VM
dM
M
M
M
dM w
















 

 dx
A
P
VM
MM
M
dM w
22
22
1
2
1
1




  








 dx
A
P
VM
M
T
dT w
22
4
1
1


  








 dx
A
P
VM
MM
p
dp w
22
22
1
11












 

 dx
A
P
VM
MM
M
dM w
22
22
1
2
1
1




Second Law Analysis
vdpdTCTds p 
dp
T
v
T
dT
Cds p 
p
dp
R
T
dT
Cds p 
p
dp
R
T
dT
Cds p 
p
dp
T
dT
C
ds
p 
 1









 2
1
1
V
TC
T
dT
T
dT
C
ds p
p 

 









TT
T
T
dT
T
dT
C
ds
p 02
1
1


TT
dT
T
dT
C
ds
p 


02
11



 


T
T
T
T
s
s p iii
TT
dT
T
dT
C
ds
02
11

































2
1
0
0
/1
ln
iip
i
TT
TT
T
T
C
ss
  








 dx
A
P
VM
M
T
dT w
22
4
1
1


Fanno Line
Adiabatic flow in a constant area with friction is termed as Fanno flow.
Isentropic Nozzle and Adiabatic Duct
C Nozzle Discharge Curve
CD Nozzle + Discharge Curve
Nature of Real Flow
Entropy of an irreversible adiabatic system should always increase!
 






 dx
A
P
V
MCds w
p 2
2
1













 

 dx
A
P
VM
MM
M
dM w
22
22
1
2
1
1




  








 dx
A
P
VM
M
T
dT w
22
4
1
1


  








 dx
A
P
VM
MM
p
dp w
22
22
1
11


M dM dp dT dV
<1 +ve -ve -ve +ve
>1 -ve +ve +ve -ve
Compressible Real Flow
),(Re, M
d
k
functionf 
Effect of Mach number is negligible….
)(Re,
d
k
functionf 

1
Re 
n
T
T







2
1
2
1


Pressure drop in Compressible Flow
Laminar Flow
Turbulent Flows



 









22
2
2
1
1
1
MM
M
M
dM
dx
A
P
f


Re
16
f
2
9.0
Re
74.5
7.3
log
0625.0














hD
k
f
Moody Chart
Compressible Flow Through Finite Length Duct
Integrate over a length l



 









22
2
2
1
1
14
MM
M
M
dM
D
fdx
h


M
dM
MM
M
D
fdx e
i
M
M
l
h




 



22
2
0
2
1
1
14





 









22
2
2
1
1
14
MM
M
M
dM
D
fdx
h



















 






 









22
22
22
2
1
1
2
1
1
ln
2
11114
ie
ei
eih
MM
MM
MM
l
D
f





is a Mean friction factor over a length l .
f
Maximum Allowable Length
• The length of the duct required to give a Mach number of
1 with an initial Mach number Mi
Similarly

















 






 









2
2
2max
2
1
1
1
2
1
1
ln
2
1
1
114
i
i
ih
M
M
M
l
D
f





 
 
















1
2
2
*
2
1
1
2
1
1
*
iM
p
p
M
dM
M
M
p
dp
p
p


 
 














1
2
2
2
1
1
1
*
ii M
T
T
M
dM
M
M
T
dT


2/1
2
*
2
1
1
2
1
1














i
i MMp
p
















2
*
2
1
1
2
1
iMT
T


2
5.1
5 .
111
1.384
293
103.3
m
sN
T
T






 

 1/
2
2
1
1






 



i
o
M
p
p
*
0
*
0
*
0
0
p
p
p
p
p
p

  1
2
**
0
0
2
1
2
1
1



















iM
p
p
p
p
   12
2
*
0
0
2
1
2
1
1
1



















i
i
M
Mp
p
Compressible Frictional Flow through
Constant Area Duct
HD
fL *4
0
*
0
p
p
p
p*
T
T*
V
V *
M
Frictional Flow in A Variable Area Duct
0
A
dA
V
dVd


A,
V

A+dA,
V+dV d
0
4
2
2
2

V
dV
Mdx
D
fM
p
dp
h


T
dTd
p
dp



0
A
dA
V
dVd


A
dA
V
dV
T
dT
p
dp

0
4
2
2
2

V
dV
Mdx
D
fM
A
dA
V
dV
T
dT
h


T
dT
M
dM
V
dV
T
dT
V
dV
M
dM
22

0
2
4
22
2
2















T
dT
M
dM
Mdx
D
fM
A
dA
T
dT
M
dM
T
dT
h


 
  M
dM
M
M
T
dT














2
2
2
1
1
1


0
4
2
2
1
1
1 2
2
2




 dx
D
fM
M
dM
M
M
A
dA
h


dx
D
fM
M
M
A
dA
M
M
M
dM
h
4
21
2
1
1
1
2
1
1 2
2
2
2
2






























Constant Mach number frictional flow
hD
fM
dx
dA 2
2

  dx
D
fM
M
A
dA
M
M
dM
M
h
4
22
1
1
2
1
11
2
222 





 






 

Sonic Point : M=1
0
4
22
1
1
2
1
1 





 






 
 dx
D
f
A
dA
h

0
4
22
1
2
1






 






 
 dx
D
f
A
dA
h

dx
D
f
A
dA
h
4
2


54
Stagnation Properties
Consider a fluid flowing into a diffuser at a velocity , temperature T, pressure P, and
enthalpy h, etc. Here the ordinary properties T, P, h, etc. are called the static properties; that
is, they are measured relative to the flow at the flow velocity. The diffuser is sufficiently
long and the exit area is sufficiently large that the fluid is brought to rest (zero velocity) at the
diffuser exit while no work or heat transfer is done. The resulting state is called the
stagnation state.

V
We apply the first law per unit mass for one entrance, one exit, and neglect the potential
energies. Let the inlet state be unsubscripted and the exit or stagnation state have the
subscript o.
q h
V
w h
V
net net o
o
    
 2 2
2 2
55
Since the exit velocity, work, and heat transfer are zero,
h h
V
o  
2
2
The term ho is called the stagnation enthalpy (some authors call this the total enthalpy). It is
the enthalpy the fluid attains when brought to rest adiabatically while no work is done.
If, in addition, the process is also reversible, the process is isentropic, and the inlet and exit
entropies are equal.
s so 
The stagnation enthalpy and entropy define the stagnation state and the isentropic
stagnation pressure, Po. The actual stagnation pressure for irreversible flows will be
somewhat less than the isentropic stagnation pressure as shown below.
56

More Related Content

PPTX
Pure substances
PPTX
Boiling Heat Transfer
DOC
Chapter 7 pure substance
PPTX
A STUDY ON VISCOUS FLOW (With A Special Focus On Boundary Layer And Its Effects)
PDF
p-k-nag-solution thermodynamics by sk mondal
PDF
STEAM NOZZLES
PDF
Engineering thermodynamics P K Nag chapter-1 solution
PPT
THERMODYNAMICS Unit III
Pure substances
Boiling Heat Transfer
Chapter 7 pure substance
A STUDY ON VISCOUS FLOW (With A Special Focus On Boundary Layer And Its Effects)
p-k-nag-solution thermodynamics by sk mondal
STEAM NOZZLES
Engineering thermodynamics P K Nag chapter-1 solution
THERMODYNAMICS Unit III

What's hot (20)

PPTX
Entropy
PPT
Compressors
PPTX
Fluid dynamics 1
PPTX
Degree of reaction
PDF
02 conservation equations
PDF
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
PPTX
available energy ,irreversibility,exchargy
PDF
Chapter 7. compressible flow.pptx copy
PDF
Availability and irreversibility
PPTX
Fluid Mechanics and Machinery Unit I
PPTX
Fanno Flow
PDF
Chapter four fluid mechanics
PPTX
Boundary Layer Displacement Thickness & Momentum Thickness
PPT
Basic concept and first law of thermodynamics
PDF
Module 12 Two Phase Fluid Flow And Heat Transfer 2010 June Nrc
PPT
Eulers equation
PPTX
Presentation on Filmwise and Dropwise Condensation
PPTX
Vapour compression refrigeration system
PPTX
Fluid mechanics
Entropy
Compressors
Fluid dynamics 1
Degree of reaction
02 conservation equations
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
available energy ,irreversibility,exchargy
Chapter 7. compressible flow.pptx copy
Availability and irreversibility
Fluid Mechanics and Machinery Unit I
Fanno Flow
Chapter four fluid mechanics
Boundary Layer Displacement Thickness & Momentum Thickness
Basic concept and first law of thermodynamics
Module 12 Two Phase Fluid Flow And Heat Transfer 2010 June Nrc
Eulers equation
Presentation on Filmwise and Dropwise Condensation
Vapour compression refrigeration system
Fluid mechanics
Ad

Similar to Unit i basic concept of isentropic flow (20)

PDF
Review of basic Aerodynamics.pdf
PPTX
Hydraulics one chapter one and two lecture notes.pptx
PPTX
Nozzles - Lecture A
PPT
Flow Measurement
PPTX
T1 - Essential Fluids - 2023.pptx
PPTX
Fluid mechanics - Motion of Fluid Particles and Stream
PDF
Ostwald
PDF
Ostwald
PDF
Fluid kinematics
PPTX
Chapter 3.pptx
DOC
sheet of pipe flow
PPTX
Fluid mechanics-ppt
PPT
modeling of turbulent flows : prandtl mixing length theory
PPTX
Basic equation of fluid flow mechan.pptx
PPTX
FluidMechanics wren 201 Lecture 1.pptx
PDF
Mechanics of fluids note
PPTX
Unit41.pptx
PDF
chapter05--visto.pdf
PDF
Fluid Kinematics fluid dynamics mechanical
PPTX
Fluid flow Equations.pptx
Review of basic Aerodynamics.pdf
Hydraulics one chapter one and two lecture notes.pptx
Nozzles - Lecture A
Flow Measurement
T1 - Essential Fluids - 2023.pptx
Fluid mechanics - Motion of Fluid Particles and Stream
Ostwald
Ostwald
Fluid kinematics
Chapter 3.pptx
sheet of pipe flow
Fluid mechanics-ppt
modeling of turbulent flows : prandtl mixing length theory
Basic equation of fluid flow mechan.pptx
FluidMechanics wren 201 Lecture 1.pptx
Mechanics of fluids note
Unit41.pptx
chapter05--visto.pdf
Fluid Kinematics fluid dynamics mechanical
Fluid flow Equations.pptx
Ad

More from sureshkcet (13)

PPTX
Powerplant Engg Unit - II
PPTX
powerplant Engg Unit 1
PPT
Unit v rocket propulsion
PPTX
Unit iii normal &amp; oblique shocks
PPT
Air compressor
PPTX
THERMODYNAMICS - UNIT - V
PPT
THERMODYNAMICS UNIT - I
PPT
Thermodynamics - Unit - II
PPT
THERMODYNAMICS UNIT - IV
PPT
UNIT - V ROCKET PROPULSION
PPT
UNIT - IV JET ENGINE PROPULSION
PPTX
UNIT - III NORMAL & OBLIQUE SHOCKS
PPTX
Unit - I BASIC CONCEPTS AND ISENTROPIC FLOW IN VARIABLE AREA DUCTS
Powerplant Engg Unit - II
powerplant Engg Unit 1
Unit v rocket propulsion
Unit iii normal &amp; oblique shocks
Air compressor
THERMODYNAMICS - UNIT - V
THERMODYNAMICS UNIT - I
Thermodynamics - Unit - II
THERMODYNAMICS UNIT - IV
UNIT - V ROCKET PROPULSION
UNIT - IV JET ENGINE PROPULSION
UNIT - III NORMAL & OBLIQUE SHOCKS
Unit - I BASIC CONCEPTS AND ISENTROPIC FLOW IN VARIABLE AREA DUCTS

Recently uploaded (20)

PPTX
additive manufacturing of ss316l using mig welding
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
Construction Project Organization Group 2.pptx
PPTX
Lecture Notes Electrical Wiring System Components
DOCX
573137875-Attendance-Management-System-original
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
Welding lecture in detail for understanding
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
additive manufacturing of ss316l using mig welding
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Embodied AI: Ushering in the Next Era of Intelligent Systems
Internet of Things (IOT) - A guide to understanding
Construction Project Organization Group 2.pptx
Lecture Notes Electrical Wiring System Components
573137875-Attendance-Management-System-original
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Model Code of Practice - Construction Work - 21102022 .pdf
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Welding lecture in detail for understanding
UNIT 4 Total Quality Management .pptx
Foundation to blockchain - A guide to Blockchain Tech
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd

Unit i basic concept of isentropic flow

  • 1. ME 6604 - GAS DYNAMICS AND JET PROPULSION UNIT – I BASIC CONCEPTS AND FUNDAMENTALS OF COMPRESSIBLE FLOW B.PRABHU ASSISTANT PROFESSOR DEPT OF MECHANICAL ENGG KAMARAJ COLLEGE OF ENGINEERING
  • 2. PART - A • FUNDAMENTALS OF COMPRESSIBLE FLOW • Energy and momentum equations for compressible fluid flows, various regions of flows, reference velocities, stagnation state, velocity of sound, critical states, Mach number, critical Mach number, types of waves, Mach cone, Mach angle, effect of Mach number on compressibility.
  • 3. • PART – B • Flow through variable area duct • Isentropic flow through variable area ducts, T-s and h-s diagrams for nozzle and diffuser flows, area ratio as a function of Mach number, mass flow rate through nozzles and diffusers, effect of friction in flow through nozzles
  • 5. FLOW THROUGH VARIABLE AREA DUCTS • As a gas is forced through a tube, the gas molecules are deflected by the walls of the tube. If the speed of the gas is much less than the speed of sound of the gas, the density of the gas remains constant and the velocity of the flow increases. However, as the speed of the flow approaches the speed of sound we must consider compressibility effects on the gas. The density of the gas varies from one location to the next. Considering flow through a tube, as shown in the figure, if the flow is very gradually compressed (area decreases) and then gradually expanded (area increases), the flow conditions return to their original values. We say that such a process is reversible. From a consideration of the second law of thermodynamics, a reversible flow maintains a constant value of entropy. Engineers call this type of flow an isentropicflow; a combination of the Greek word "iso" (same) and entropy.
  • 7. FLOW THROUGH VARIABLE AREA DUCTS • The conservation of mass is a fundamental concept of physics. Within some problem domain, the amount of mass remains constant; mass is neither created or destroyed. The mass of any object is simply the volume that the object occupies times the density of the object. For a fluid (a liquid or a gas) the density, volume, and shape of the object can all change within the domain with time and mass can move through the domain. • The conservation of mass (continuity) tells us that the mass flow rate mdot through a tube is a constant and equal to the product of the density r, velocity V, and flow area A:
  • 9. Conservation of mass • Solid Mechanics • The conservation of mass is a fundamental concept of physics along with the conservation of energy and theconservation of momentum. Within some problem domain, the amount of mass remains constant--mass is neither created nor destroyed. This seems quite obvious, as long as we are not talking about black holes or very exotic physics problems. The mass of any object can be determined by multiplying the volume of the object by the density of the object. When we move a solid object, as shown at the top of the slide, the object retains its shape, density, and volume. The mass of the object, therefore, remains a constant between state "a" and state "b." • Fluid Statics • In the center of the figure, we consider an amount of a static fluid , liquid or gas. If we change the fluid from some state "a" to another state "b" and allow it to come to rest, we find that, unlike a solid, a fluid may change its shape. The amount of fluid, however, remains the same. We can calculate the amount of fluid by multiplying the density times the volume. Since the mass remains constant, the product of the density and volume also remains constant. (If the density remains constant, the volume also remains constant.) The shape can change, but the mass remains the same. • Fluid Dynamics • Finally, at the bottom of the slide, we consider the changes for a fluid that is moving through our domain. There is no accumulation or depletion of mass, so mass is conserved within the domain. Since the fluid is moving, defining the amount of mass gets a little tricky. Let's consider an amount of fluid that passes through point "a" of our domain in some amount of time t. If the fluid passes through an area A at velocity V, we can define the volume Vol to be: • Vol = A * V * t
  • 10. Conservation Laws for a Real Fluid   0.    V t        wqVe t e        .     gVV t V ij ˆ..        iiij pij  '      gpVV t V ij ˆ.. '       
  • 11. Conservation of Mass Applied to 1 D Steady Flow   0.    V t    Conservation of Mass: Conservation of Mass for Stead Flow:   0.  V   Integrate from inlet to exit :   onstant. CVdV V   
  • 12. One Dimensional Stead Flow A, V  A+dA, V+dV d dl   onstant.. CdxdAV V      onstant. Cdx dx VAd     0VAd  0 A dA V dVd  
  • 13. Conservation of Momentum For A Real Fluid Flow   pVV ij  ' ..     VdpVdVdVV VVV ij   ' ..   No body forces One Dimensional Steady flow A, V  A+dA, V+dV d dl
  • 14.   dAdxpdxdAdAdxVV V w VV ij   ' .        dx dx pAd dx dx Ad dx dx AVd ww    2      pAdAdAVd ww   2
  • 15. Conservation of Energy Applied to 1 D Steady Flow     wqVe t e        . Steady flow with negligible Body Forces and no heat transfer is adiabatic real flow   wVe    . For a real fluid the rate of work transfer is due to viscous stress and pressure. Neglecting the the effect of viscous dissipation.   VdAnpVe  .ˆ.  
  • 16. For a total change from inlet to exit :     AV VdAnpVdVe  .ˆ.  Using gauss divergence theorem: One dimensional flow     VV VdVpVdVe  ..      VV dAdxVpdAdxVe  .. 
  • 17.       dx dx pAVd dx dx eVAd     pAVdeVAd  2 2 V ue                               AV p d V uVAd   2 2 0 2 2                        Vp uVAd   0 2 2                V hVAd 
  • 18. Summary of Real Fluid Analysis 0 A dA V dVd        pAdAdAVd ww   2 0 2 2                V hVAd 
  • 19. Further Analysis of Momentum equation      pAdAdVAdVVAVd ww      pAdAdVAdV ww      pAdPxddVm w      pAdAddVm ww   pdAAdpPdxxdPPxddVm www  
  • 20. Frictional Flow in A Constant Area Duct 0 V dVd   AdpPdxPxddVm ww   0 2 2                V hVd 
  • 21. Frictional Flow in A Constant Area Duct AdpPdxdVm w   w The shear stress is defined as and average viscous stress which is always opposite to the direction of flow for the entire length dx. AdpPdxPxddVm ww   AdpPdxAVdV w  
  • 22. AdpPdxAVdV w   Divide by AV2 22 V dp dx A P VV dV w    0 V dVd   00 2 2        VdVdTC V hd p
  • 23. One dimensional Frictional Flow of A Perfect Gas 0 V dVd   0VdVdTCp 2 V dp dx A P f V dV   T dT V dV p dp T dTd p dp   
  • 24. Sonic Equation 2 22 2 2 2 2 2 RT dTV RT VdV MdM RT V c V M   Differential form of above equation: T dT V dV M dM 2  T dT V dV p dp  T dT M dM p dp 2 
  • 25.     M dM M M T dT               2 2 2 1 1 1   Energy equation can be modified as: T dT M dM p dp 2      M dM M M M dM p dp               2 2 2 1 1 1 2 1  
  • 26. 1D steady real flow through constant area duct : momentum equation 022  V dp dx A P VV dV w   022  p dp V p dx A P VV dV w   022  p dp V p dx A P VV dV w  
  • 28. 0 1 22  p dp M dx A P VV dV w       M dM M M T dT               2 2 2 1 1 1       M dM M M M dM p dp               2 2 2 1 1 1 2 1   T dT V dV M dM 2  Differential Equations for Frictional Flow Through Constant Area Duct T dT M dM p dp 2 
  • 29. 0 1 22  p dp M dx A P VT dT M dM w           0 2 1 1 1 2 11 2 1 1 1 2 2 22 2 2                                          M dM M M M dM M dx A P VM dM M M M dM w                     dx A P VM MM M dM w 22 22 1 2 1 1    
  • 30.             dx A P VM M T dT w 22 4 1 1               dx A P VM MM p dp w 22 22 1 11                 dx A P VM MM M dM w 22 22 1 2 1 1    
  • 31. Second Law Analysis vdpdTCTds p  dp T v T dT Cds p  p dp R T dT Cds p 
  • 32. p dp R T dT Cds p  p dp T dT C ds p   1           2 1 1 V TC T dT T dT C ds p p              TT T T dT T dT C ds p 02 1 1  
  • 33. TT dT T dT C ds p    02 11        T T T T s s p iii TT dT T dT C ds 02 11                                  2 1 0 0 /1 ln iip i TT TT T T C ss             dx A P VM M T dT w 22 4 1 1  
  • 34. Fanno Line Adiabatic flow in a constant area with friction is termed as Fanno flow.
  • 35. Isentropic Nozzle and Adiabatic Duct
  • 37. CD Nozzle + Discharge Curve
  • 38. Nature of Real Flow Entropy of an irreversible adiabatic system should always increase!          dx A P V MCds w p 2 2 1                  dx A P VM MM M dM w 22 22 1 2 1 1                 dx A P VM M T dT w 22 4 1 1               dx A P VM MM p dp w 22 22 1 11  
  • 39. M dM dp dT dV <1 +ve -ve -ve +ve >1 -ve +ve +ve -ve
  • 40. Compressible Real Flow ),(Re, M d k functionf  Effect of Mach number is negligible…. )(Re, d k functionf   1 Re  n T T        2 1 2 1  
  • 41. Pressure drop in Compressible Flow Laminar Flow Turbulent Flows               22 2 2 1 1 1 MM M M dM dx A P f   Re 16 f 2 9.0 Re 74.5 7.3 log 0625.0               hD k f
  • 43. Compressible Flow Through Finite Length Duct Integrate over a length l               22 2 2 1 1 14 MM M M dM D fdx h   M dM MM M D fdx e i M M l h          22 2 0 2 1 1 14  
  • 44.               22 2 2 1 1 14 MM M M dM D fdx h                                       22 22 22 2 1 1 2 1 1 ln 2 11114 ie ei eih MM MM MM l D f      is a Mean friction factor over a length l . f
  • 45. Maximum Allowable Length • The length of the duct required to give a Mach number of 1 with an initial Mach number Mi Similarly                                     2 2 2max 2 1 1 1 2 1 1 ln 2 1 1 114 i i ih M M M l D f                          1 2 2 * 2 1 1 2 1 1 * iM p p M dM M M p dp p p  
  • 46.                   1 2 2 2 1 1 1 * ii M T T M dM M M T dT   2/1 2 * 2 1 1 2 1 1               i i MMp p                 2 * 2 1 1 2 1 iMT T   2 5.1 5 . 111 1.384 293 103.3 m sN T T         
  • 47.  1/ 2 2 1 1            i o M p p * 0 * 0 * 0 0 p p p p p p    1 2 ** 0 0 2 1 2 1 1                    iM p p p p    12 2 * 0 0 2 1 2 1 1 1                    i i M Mp p
  • 48. Compressible Frictional Flow through Constant Area Duct HD fL *4 0 * 0 p p p p* T T* V V * M
  • 49. Frictional Flow in A Variable Area Duct 0 A dA V dVd   A, V  A+dA, V+dV d
  • 52. 0 4 2 2 1 1 1 2 2 2      dx D fM M dM M M A dA h   dx D fM M M A dA M M M dM h 4 21 2 1 1 1 2 1 1 2 2 2 2 2                               Constant Mach number frictional flow hD fM dx dA 2 2 
  • 53.   dx D fM M A dA M M dM M h 4 22 1 1 2 1 11 2 222                  Sonic Point : M=1 0 4 22 1 1 2 1 1                  dx D f A dA h  0 4 22 1 2 1                  dx D f A dA h  dx D f A dA h 4 2  
  • 54. 54 Stagnation Properties Consider a fluid flowing into a diffuser at a velocity , temperature T, pressure P, and enthalpy h, etc. Here the ordinary properties T, P, h, etc. are called the static properties; that is, they are measured relative to the flow at the flow velocity. The diffuser is sufficiently long and the exit area is sufficiently large that the fluid is brought to rest (zero velocity) at the diffuser exit while no work or heat transfer is done. The resulting state is called the stagnation state.  V We apply the first law per unit mass for one entrance, one exit, and neglect the potential energies. Let the inlet state be unsubscripted and the exit or stagnation state have the subscript o. q h V w h V net net o o       2 2 2 2
  • 55. 55 Since the exit velocity, work, and heat transfer are zero, h h V o   2 2 The term ho is called the stagnation enthalpy (some authors call this the total enthalpy). It is the enthalpy the fluid attains when brought to rest adiabatically while no work is done. If, in addition, the process is also reversible, the process is isentropic, and the inlet and exit entropies are equal. s so  The stagnation enthalpy and entropy define the stagnation state and the isentropic stagnation pressure, Po. The actual stagnation pressure for irreversible flows will be somewhat less than the isentropic stagnation pressure as shown below.
  • 56. 56