SlideShare a Scribd company logo
134
UNIT– 5
DynamicAnalysis
Axi-symmetricAnalysis
Cylindrical coordinates:
x  rcos; y  r sin; z  z
r, , z
• quantities depend on rand zonly
• 3-D problem 2-D problem
135
Axi-symmetricAnalysis
136
Axi-symmetric Analysis – Single-VariableProblem
00
22
11 


 
 z
u(r, z)   a u  f (r, z)  0
z

r
u(r, z)  
 a

1   ra
r r

Weakform:
e
wqn ds
e


  
 z

z



 r
u 
wa
 r

wa u  a wu  wf (r,z)rdrdz
0  00
22
11
where nz
137
z
r
u(r, z)
u(r, z)
nr  a22
qn  a11
FiniteElement Model – Single-VariableProblem
u  u jj
j
Ritzmethod:
e
n
e e
K u  f Qe
 ij j i i
j1
where j (r, z) j (x, y)
w i
Weakform
22
138
e
j j

a
i i
K e
  a  a 

rdrdz
00 i j 
r r z z
  
ij   11
where
i i
e
f e
  frdrdz

i i n
e
Qe
  q ds

Single-Variable Problem – HeatTransfer
Weakform
Heat Transfer:

1  rk
T(r, z)  
 k
T(r, z)   f (r, z)  0
 
z  z
r r  r
   
e


0 
wk
T  
wk
T   wf (r, z) rdrdz
   
 
 r  r  z  z 
wqn ds
e
nz
139
T(r, z) T(r, z)
qn  k nr  k
r z
where
3-Node Axi-symmetricElement
T (r, z)  T11 T22 T33
1
2
3

140

1 2 3
e
1 r z
2A
r2z3  r3z2
 
 
  z  z
 
 
r r
 3 2 
  3 1 1 3
2 3 1
e
1 r z
2A
r z  r z
 
 z 
   z
 
 
r  r
 1 3 
  1 2 2 1
3 1 2
e
1 r z
2A
r z  r z
 
 
  z z
 
 
r r
 2 1 
4-Node Axi-symmetricElement
T (r, z)  T11 T22  T33  T44
1 2
3
4
a
b


r
141
z
2
3
a b
  1
 1
   
 1

1     
 a  b  a  b 
 
 
  1
 
4  a  b
 
Single-Variable Problem –Example
Step1: Discretization
Step2: Element equation
e
142
j
i
ij 

 
K e
  i
j 
rdrdz
r r z z 
  

i i
e
f e
  frdrdz
 i i n
e
Qe
  q ds

Reviewof CSTElement
• Constant Strain Triangle (CST)- easiest and simplest
finite element
– Displacement field in terms ofgeneralized coordinates
– Resulting strain field is
– Strains do not vary within the element. Hence, the name
constant strain triangle(CST)
• Other elements are not solucky.
• Canalso be called linear triangle becausedisplacement field is
linear in xand y - sidesremainstraight.
143
Constant Strain Triangle
• Thestrain field from the shapefunctions lookslike:
– Where, xi and yi are nodal coordinates (i=1, 2,3)
– xij =xi - xj and yij=yi - yj
– 2Ais twice the area of the triangle, 2A=x21y31-x31y21
• Node numbering is arbitrary except that the sequence123
must go clockwise around the element if Ais tobe positive.
144
145
Constant Strain Triangle
• Stiffness matrix for element k =BTEBtA
• TheCSTgivesgood results in regions of theFE
model where there is little straingradient
– Otherwise it does notwork well.
Linear Strain Triangle
• Changesthe shape functions and results in
quadratic displacement distributions and
linear strain distributions within theelement.
146
Linear Strain Triangle
• Will this element work better for the problem?
147
ExampleProblem
• Consider the problem we were lookingat:
5in.
1in.
0.1in.
I  0.113
/12  0.008333 in4
 
M  c

1 0.5
I 0.008333
 60 ksi
E
 
  0.00207
2
 
ML

25
2EI 2  29000  0.008333
 0.0517in.
148
1k
1k
Bilinear Quadratic
• TheQ4element is aquadrilateral element
that hasfour nodes. In terms ofgeneralized
coordinates, its displacement field is:
149
Bilinear Quadratic
• Shapefunctions and strain-displacement
matrix
150
ExampleProblem
• Consider the problem we were lookingat:
5in.
1in.
0.1in.
E
151
I 0.008333
 0.0345in.
3EI 3290000.008333
0.2125

 60ksi
10.5
I  0.1 13
/ 12 0.008333in4
 
PL3
 
 0.00207
 
M  c

0.1k
0.1k
Quadratic Quadrilateral Element
• The8 noded quadratic quadrilateral element
usesquadratic functions for thedisplacements
152
Quadratic Quadrilateral Element
• Shapefunction examples:
• Strain distribution within theelement
153
154
Quadratic Quadrilateral Element
• Should we try to use this element to solve our
problem?
• Or try fixing the Q4element for our purposes.
– Hmm…toughchoice.
155
Isoparametric Elements and Solution
• Biggestbreakthrough in the implementation of the
finite element method is the development of an
isoparametric element with capabilities to model
structure (problem) geometries of any shapeandsize.
• Thewhole idea works onmapping.
– Theelement in the real structure is mapped to an
‘imaginary’ element in an ideal coordinatesystem
– Thesolution to the stress analysis problem is easyand
known for the ‘imaginary’element
– Thesesolutions are mapped back to the element inthe
real structure.
– All the loads and boundary conditions are also mapped
from the real to the ‘imaginary’ element in this approach
Isoparametric Element
3
1
(x1,y1)
2
(x2,y2)
(x3,y3)
4
(x4,y4)
X,u
Y
,v


2
(1,-1)
1
(-1,-1)
4
(-1, 1)
3 (1, 1)
156
Isoparametric element
Y
1 2 3 4
0 0 0 N1
X N
0
  

• The mappingfunctions areq
x1u
 ite simple:
4

 x 
2
x3 
N N N 0 0 0 0  x 
N2 N3 N4 y1 
y2

 
1
4
N  1 (1)(1)
2
4
N 
1
(1 )(1)
3
4
N  1 (1 )(1 )
4
4
N 
1
(1)(1 )
y3 

y4


Basically, thex and y coordinatesof any point in the
elementare interpolations of the nodal (corner)
coordinates.
Fromthe Q4 element,thebilinear shape functions
are borrowed to be used as the interpolation
functions. They readily satisfy the boundaryvalues
too. 157
Isoparametric element
v
1 2 3 4
0 0 0 N1
u N
0
    

• Nodal shape functions for d
u
i1s
placements
4

u 
2
u3
N N N 0 0 0 0 u 
N2 N3 N4 v1 
v2

 
v3
v4


1
4
N  1 (1)(1)
2
4
N 
1
(1 )(1)
3
4
N  1 (1 )(1 )
4
4
N 
1
(1)(1 ) 158
• Thedisplacement strain relationships:
x

u

u

 
u


X  X  X
y

v

v

 
v


Y  Y  Y
x


 
 
 xy 
y

u
X
v
Y

Y X
   





 u





v 
Y Y

   0



0


0
 


 
X X
0

   
Y Y X X 



 u 
  v 
 
 u 
 
 
 

 
 v 

But,it is too difficult to obtain
 and

X X 159
Isoparametric Element
 X  Y 
u
u





  
X Y u 
X Y u 


X 
  Y 
  
It is easier to obtain
X
and
Y
 
X Y
 
J  X Y Jacobian
 
 
defines coordinate transformation
Hencewe will do itanother way
u

u

X

u

Y
 X  Y 
u

u

X

u

Y
X
 
Ni
X
  i
Y N

 

i
Yi
X N
 
i X i
 
Y N
 
i Yi
 
X
 
u
 
Y 
u 
 
1 
u
   J  
 
u


169
161
GaussQuadrature
• Themapping approach requires usto be able to
evaluate the integrations within the domain (-1…1)of
the functionsshown.
• Integration canbe done analytically by usingclosed-
form formulas from atable ofintegrals (Nah..)
– Or numerical integration can be performed
• Gaussquadrature is the more common form of
numerical integration - better suited for numerical
analysis and finite elementmethod.
• Itevaluated the integral of afunction asasum of a
becomes
n
I  Wii
i1
finite numb1er of terms
I   d
1
GaussQuadrature
• Wi is the ‘weight’ and i is the value of f(=i)
162
Numerical Integration
Calculate:
b
I   f xdx
a
• Newton – Cotesintegration
• Trapezoidalrule – 1storderNewton-Cotesintegration
• Trapezoidalrule – multipleapplication
1
b a
f (x)  f (x)  f (a) 
f (b)  f (a)
(x a)
2
f (a)  f (b)
b b
I   f (x)dx   f1(x)dx  (b  a)
a a
b
163
xn1
xn x1 x2 xn
a x0 x0 x1
I   f (x)dx   fn (x)dx   f (x)dx   f (x)dx    f
(x)dx





2 
n1
i1
i
f (x )  f (b)
f (a)  2
h 
I 
Numerical Integration
Calculate:
b
I   f xdx
a
• Newton – Cotesintegration
• Simpson1/3 rule – 2ndorderNewton-Cotesintegration
2
2
0 1
1
0 2
0 1
2 f (x )
(x2  x0 )(x2  x1)
(x  x0 )(x  x1)
f (x )  f (x )
(x0  x1)(x0  x2 ) (x  x )(x  x )
(x  x1)(x  x2 ) (x  x )(x  x )
f (x)  f (x) 
b b
a a
6
f (x )  4 f (x )  f (x )
I   f (x)dx   f2 (x)dx  (x2  x0 ) 0 1 2
164
Numerical Integration
Calculate:
b
I   f xdx
2

(b  a)
f (a) 
(b  a)
f(b)
2 2
165
I  (b  a)
f (a)  f (b)
I  c0 f (x0 )  c1 f (x1)
a
• GaussianQuadrature
Trapezoidal Rule: GaussianQuadrature:
Choose according to certaincriteria
c0,c1,x0 , x1
Numerical Integration
Calculate:
b
I   f xdx
a
• GaussianQuadrature
   

3
 1 
 1
1
1
I   f xdx  f 
3
  f 
1
• 3pt GaussianQuadrature
I   f xdx 0.55 f 0.77 0.89  f 0 0.55 f0.77
1
1
1
• 2pt GaussianQuadrature
I   f xdx  c0 f x0  c1 f x1  cn1 f xn1
b  a
~
x 1
2(x  a)
Let:
b 1

1
a
166
~ ~
1 1 1
 f (x)dx 
2
(b  a) f 2
(a  b) 
2
(b  a)xdx

More Related Content

PPTX
Chap-1 Preliminary Concepts and Linear Finite Elements.pptx
PPTX
Nonlinear finite element method for engineer
PPT
Constant strain triangular
PPT
Mk slides.ppt
PDF
UNIT I_3.pdf
PPT
1533 game mathematics
PPTX
Clipping & Rasterization
PPTX
Digital control systems (dcs) lecture 18-19-20
Chap-1 Preliminary Concepts and Linear Finite Elements.pptx
Nonlinear finite element method for engineer
Constant strain triangular
Mk slides.ppt
UNIT I_3.pdf
1533 game mathematics
Clipping & Rasterization
Digital control systems (dcs) lecture 18-19-20

Similar to UNIT I_5.pdf (20)

PDF
me310_5_regression.pdf numerical method for engineering
PPT
PDF
Random Matrix Theory and Machine Learning - Part 3
PPTX
Convex Partitioning of a Polygon into Smaller Number of Pieces with Lowest Me...
PPT
Week6.ppt
PDF
ME Reference.pdf
PPTX
Conversion of transfer function to canonical state variable models
PPT
Lecture 9-online
PPT
TRIGONOMETRY skill per ponrslide (1).ppt
PPTX
FEA RESIDUAL METHOD FOR 1D PROBLEMS Chap2.pptx
PPT
2.circle
PPT
Modeling Transformations
PPT
Shape drawing algs
PPT
CS 223-B L9 Odddddddddddddddddddpticadddl Flodzdzdsw.ppt
PPTX
Chap-2 Preliminary Concepts and Linear Finite Elements.pptx
PDF
Curve Fitting in Numerical Methods Regression
PPTX
Maths iii quick review by Dr Asish K Mukhopadhyay
PDF
Journey to structure from motion
PDF
CLIM Fall 2017 Course: Statistics for Climate Research, Spatial Data: Models ...
PPTX
Seismic data processing lecture 3
me310_5_regression.pdf numerical method for engineering
Random Matrix Theory and Machine Learning - Part 3
Convex Partitioning of a Polygon into Smaller Number of Pieces with Lowest Me...
Week6.ppt
ME Reference.pdf
Conversion of transfer function to canonical state variable models
Lecture 9-online
TRIGONOMETRY skill per ponrslide (1).ppt
FEA RESIDUAL METHOD FOR 1D PROBLEMS Chap2.pptx
2.circle
Modeling Transformations
Shape drawing algs
CS 223-B L9 Odddddddddddddddddddpticadddl Flodzdzdsw.ppt
Chap-2 Preliminary Concepts and Linear Finite Elements.pptx
Curve Fitting in Numerical Methods Regression
Maths iii quick review by Dr Asish K Mukhopadhyay
Journey to structure from motion
CLIM Fall 2017 Course: Statistics for Climate Research, Spatial Data: Models ...
Seismic data processing lecture 3
Ad

Recently uploaded (20)

PDF
PPT on Performance Review to get promotions
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Sustainable Sites - Green Building Construction
PPTX
Construction Project Organization Group 2.pptx
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
Digital Logic Computer Design lecture notes
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
additive manufacturing of ss316l using mig welding
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPT
Project quality management in manufacturing
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
Lesson 3_Tessellation.pptx finite Mathematics
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPT on Performance Review to get promotions
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Sustainable Sites - Green Building Construction
Construction Project Organization Group 2.pptx
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Digital Logic Computer Design lecture notes
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
additive manufacturing of ss316l using mig welding
Embodied AI: Ushering in the Next Era of Intelligent Systems
Project quality management in manufacturing
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Lesson 3_Tessellation.pptx finite Mathematics
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Ad

UNIT I_5.pdf

  • 2. Axi-symmetricAnalysis Cylindrical coordinates: x  rcos; y  r sin; z  z r, , z • quantities depend on rand zonly • 3-D problem 2-D problem 135
  • 4. Axi-symmetric Analysis – Single-VariableProblem 00 22 11       z u(r, z)   a u  f (r, z)  0 z  r u(r, z)    a  1   ra r r  Weakform: e wqn ds e       z  z     r u  wa  r  wa u  a wu  wf (r,z)rdrdz 0  00 22 11 where nz 137 z r u(r, z) u(r, z) nr  a22 qn  a11
  • 5. FiniteElement Model – Single-VariableProblem u  u jj j Ritzmethod: e n e e K u  f Qe  ij j i i j1 where j (r, z) j (x, y) w i Weakform 22 138 e j j  a i i K e   a  a   rdrdz 00 i j  r r z z    ij   11 where i i e f e   frdrdz  i i n e Qe   q ds 
  • 6. Single-Variable Problem – HeatTransfer Weakform Heat Transfer:  1  rk T(r, z)    k T(r, z)   f (r, z)  0   z  z r r  r     e   0  wk T   wk T   wf (r, z) rdrdz        r  r  z  z  wqn ds e nz 139 T(r, z) T(r, z) qn  k nr  k r z where
  • 7. 3-Node Axi-symmetricElement T (r, z)  T11 T22 T33 1 2 3  140  1 2 3 e 1 r z 2A r2z3  r3z2       z  z     r r  3 2    3 1 1 3 2 3 1 e 1 r z 2A r z  r z    z     z     r  r  1 3    1 2 2 1 3 1 2 e 1 r z 2A r z  r z       z z     r r  2 1 
  • 8. 4-Node Axi-symmetricElement T (r, z)  T11 T22  T33  T44 1 2 3 4 a b   r 141 z 2 3 a b   1  1      1  1       a  b  a  b        1   4  a  b  
  • 9. Single-Variable Problem –Example Step1: Discretization Step2: Element equation e 142 j i ij     K e   i j  rdrdz r r z z      i i e f e   frdrdz  i i n e Qe   q ds 
  • 10. Reviewof CSTElement • Constant Strain Triangle (CST)- easiest and simplest finite element – Displacement field in terms ofgeneralized coordinates – Resulting strain field is – Strains do not vary within the element. Hence, the name constant strain triangle(CST) • Other elements are not solucky. • Canalso be called linear triangle becausedisplacement field is linear in xand y - sidesremainstraight. 143
  • 11. Constant Strain Triangle • Thestrain field from the shapefunctions lookslike: – Where, xi and yi are nodal coordinates (i=1, 2,3) – xij =xi - xj and yij=yi - yj – 2Ais twice the area of the triangle, 2A=x21y31-x31y21 • Node numbering is arbitrary except that the sequence123 must go clockwise around the element if Ais tobe positive. 144
  • 12. 145 Constant Strain Triangle • Stiffness matrix for element k =BTEBtA • TheCSTgivesgood results in regions of theFE model where there is little straingradient – Otherwise it does notwork well.
  • 13. Linear Strain Triangle • Changesthe shape functions and results in quadratic displacement distributions and linear strain distributions within theelement. 146
  • 14. Linear Strain Triangle • Will this element work better for the problem? 147
  • 15. ExampleProblem • Consider the problem we were lookingat: 5in. 1in. 0.1in. I  0.113 /12  0.008333 in4   M  c  1 0.5 I 0.008333  60 ksi E     0.00207 2   ML  25 2EI 2  29000  0.008333  0.0517in. 148 1k 1k
  • 16. Bilinear Quadratic • TheQ4element is aquadrilateral element that hasfour nodes. In terms ofgeneralized coordinates, its displacement field is: 149
  • 17. Bilinear Quadratic • Shapefunctions and strain-displacement matrix 150
  • 18. ExampleProblem • Consider the problem we were lookingat: 5in. 1in. 0.1in. E 151 I 0.008333  0.0345in. 3EI 3290000.008333 0.2125   60ksi 10.5 I  0.1 13 / 12 0.008333in4   PL3    0.00207   M  c  0.1k 0.1k
  • 19. Quadratic Quadrilateral Element • The8 noded quadratic quadrilateral element usesquadratic functions for thedisplacements 152
  • 20. Quadratic Quadrilateral Element • Shapefunction examples: • Strain distribution within theelement 153
  • 21. 154 Quadratic Quadrilateral Element • Should we try to use this element to solve our problem? • Or try fixing the Q4element for our purposes. – Hmm…toughchoice.
  • 22. 155 Isoparametric Elements and Solution • Biggestbreakthrough in the implementation of the finite element method is the development of an isoparametric element with capabilities to model structure (problem) geometries of any shapeandsize. • Thewhole idea works onmapping. – Theelement in the real structure is mapped to an ‘imaginary’ element in an ideal coordinatesystem – Thesolution to the stress analysis problem is easyand known for the ‘imaginary’element – Thesesolutions are mapped back to the element inthe real structure. – All the loads and boundary conditions are also mapped from the real to the ‘imaginary’ element in this approach
  • 24. Isoparametric element Y 1 2 3 4 0 0 0 N1 X N 0     • The mappingfunctions areq x1u  ite simple: 4   x  2 x3  N N N 0 0 0 0  x  N2 N3 N4 y1  y2    1 4 N  1 (1)(1) 2 4 N  1 (1 )(1) 3 4 N  1 (1 )(1 ) 4 4 N  1 (1)(1 ) y3   y4   Basically, thex and y coordinatesof any point in the elementare interpolations of the nodal (corner) coordinates. Fromthe Q4 element,thebilinear shape functions are borrowed to be used as the interpolation functions. They readily satisfy the boundaryvalues too. 157
  • 25. Isoparametric element v 1 2 3 4 0 0 0 N1 u N 0       • Nodal shape functions for d u i1s placements 4  u  2 u3 N N N 0 0 0 0 u  N2 N3 N4 v1  v2    v3 v4   1 4 N  1 (1)(1) 2 4 N  1 (1 )(1) 3 4 N  1 (1 )(1 ) 4 4 N  1 (1)(1 ) 158
  • 26. • Thedisplacement strain relationships: x  u  u    u   X  X  X y  v  v    v   Y  Y  Y x        xy  y  u X v Y  Y X           u      v  Y Y     0    0   0       X X 0      Y Y X X      u    v     u            v   But,it is too difficult to obtain  and  X X 159
  • 27. Isoparametric Element  X  Y  u u         X Y u  X Y u    X    Y     It is easier to obtain X and Y   X Y   J  X Y Jacobian     defines coordinate transformation Hencewe will do itanother way u  u  X  u  Y  X  Y  u  u  X  u  Y X   Ni X   i Y N     i Yi X N   i X i   Y N   i Yi   X   u   Y  u    1  u    J     u   169
  • 28. 161 GaussQuadrature • Themapping approach requires usto be able to evaluate the integrations within the domain (-1…1)of the functionsshown. • Integration canbe done analytically by usingclosed- form formulas from atable ofintegrals (Nah..) – Or numerical integration can be performed • Gaussquadrature is the more common form of numerical integration - better suited for numerical analysis and finite elementmethod. • Itevaluated the integral of afunction asasum of a becomes n I  Wii i1 finite numb1er of terms I   d 1
  • 29. GaussQuadrature • Wi is the ‘weight’ and i is the value of f(=i) 162
  • 30. Numerical Integration Calculate: b I   f xdx a • Newton – Cotesintegration • Trapezoidalrule – 1storderNewton-Cotesintegration • Trapezoidalrule – multipleapplication 1 b a f (x)  f (x)  f (a)  f (b)  f (a) (x a) 2 f (a)  f (b) b b I   f (x)dx   f1(x)dx  (b  a) a a b 163 xn1 xn x1 x2 xn a x0 x0 x1 I   f (x)dx   fn (x)dx   f (x)dx   f (x)dx    f (x)dx      2  n1 i1 i f (x )  f (b) f (a)  2 h  I 
  • 31. Numerical Integration Calculate: b I   f xdx a • Newton – Cotesintegration • Simpson1/3 rule – 2ndorderNewton-Cotesintegration 2 2 0 1 1 0 2 0 1 2 f (x ) (x2  x0 )(x2  x1) (x  x0 )(x  x1) f (x )  f (x ) (x0  x1)(x0  x2 ) (x  x )(x  x ) (x  x1)(x  x2 ) (x  x )(x  x ) f (x)  f (x)  b b a a 6 f (x )  4 f (x )  f (x ) I   f (x)dx   f2 (x)dx  (x2  x0 ) 0 1 2 164
  • 32. Numerical Integration Calculate: b I   f xdx 2  (b  a) f (a)  (b  a) f(b) 2 2 165 I  (b  a) f (a)  f (b) I  c0 f (x0 )  c1 f (x1) a • GaussianQuadrature Trapezoidal Rule: GaussianQuadrature: Choose according to certaincriteria c0,c1,x0 , x1
  • 33. Numerical Integration Calculate: b I   f xdx a • GaussianQuadrature      3  1   1 1 1 I   f xdx  f  3   f  1 • 3pt GaussianQuadrature I   f xdx 0.55 f 0.77 0.89  f 0 0.55 f0.77 1 1 1 • 2pt GaussianQuadrature I   f xdx  c0 f x0  c1 f x1  cn1 f xn1 b  a ~ x 1 2(x  a) Let: b 1  1 a 166 ~ ~ 1 1 1  f (x)dx  2 (b  a) f 2 (a  b)  2 (b  a)xdx