UNIT II SUPERVISED LEARNING
Linear Regression Models: Least squares, single & multiple variables, Bayesian linear regression(Predicts a range instead of one value, considering uncertainty.), gradient descent(Step-by-step improvement to find the best solution.), Linear Classification Models: Discriminant function - Perceptron algorithm, Probabilistic discriminative model - Logistic regression, Probabilistic generative model - Naive Bayes, Maximum margin classifier - Support vector machine, Decision Tree, Random Forests.