Searching techniques
Searching :
     It is a process to find whether a particular value with specified properties is present or not
among a collection of items.
       If the value is present in the collection, then searching is said to be successful, and it
returns the location of the value in the array.
      Otherwise, if the value is not present in the array, the searching process displays the
appropriate message and in this case searching is said to be unsuccessful.
            1) Linear or Sequential Searching        2) Binary Searching

int main( ) {                                               Linear_Search (A[ ], N, val , pos )
   int arr [ 50 ] , num , i , n , pos = -1;                 Step 1 : Set pos = -1 and k = 0
   printf ("How many elements to sort : ");                 Step 2 : Repeat while k < N
   scanf ("%d", &n);                                                 Begin
   printf ("n Enter the elements : nn");                 Step 3 : if A[ k ] = val
   for( i = 0; i < n; i++ ) {                                             Set pos = k
      printf (“arr [%d ] : “ , i );                                       print pos
      scanf( "%d", &arr[ i ] );                                           Goto step 5
   }                                                                 End while
   printf(“nEnter the number to be searched : “);          Step 4 : print “Value is not present”
   scanf(“%d”,&num);                                        Step 5 : Exit
   for(i=0;i<n;i++)
      if( arr [ i ] == num ) {                              Searches
        pos = i ; break;                                    -- for each item one by one in the list from
    }                                                       the first, until the match is found.
   if ( pos == -1 ) printf(“ %d does not exist ”,num);      Efficiency of Linear search :
   else                                                     -- Executes in O ( n ) times where n is the
      printf(“ %d is found at location : %d”, num , pos);   number of elements in the list.
Binary Searching
  Algorithm:
  • Before searching, the list of items should be sorted in ascending order.
  • We first compare the key value with the item in the position of the array. If there is a match, we
  can return immediately the position.
  • if the value is less than the element in middle location of the array, the required value is lie in
  the lower half of the array.
  • if the value is greater than the element in middle location of the array, the required value is lie
  in the upper half of the array.
  • We repeat the above procedure on the lower half or upper half of the array.

Binary_Search (A [ ], U_bound, VAL)
Step 1 : set BEG = 0 , END = U_bound , POS = -1
Step 2 : Repeat while (BEG <= END )                    void binary_serch ( int a [], int n, int val ) {
Step 3 :     set MID = ( BEG + END ) / 2                  int end = n - 1, beg = 0, pos = -1;
Step 4 :     if A [ MID ] == VAL then                     while( beg <= end ) {
                POS = MID                                       mid = ( beg + end ) / 2;
                print VAL “ is available at “, POS              if ( val == a [ mid ] ) {
                GoTo Step 6                                        pos = mid;
              End if                                               printf(“%d is available at %d”,val, pos );
              if A [ MID ] > VAL then                              break;
                 set END = MID – 1                              }
               Else                                             if ( a [ mid ] > val ) end = mid – 1;
                 set BEG = MID + 1                              else beg = mid + 1;
               End if                                      }
          End while                                        if ( pos = - 1)
Step 5 : if POS = -1 then                                      printf( “%d does not exist “, val );
              print VAL “ is not present “             }
          End if
Step 6 : EXIT
Sorting
         Sorting is a technique to rearrange the elements of a list in ascending or
descending order, which can be numerical, lexicographical, or any user-defined order.
    Ranking of students is the process of sorting in descending order.
    EMCET Ranking is an example for sorting with user-defined order.
    EMCET Ranking is done with the following priorities.
    i) First priority is marks obtained in EMCET.
     ii) If marks are same, the ranking will be done with comparing marks obtained in
the Mathematics subject.
     iii) If marks in Mathematics subject are also same, then the date of births will be
compared.


Internal Sorting :                                               Types of Internal Sortings
  If all the data that is to be sorted can be accommodated
at a time in memory is called internal sorting.                  Bubble Sort

External Sorting :
                                                                 Insertion Sort
     It is applied to Huge amount of data that cannot be         Selection Sort
accommodated in memory all at a time. So data in disk
or file is loaded into memory part by part. Each part that       Quick Sort
is loaded is sorted separately, and stored in an
intermediate file and all parts are merged into one single       Merge Sort
sorted list.
Bubble Sort
                     Bubbles up the highest




                           Unsorted                               Sorted

                                                       Bubble_Sort ( A [ ] , N )
                                                       Step 1 : Repeat For P = 1 to N – 1
  10      54       54       54        54       54               Begin
                                                       Step 2 :    Repeat For J = 1 to N – P
  47      10       47       47        47       47                  Begin
                                                       Step 3 :      If ( A [ J ] < A [ J – 1 ] )
  12      47       10       23        23       23                        Swap ( A [ J ] , A [ J – 1 ] )
                                                                   End For
  54      12       23       10        19       19               End For
                                                       Step 4 : Exit
  19      23       12       19        10       12
                                                                Complexity of Bubble_Sort
  23      19       19       12        12       10        The complexity of sorting algorithm is
                                                       depends upon the number of comparisons
Original After    After     After    After     After   that are made.
  List   Pass 1   Pass 2   Pass 3   Pass 4    Pass 5   Total comparisons in Bubble sort is
                                                             n ( n – 1) / 2 ≈ n 2 – n
                                                           Complexity = O ( n 2 )
void print_array (int a[ ], int n) {
  int i;
  for (i=0;I < n ; i++) printf("%5d",a[ i ]);
                                                                  Bubble Sort
}
void bubble_sort ( int arr [ ], int n) {
   int pass, current, temp;
                                                              For pass = 1 to N - 1
   for ( pass=1;(pass < n) ;pass++) {
      for ( current=1;current <= n – pass ; current++) {
         if ( arr[ current - 1 ] > arr[ current ] ) {
                temp = arr[ current - 1 ];                    For J = 1 to N - pass
                arr[ current - 1 ] = arr[ current ];
                arr[ current ] = temp;
         }                                                                             T
                                                                A[J–1]>A[J]
      }
   }
}                                                                    F
int main() {                                                                  Temp = A [ J – 1 ]
   int count,num[50],i ;                                                      A[J–1]=A[J]
   printf ("How many elements to be sorted : ");                               A [ J ] = Temp
   scanf ("%d", &count);
   printf("n Enter the elements : nn");
   for ( i = 0; i < count; i++) {
      printf ("num [%d] : ", i ); scanf( "%d", &num[ i ] );
   }
   printf("n Array Before Sorting : nnn");
   print_array ( num, count );
                                                                     Return
   bubble_sort ( num, count);
   printf("nnn Array After Sorting : nnn");
   print_array ( num, count );
}
TEMP                                    Insertion Sort
                                                 Insertion_Sort ( A [ ] , N )
            78    23 45       8        32   36   Step 1 : Repeat For K = 1 to N – 1
23                                                        Begin
                                                 Step 2 :    Set Temp = A [ K ]
                                                 Step 3 :    Set J = K – 1
           23     78    45    8        32   36   Step 4 :    Repeat while Temp < A [ J ] AND J >= 0
45                                                           Begin
                                                                 Set A [ J + 1 ] = A [ J ]
                                                                 Set J = J - 1
            23    45    78    8        32   36               End While
                                                 Step 5 :    Set A [ J + 1 ] = Temp
 8
                                                          End For
                                                 Step 4 : Exit
            8     23    45    78       32   36
32                                               insertion_sort ( int A[ ] , int n ) {
                                                   int k , j , temp ;
            8     23    32    45       78   36     for ( k = 1 ; k < n ; k++ ) {
                                                       temp = A [ k ] ;
36                                                     j = k - 1;
                                                       while ( ( temp < A [ j ] ) && ( j >= 0 ) ) {
            8     23    32    36       45   78            A[j+1] =A[j];
                                                          j--;
        Complexity of Insertion Sort                   }
Best Case : O ( n )                                    A [ j + 1 ] = temp ;
Average Case : O ( n2 )                            }
Worst Case : O ( n2 )                            }
Smallest        Selection Sort ( Select the smallest and Exchange )
                                            Selection_Sort ( A [ ] , N )
  8        23   78 45       8     32   56   Step 1 : Repeat For K = 0 to N – 2
                                                     Begin
                                            Step 2 :   Set POS = K
                                            Step 3 :   Repeat for J = K + 1 to N – 1
 23        8    78    45    23    32   56              Begin
                                                           If A[ J ] < A [ POS ]
                                                                       Set POS = J

 32        8    23    45    78    32   56               End For
                                            Step 5 :    Swap A [ K ] with A [ POS ]
                                                     End For
                                            Step 6 : Exit
 45        8    23    32    78    45   56
                                            selection_sort ( int A[ ] , int n ) {
                                               int k , j , pos , temp ;
                                               for ( k = 0 ; k < n - 1 ; k++ ) {
 56        8    23    32    45    78   56         pos = k ;
                                                  for ( j = k + 1 ; j <= n ; j ++ ) {
                                                     if ( A [ j ] < A [ pos ] )
           8    23    32    45    56   78                   pos = j ;
                                                  }
                                                  temp = A [ k ] ;
        Complexity of Selection Sort              A [ k ] = A [ pos ] ;
Best Case : O ( n2 )
                                                  A [ pos ] = temp ;
Average Case : O ( n2 )                       }
Worst Case : O ( n2 )                       }
Selection sort
      Insertion sort


                           k = 0; k < n - 1 ; k++
   k = 1; k < n ; k++

                                pos = k
    temp = a [ k ]
       j=k-1
                           j = k + 1 ; j < n ; j++


temp < a [ j ] && j >= 0
                            a[ j ] < a[ pos ]

  a[j+1]=a[j]                                        pos = j
     j=j-1


  a [ j + 1 ] = temp         temp = a[ k ]
                           a [ k ] = a [ pos ]
                           a [ pos ] = temp
         return

                                  return
Bubble sort – Insertion sort – Selection sort

Bubble Sort :
  -- very primitive algorithm like linear search, and least efficient .
  -- No of swappings are more compare with other sorting techniques.
  -- It is not capable of minimizing the travel through the array like insertion sort.
Insertion Sort :
  -- sorted by considering one item at a time.
  -- efficient to use on small sets of data.
  -- twice as fast as the bubble sort.
  -- 40% faster than the selection sort.
  -- no swapping is required.
  -- It is said to be online sorting because it continues the sorting a list as and when it receives
      new elements.
  -- it does not change the relative order of elements with equal keys.
  -- reduces unnecessary travel through the array.
  -- requires low and constant amount of extra memory space.
  -- less efficient for larger lists.
Selection sort :
  -- No of swappings will be minimized. i.e., one swap on one pass.
  -- generally used for sorting files with large objects and small keys.
  -- It is 60% more efficient than bubble sort and 40% less efficient than insertion sort.
  -- It is preferred over bubble sort for jumbled array as it requires less items to be exchanged.
  -- uses internal sorting that requires more memory space.
  -- It cannot recognize sorted list and carryout the sorting from the beginning, when new elements
     are added to the list.
Quick Sort – A recursive process of sorting

Original-list of 11 elements :

    8       3       2       11 5       14 0     2   9   4   20   Algorithm for Quick_Sort :

Set list [ 0 ] as pivot :                                        -- set the element A [ start_index ] as pivot.
                                                                 -- rearrange the array so that :
 pivot
                                                                      -- all elements which are less than the pivot
                                                                         come left ( before ) to the pivot.
    8       3       2       11 5       14 0     2   9   4   20        -- all elements which are greater than the pivot
                                                                         come right ( after ) to the pivot.
Rearrange ( partition ) the elements                             -- recursively apply quick-sort on the sub-list of
into two sub lists :                                                 lesser elements.
                        pivot                                    -- recursively apply quick-sort on the sub-list of
                                                                     greater elements.
4       3       2       2    5     0     8      11 9    14 20    -- the base case of the recursion is lists of size
                                                                     zero or one, which are always sorted.


           Sub-list of                           Sub-list of
        lesser elements                       greater elements
                                                                               Complexity of Quick Sort

                                                                    Best Case : O ( n log n )
    Apply Quick-sort                          Apply Quick-sort      Average Case : O ( n log n )
      recursively                               recursively         Worst Case : O ( n2 )
      on sub-list                               on sub-list
Partitioning for ‘ One Step of Quick Sort ’

Pivot
           9     12     8     16     1     25 10      3
 9
                 12     8     16     1     25 10      3

           3     12     8     16     1     25 10

           3            8     16     1     25 10 12

           3      1     8     16           25 10 12

           3      1     8           16 25 10 12
Quick Sort – Program

int partition ( int a [ ], int beg, int end ) {            void quick_sort(int a[ ] , int beg , int end ) {
  int left , right , loc , flag = 0, pivot ;                    int loc;
  loc = left = beg;                                             if ( beg < end ) {
  right = end;                                                      loc = partition( a , beg , end );
  pivot = a [ loc ] ;                                               quick_sort ( a , beg , loc – 1 );
  while ( flag == 0 )                                               quick_sort ( a , loc + 1 , end );
  {                                                             }
     while( (pivot <= a [ right ] )&&( loc != right ) )    }
              right - - ;                                  void print_array (int a [ ],int n) {
     if( loc == right ) flag = 1;                            int i;
     else {                                                  for ( i = 0 ; I < n ; i++ ) printf( "%5d“ ,a [ i ] ) ;
       a [ loc ] = a [ right ] ;                           }
       left = loc + 1 ;                                    int main () {
       loc = right;                                           int count , num[ 50 ] , i ;
     }                                                        printf ("How many elements to sort : ");
     while ( (pivot >= a [ left ] ) && ( loc != left ) )      scanf ("%d", &count );
            left++;                                           printf ("n Enter the elements : nn");
     if( loc == left ) flag = 1;                              for( i = 0; i < count; i++ ) {
     else {                                                       printf ("num [%d ] : “ , i );
        a [ loc ] = a [ left ] ;                                  scanf( "%d", &num[ i ] );
        right = loc - 1;                                      }
        loc = left;                                           printf (“ n Array Before Sorting : nnn“ );
     }                                                        print_array ( num , count ) ;
   }                                                          quick_sort ( num ,0 , count-1) ;
   a [ loc ] = pivot;                                         printf ( "nnn Array After Sorting : nnn“ );
   return loc;                                                print_array ( num , count );
}                                                          }
partition ( int a [ ], int beg, int end )   A                            B

                  loc = left = beg                               F                            T
                                                                          loc == left
                flag = 0, right = end
                   pivot = a [ loc ]
                                                          a [ loc ] = a [ left ]          flag = 1
                      Flag == 0                             right = loc - 1 ;
                                                               loc = left;
                pivot <= a [ right ]
                  && loc != right
                                                                       a[ loc ] = pivot
                right = right - 1

                                                                          return loc

           F                            T
                   loc == right                       quick_sort ( int a [ ], int beg, int end )

    a [ loc ] = a [ right ]            flag = 1                F                          T
        left = loc + 1 ;                                                loc == left
         loc = right;
                                                            loc = partition( a , beg , end )
                pivot >= a [ left ]
                  &&loc != left                               quick_sort ( a , beg , end )

                 left = left + 1                              quick_sort ( a , beg , end )


                                                                          return
A                        B
Merge Sort ( Divide and conquer )
                     Divide the array
                                                     -- Merge sort technique sorts a given set
         39 9    81 45 90 27 72 18                      of values by combining two sorted
                                                        arrays into one larger sorted arrays.
                                                     -- A small list will take fewer steps to sort
     39 9       81 45             90 27 72 18           than a large list.
                                                     -- Fewer steps are required to construct
                                                        a sorted list from two sorted lists than
39 9             81 45        90 27      72 18
                                                        two unsorted lists.
                                                     -- You only have to traverse each list
39       9      81     45    90     27   72     18      once if they're already sorted .

          Merge the elements to sorted array                         Merge_sort Algorithm
                                                     1. If the list is of length 0 or 1, then it is already
                                                         sorted.
39       9      81     45    90     27   72     18    Otherwise:
                                                     2. Divide the unsorted list into two sublists of
                                                         about half the size.
9        39     45 81          27 90     18 72       3. Sort each sublist recursively by re-applying
                                                         merge sort.
                                                     4. Merge the two sublists back into one
     9       39 45 81             18 27 72 90            sorted list.

                                                                     Time complexity
         9     18 27 39 45 72 81 90                  Worst case - O(n log n)
                                                     Best case - O(nlogn) typical, O(n) natural variant
                                                     Average case - O( n log n )
Merge Sort - Program

void merge(int a[ ],int low,int high,int mid){
   int i, j, k, c[50];
   i=low; j=mid+1; k=low;
   while( ( i<=mid )&&( j <= high ) ) {          void print_array (int a [ ],int n) {
                                                   int i;
       if( a[ i ]<a[ j ] ){                        for ( i = 0 ; I < n ; i++ ) printf( "%5d“ ,a [ i ] ) ;
          c[ k ]=a[ i ]; k++; i++;               }
       }else {                                   int main () {
          c[ k ]=a[ j ]; k++; j++;                  int count , num[ 50 ] , i ;
       }                                            printf ("How many elements to sort : ");
   }                                                scanf ("%d", &count );
   while( i<=mid ) { c[k]=a[ i ]; k++; i++; }       printf ("n Enter the elements : nn");
                                                    for( i = 0; i < count; i++ ) {
   while(j<=high) { c[k]=a[ j ]; k++; j++; }           printf ("num [%d ] : “ , i );
   for(i=low;i<k;i++) a[ i ]=c[ i ];                   scanf( "%d", &num[ i ] );
 }                                                  }
                                                    printf (“ n Array Before Sorting : nnn“ );
void merge_sort(int a[ ], int low, int high){
                                                    print_array ( num , count ) ;
  int mid;
                                                    merge_sort ( num ,0 , count-1) ;
  if( low < high) {
                                                    printf ( "nnn Array After Sorting : nnn“ );
      mid=(low+high)/2;                             print_array ( num , count );
      merge_sort (a, low, mid);                  }
      merge_sort (a, mid+1 ,high);
      merge (a, low, high, mid);
  }
}
merge

      i =low ; j = mid+1;k = low
                                                              Merge_Sort
           i <= mid && j <= high


                                        T              F                      T
       F                                                      low < high
                 a[ i ] < a[ j ]

c[ k ] =a [ i ] ;                  c[ k ] =a [ j ] ;          mid = ( low + high ) / 2
   k++ ; i++                          k++ ; j++

                                                           merge_sort (a, low, mid)

                    i <= mid
                                                           merge_sort (a, mid, high )
           c[ k ] =a [ i ] ; k++ ; i++

                                                           Merge (a, low,high , mid)
                    j <= high

        c[ k ] =a [ j ] ; k++ ; j++


            i = low ; i < k ; i ++
                                                               Return
                a[ i ] = c [ i ]


                     return
www.jntuworld.com
• For More Materials, Text Books, Previous
  Papers & Mobile updates of B.TECH,
  B.PHARMACY, MBA, MCA of JNTU-HYD,JNTU-
  KAKINADA & JNTU-ANANTAPUR visit
  www.jntuworld.com

More Related Content

PPT
C Language Unit-6
PPT
Lowest common ancestor
PPTX
Advanced data structures slide 1 2
PDF
Java q ref 2018
PDF
Dynamic programming
PPTX
Advanced data structure
PPTX
Lecture 4_Java Method-constructor_imp_keywords
PPT
Unit3 jwfiles
C Language Unit-6
Lowest common ancestor
Advanced data structures slide 1 2
Java q ref 2018
Dynamic programming
Advanced data structure
Lecture 4_Java Method-constructor_imp_keywords
Unit3 jwfiles

What's hot (20)

PPT
C Language Unit-3
PPTX
Lecture 6 inheritance
PDF
Making Logic Monad
PPT
Chapter 2 Method in Java OOP
PPTX
Learning with classification and clustering, neural networks
PPT
Chapter 4 - Classes in Java
PDF
Introduction to ad-3.4, an automatic differentiation library in Haskell
PPT
Chapter 3 Arrays in Java
PPS
Class method
PPTX
TensorFlow for IITians
PPT
PDF
Scala Functional Patterns
PPTX
Templates in C++
PPTX
Lecture - 3 Variables-data type_operators_oops concept
PPTX
Lecture 7 arrays
PPT
PPTX
Detecting Bugs in Binaries Using Decompilation and Data Flow Analysis
PDF
Multiclass Logistic Regression: Derivation and Apache Spark Examples
PDF
Introduction to Recursion (Python)
PDF
TI1220 Lecture 8: Traits & Type Parameterization
C Language Unit-3
Lecture 6 inheritance
Making Logic Monad
Chapter 2 Method in Java OOP
Learning with classification and clustering, neural networks
Chapter 4 - Classes in Java
Introduction to ad-3.4, an automatic differentiation library in Haskell
Chapter 3 Arrays in Java
Class method
TensorFlow for IITians
Scala Functional Patterns
Templates in C++
Lecture - 3 Variables-data type_operators_oops concept
Lecture 7 arrays
Detecting Bugs in Binaries Using Decompilation and Data Flow Analysis
Multiclass Logistic Regression: Derivation and Apache Spark Examples
Introduction to Recursion (Python)
TI1220 Lecture 8: Traits & Type Parameterization
Ad

Similar to Unit6 jwfiles (20)

PPTX
searching in data structure.pptx
PPT
search_sort Search sortSearch sortSearch sortSearch sort
PPT
search_sort search_sortsearch_sort search_sortsearch_sortsearch_sortsearch_sort
PPT
search_sort_v1.pptgghghhhggggjjjjjjllllllllvbbbbbcfdsdfffg
PPT
Unit6 C
PPT
search_sort.ppt
PPTX
PPT.pptx Searching and Sorting Techniques
PDF
Searching and Sorting in Data Structures with examples
PPTX
Algorithm & data structures lec4&5
PPT
Arrays
PPT
PPTX
2.Problem Solving Techniques and Data Structures.pptx
PDF
PDF
Searching and sorting by B kirron Reddi
PPTX
PDF
Chapter 14 Searching and Sorting
PDF
L 14-ct1120
PPTX
Linear Search Swapping Bubble Sort Binary Search.pptx
PDF
advanced searching and sorting.pdf
searching in data structure.pptx
search_sort Search sortSearch sortSearch sortSearch sort
search_sort search_sortsearch_sort search_sortsearch_sortsearch_sortsearch_sort
search_sort_v1.pptgghghhhggggjjjjjjllllllllvbbbbbcfdsdfffg
Unit6 C
search_sort.ppt
PPT.pptx Searching and Sorting Techniques
Searching and Sorting in Data Structures with examples
Algorithm & data structures lec4&5
Arrays
2.Problem Solving Techniques and Data Structures.pptx
Searching and sorting by B kirron Reddi
Chapter 14 Searching and Sorting
L 14-ct1120
Linear Search Swapping Bubble Sort Binary Search.pptx
advanced searching and sorting.pdf
Ad

More from mrecedu (20)

PDF
Brochure final
PPT
Unit i
PPT
Filters unit iii
DOCX
Attenuator unit iv
PPT
Two port networks unit ii
PPT
Unit 8
PPT
Unit4 (2)
PPT
Unit5
PPT
Unit4
PPT
Unit5 (2)
PPT
Unit2 jwfiles
PPT
Unit1 jwfiles
PPT
Unit7 jwfiles
PPS
M1 unit vi-jntuworld
PPS
M1 unit v-jntuworld
PPS
M1 unit iv-jntuworld
PPS
M1 unit iii-jntuworld
PPS
M1 unit ii-jntuworld
PPS
M1 unit i-jntuworld
PPS
M1 unit viii-jntuworld
Brochure final
Unit i
Filters unit iii
Attenuator unit iv
Two port networks unit ii
Unit 8
Unit4 (2)
Unit5
Unit4
Unit5 (2)
Unit2 jwfiles
Unit1 jwfiles
Unit7 jwfiles
M1 unit vi-jntuworld
M1 unit v-jntuworld
M1 unit iv-jntuworld
M1 unit iii-jntuworld
M1 unit ii-jntuworld
M1 unit i-jntuworld
M1 unit viii-jntuworld

Recently uploaded (20)

PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PDF
A novel scalable deep ensemble learning framework for big data classification...
PDF
Hybrid model detection and classification of lung cancer
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
PPTX
Benefits of Physical activity for teenagers.pptx
PDF
A comparative study of natural language inference in Swahili using monolingua...
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PDF
Getting Started with Data Integration: FME Form 101
PDF
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
PDF
Developing a website for English-speaking practice to English as a foreign la...
PDF
Taming the Chaos: How to Turn Unstructured Data into Decisions
PPTX
The various Industrial Revolutions .pptx
PPT
Module 1.ppt Iot fundamentals and Architecture
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
A review of recent deep learning applications in wood surface defect identifi...
PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PDF
NewMind AI Weekly Chronicles – August ’25 Week III
PPTX
O2C Customer Invoices to Receipt V15A.pptx
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
Group 1 Presentation -Planning and Decision Making .pptx
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
A novel scalable deep ensemble learning framework for big data classification...
Hybrid model detection and classification of lung cancer
Final SEM Unit 1 for mit wpu at pune .pptx
Benefits of Physical activity for teenagers.pptx
A comparative study of natural language inference in Swahili using monolingua...
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
Getting Started with Data Integration: FME Form 101
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
Developing a website for English-speaking practice to English as a foreign la...
Taming the Chaos: How to Turn Unstructured Data into Decisions
The various Industrial Revolutions .pptx
Module 1.ppt Iot fundamentals and Architecture
Zenith AI: Advanced Artificial Intelligence
A review of recent deep learning applications in wood surface defect identifi...
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
NewMind AI Weekly Chronicles – August ’25 Week III
O2C Customer Invoices to Receipt V15A.pptx
From MVP to Full-Scale Product A Startup’s Software Journey.pdf

Unit6 jwfiles

  • 1. Searching techniques Searching : It is a process to find whether a particular value with specified properties is present or not among a collection of items. If the value is present in the collection, then searching is said to be successful, and it returns the location of the value in the array. Otherwise, if the value is not present in the array, the searching process displays the appropriate message and in this case searching is said to be unsuccessful. 1) Linear or Sequential Searching 2) Binary Searching int main( ) { Linear_Search (A[ ], N, val , pos ) int arr [ 50 ] , num , i , n , pos = -1; Step 1 : Set pos = -1 and k = 0 printf ("How many elements to sort : "); Step 2 : Repeat while k < N scanf ("%d", &n); Begin printf ("n Enter the elements : nn"); Step 3 : if A[ k ] = val for( i = 0; i < n; i++ ) { Set pos = k printf (“arr [%d ] : “ , i ); print pos scanf( "%d", &arr[ i ] ); Goto step 5 } End while printf(“nEnter the number to be searched : “); Step 4 : print “Value is not present” scanf(“%d”,&num); Step 5 : Exit for(i=0;i<n;i++) if( arr [ i ] == num ) { Searches pos = i ; break; -- for each item one by one in the list from } the first, until the match is found. if ( pos == -1 ) printf(“ %d does not exist ”,num); Efficiency of Linear search : else -- Executes in O ( n ) times where n is the printf(“ %d is found at location : %d”, num , pos); number of elements in the list.
  • 2. Binary Searching Algorithm: • Before searching, the list of items should be sorted in ascending order. • We first compare the key value with the item in the position of the array. If there is a match, we can return immediately the position. • if the value is less than the element in middle location of the array, the required value is lie in the lower half of the array. • if the value is greater than the element in middle location of the array, the required value is lie in the upper half of the array. • We repeat the above procedure on the lower half or upper half of the array. Binary_Search (A [ ], U_bound, VAL) Step 1 : set BEG = 0 , END = U_bound , POS = -1 Step 2 : Repeat while (BEG <= END ) void binary_serch ( int a [], int n, int val ) { Step 3 : set MID = ( BEG + END ) / 2 int end = n - 1, beg = 0, pos = -1; Step 4 : if A [ MID ] == VAL then while( beg <= end ) { POS = MID mid = ( beg + end ) / 2; print VAL “ is available at “, POS if ( val == a [ mid ] ) { GoTo Step 6 pos = mid; End if printf(“%d is available at %d”,val, pos ); if A [ MID ] > VAL then break; set END = MID – 1 } Else if ( a [ mid ] > val ) end = mid – 1; set BEG = MID + 1 else beg = mid + 1; End if } End while if ( pos = - 1) Step 5 : if POS = -1 then printf( “%d does not exist “, val ); print VAL “ is not present “ } End if Step 6 : EXIT
  • 3. Sorting Sorting is a technique to rearrange the elements of a list in ascending or descending order, which can be numerical, lexicographical, or any user-defined order. Ranking of students is the process of sorting in descending order. EMCET Ranking is an example for sorting with user-defined order. EMCET Ranking is done with the following priorities. i) First priority is marks obtained in EMCET. ii) If marks are same, the ranking will be done with comparing marks obtained in the Mathematics subject. iii) If marks in Mathematics subject are also same, then the date of births will be compared. Internal Sorting : Types of Internal Sortings If all the data that is to be sorted can be accommodated at a time in memory is called internal sorting.  Bubble Sort External Sorting :  Insertion Sort It is applied to Huge amount of data that cannot be  Selection Sort accommodated in memory all at a time. So data in disk or file is loaded into memory part by part. Each part that  Quick Sort is loaded is sorted separately, and stored in an intermediate file and all parts are merged into one single  Merge Sort sorted list.
  • 4. Bubble Sort Bubbles up the highest Unsorted Sorted Bubble_Sort ( A [ ] , N ) Step 1 : Repeat For P = 1 to N – 1 10 54 54 54 54 54 Begin Step 2 : Repeat For J = 1 to N – P 47 10 47 47 47 47 Begin Step 3 : If ( A [ J ] < A [ J – 1 ] ) 12 47 10 23 23 23 Swap ( A [ J ] , A [ J – 1 ] ) End For 54 12 23 10 19 19 End For Step 4 : Exit 19 23 12 19 10 12 Complexity of Bubble_Sort 23 19 19 12 12 10 The complexity of sorting algorithm is depends upon the number of comparisons Original After After After After After that are made. List Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 Total comparisons in Bubble sort is n ( n – 1) / 2 ≈ n 2 – n Complexity = O ( n 2 )
  • 5. void print_array (int a[ ], int n) { int i; for (i=0;I < n ; i++) printf("%5d",a[ i ]); Bubble Sort } void bubble_sort ( int arr [ ], int n) { int pass, current, temp; For pass = 1 to N - 1 for ( pass=1;(pass < n) ;pass++) { for ( current=1;current <= n – pass ; current++) { if ( arr[ current - 1 ] > arr[ current ] ) { temp = arr[ current - 1 ]; For J = 1 to N - pass arr[ current - 1 ] = arr[ current ]; arr[ current ] = temp; } T A[J–1]>A[J] } } } F int main() { Temp = A [ J – 1 ] int count,num[50],i ; A[J–1]=A[J] printf ("How many elements to be sorted : "); A [ J ] = Temp scanf ("%d", &count); printf("n Enter the elements : nn"); for ( i = 0; i < count; i++) { printf ("num [%d] : ", i ); scanf( "%d", &num[ i ] ); } printf("n Array Before Sorting : nnn"); print_array ( num, count ); Return bubble_sort ( num, count); printf("nnn Array After Sorting : nnn"); print_array ( num, count ); }
  • 6. TEMP Insertion Sort Insertion_Sort ( A [ ] , N ) 78 23 45 8 32 36 Step 1 : Repeat For K = 1 to N – 1 23 Begin Step 2 : Set Temp = A [ K ] Step 3 : Set J = K – 1 23 78 45 8 32 36 Step 4 : Repeat while Temp < A [ J ] AND J >= 0 45 Begin Set A [ J + 1 ] = A [ J ] Set J = J - 1 23 45 78 8 32 36 End While Step 5 : Set A [ J + 1 ] = Temp 8 End For Step 4 : Exit 8 23 45 78 32 36 32 insertion_sort ( int A[ ] , int n ) { int k , j , temp ; 8 23 32 45 78 36 for ( k = 1 ; k < n ; k++ ) { temp = A [ k ] ; 36 j = k - 1; while ( ( temp < A [ j ] ) && ( j >= 0 ) ) { 8 23 32 36 45 78 A[j+1] =A[j]; j--; Complexity of Insertion Sort } Best Case : O ( n ) A [ j + 1 ] = temp ; Average Case : O ( n2 ) } Worst Case : O ( n2 ) }
  • 7. Smallest Selection Sort ( Select the smallest and Exchange ) Selection_Sort ( A [ ] , N ) 8 23 78 45 8 32 56 Step 1 : Repeat For K = 0 to N – 2 Begin Step 2 : Set POS = K Step 3 : Repeat for J = K + 1 to N – 1 23 8 78 45 23 32 56 Begin If A[ J ] < A [ POS ] Set POS = J 32 8 23 45 78 32 56 End For Step 5 : Swap A [ K ] with A [ POS ] End For Step 6 : Exit 45 8 23 32 78 45 56 selection_sort ( int A[ ] , int n ) { int k , j , pos , temp ; for ( k = 0 ; k < n - 1 ; k++ ) { 56 8 23 32 45 78 56 pos = k ; for ( j = k + 1 ; j <= n ; j ++ ) { if ( A [ j ] < A [ pos ] ) 8 23 32 45 56 78 pos = j ; } temp = A [ k ] ; Complexity of Selection Sort A [ k ] = A [ pos ] ; Best Case : O ( n2 ) A [ pos ] = temp ; Average Case : O ( n2 ) } Worst Case : O ( n2 ) }
  • 8. Selection sort Insertion sort k = 0; k < n - 1 ; k++ k = 1; k < n ; k++ pos = k temp = a [ k ] j=k-1 j = k + 1 ; j < n ; j++ temp < a [ j ] && j >= 0 a[ j ] < a[ pos ] a[j+1]=a[j] pos = j j=j-1 a [ j + 1 ] = temp temp = a[ k ] a [ k ] = a [ pos ] a [ pos ] = temp return return
  • 9. Bubble sort – Insertion sort – Selection sort Bubble Sort : -- very primitive algorithm like linear search, and least efficient . -- No of swappings are more compare with other sorting techniques. -- It is not capable of minimizing the travel through the array like insertion sort. Insertion Sort : -- sorted by considering one item at a time. -- efficient to use on small sets of data. -- twice as fast as the bubble sort. -- 40% faster than the selection sort. -- no swapping is required. -- It is said to be online sorting because it continues the sorting a list as and when it receives new elements. -- it does not change the relative order of elements with equal keys. -- reduces unnecessary travel through the array. -- requires low and constant amount of extra memory space. -- less efficient for larger lists. Selection sort : -- No of swappings will be minimized. i.e., one swap on one pass. -- generally used for sorting files with large objects and small keys. -- It is 60% more efficient than bubble sort and 40% less efficient than insertion sort. -- It is preferred over bubble sort for jumbled array as it requires less items to be exchanged. -- uses internal sorting that requires more memory space. -- It cannot recognize sorted list and carryout the sorting from the beginning, when new elements are added to the list.
  • 10. Quick Sort – A recursive process of sorting Original-list of 11 elements : 8 3 2 11 5 14 0 2 9 4 20 Algorithm for Quick_Sort : Set list [ 0 ] as pivot : -- set the element A [ start_index ] as pivot. -- rearrange the array so that : pivot -- all elements which are less than the pivot come left ( before ) to the pivot. 8 3 2 11 5 14 0 2 9 4 20 -- all elements which are greater than the pivot come right ( after ) to the pivot. Rearrange ( partition ) the elements -- recursively apply quick-sort on the sub-list of into two sub lists : lesser elements. pivot -- recursively apply quick-sort on the sub-list of greater elements. 4 3 2 2 5 0 8 11 9 14 20 -- the base case of the recursion is lists of size zero or one, which are always sorted. Sub-list of Sub-list of lesser elements greater elements Complexity of Quick Sort Best Case : O ( n log n ) Apply Quick-sort Apply Quick-sort Average Case : O ( n log n ) recursively recursively Worst Case : O ( n2 ) on sub-list on sub-list
  • 11. Partitioning for ‘ One Step of Quick Sort ’ Pivot 9 12 8 16 1 25 10 3 9 12 8 16 1 25 10 3 3 12 8 16 1 25 10 3 8 16 1 25 10 12 3 1 8 16 25 10 12 3 1 8 16 25 10 12
  • 12. Quick Sort – Program int partition ( int a [ ], int beg, int end ) { void quick_sort(int a[ ] , int beg , int end ) { int left , right , loc , flag = 0, pivot ; int loc; loc = left = beg; if ( beg < end ) { right = end; loc = partition( a , beg , end ); pivot = a [ loc ] ; quick_sort ( a , beg , loc – 1 ); while ( flag == 0 ) quick_sort ( a , loc + 1 , end ); { } while( (pivot <= a [ right ] )&&( loc != right ) ) } right - - ; void print_array (int a [ ],int n) { if( loc == right ) flag = 1; int i; else { for ( i = 0 ; I < n ; i++ ) printf( "%5d“ ,a [ i ] ) ; a [ loc ] = a [ right ] ; } left = loc + 1 ; int main () { loc = right; int count , num[ 50 ] , i ; } printf ("How many elements to sort : "); while ( (pivot >= a [ left ] ) && ( loc != left ) ) scanf ("%d", &count ); left++; printf ("n Enter the elements : nn"); if( loc == left ) flag = 1; for( i = 0; i < count; i++ ) { else { printf ("num [%d ] : “ , i ); a [ loc ] = a [ left ] ; scanf( "%d", &num[ i ] ); right = loc - 1; } loc = left; printf (“ n Array Before Sorting : nnn“ ); } print_array ( num , count ) ; } quick_sort ( num ,0 , count-1) ; a [ loc ] = pivot; printf ( "nnn Array After Sorting : nnn“ ); return loc; print_array ( num , count ); } }
  • 13. partition ( int a [ ], int beg, int end ) A B loc = left = beg F T loc == left flag = 0, right = end pivot = a [ loc ] a [ loc ] = a [ left ] flag = 1 Flag == 0 right = loc - 1 ; loc = left; pivot <= a [ right ] && loc != right a[ loc ] = pivot right = right - 1 return loc F T loc == right quick_sort ( int a [ ], int beg, int end ) a [ loc ] = a [ right ] flag = 1 F T left = loc + 1 ; loc == left loc = right; loc = partition( a , beg , end ) pivot >= a [ left ] &&loc != left quick_sort ( a , beg , end ) left = left + 1 quick_sort ( a , beg , end ) return A B
  • 14. Merge Sort ( Divide and conquer ) Divide the array -- Merge sort technique sorts a given set 39 9 81 45 90 27 72 18 of values by combining two sorted arrays into one larger sorted arrays. -- A small list will take fewer steps to sort 39 9 81 45 90 27 72 18 than a large list. -- Fewer steps are required to construct a sorted list from two sorted lists than 39 9 81 45 90 27 72 18 two unsorted lists. -- You only have to traverse each list 39 9 81 45 90 27 72 18 once if they're already sorted . Merge the elements to sorted array Merge_sort Algorithm 1. If the list is of length 0 or 1, then it is already sorted. 39 9 81 45 90 27 72 18 Otherwise: 2. Divide the unsorted list into two sublists of about half the size. 9 39 45 81 27 90 18 72 3. Sort each sublist recursively by re-applying merge sort. 4. Merge the two sublists back into one 9 39 45 81 18 27 72 90 sorted list. Time complexity 9 18 27 39 45 72 81 90 Worst case - O(n log n) Best case - O(nlogn) typical, O(n) natural variant Average case - O( n log n )
  • 15. Merge Sort - Program void merge(int a[ ],int low,int high,int mid){ int i, j, k, c[50]; i=low; j=mid+1; k=low; while( ( i<=mid )&&( j <= high ) ) { void print_array (int a [ ],int n) { int i; if( a[ i ]<a[ j ] ){ for ( i = 0 ; I < n ; i++ ) printf( "%5d“ ,a [ i ] ) ; c[ k ]=a[ i ]; k++; i++; } }else { int main () { c[ k ]=a[ j ]; k++; j++; int count , num[ 50 ] , i ; } printf ("How many elements to sort : "); } scanf ("%d", &count ); while( i<=mid ) { c[k]=a[ i ]; k++; i++; } printf ("n Enter the elements : nn"); for( i = 0; i < count; i++ ) { while(j<=high) { c[k]=a[ j ]; k++; j++; } printf ("num [%d ] : “ , i ); for(i=low;i<k;i++) a[ i ]=c[ i ]; scanf( "%d", &num[ i ] ); } } printf (“ n Array Before Sorting : nnn“ ); void merge_sort(int a[ ], int low, int high){ print_array ( num , count ) ; int mid; merge_sort ( num ,0 , count-1) ; if( low < high) { printf ( "nnn Array After Sorting : nnn“ ); mid=(low+high)/2; print_array ( num , count ); merge_sort (a, low, mid); } merge_sort (a, mid+1 ,high); merge (a, low, high, mid); } }
  • 16. merge i =low ; j = mid+1;k = low Merge_Sort i <= mid && j <= high T F T F low < high a[ i ] < a[ j ] c[ k ] =a [ i ] ; c[ k ] =a [ j ] ; mid = ( low + high ) / 2 k++ ; i++ k++ ; j++ merge_sort (a, low, mid) i <= mid merge_sort (a, mid, high ) c[ k ] =a [ i ] ; k++ ; i++ Merge (a, low,high , mid) j <= high c[ k ] =a [ j ] ; k++ ; j++ i = low ; i < k ; i ++ Return a[ i ] = c [ i ] return
  • 17. www.jntuworld.com • For More Materials, Text Books, Previous Papers & Mobile updates of B.TECH, B.PHARMACY, MBA, MCA of JNTU-HYD,JNTU- KAKINADA & JNTU-ANANTAPUR visit www.jntuworld.com

Editor's Notes

  • #2: ADITYA ENGINEERING COLLEGES