SlideShare a Scribd company logo
UNLOCKING INSIGHTS:
DATA ANALYTICS AND
VISUALIZATION
A Guide to EDA and Visualization
OCTOBER 19, 2024
By: Anyika, Lorreta
INTRODUCTION
DATA ANALYTICS OVERVIEW
What is Data Analytics?
DATA ANALYTICS
The systematic computational analysis of
data to discover meaningful patterns,
trends, and insights that can inform
decision-making and improve processes.
KEY COMPONENTS
• Data Collection
• Data Cleaning and preparation
• Exploratory Data Analysis (EDA)
• Data Visualization
• Reporting and Interpretation
• Implementation and Decision-
making
Definition, Goals & Overview
01 02 03
Data Cleaning
Handle missing values, outliers, duplicates
Feature Engineering
Create new features for analysis
EXPLORATORY DATA ANALYSIS
Examine patterns, outliers, correlations
A step in data analysis where we
explore the dataset, understand its
structure and discover initial insights.
Data Cleaning, Aggregation, Visualization
Clean Data
Prepare data for analysis
Aggregate Data
Summarize information
Visualize Data
Create impactful visuals
PANDAS TECHNIQUES
Create Interactive Visualizations
Powerful plotting library
Matplotlib
Statistical data visualization
Seaborn
INTERACTIVE VISUALS
Viz Essentials (Seaborn and Matplotlib
INTRODUCTION
Introduction
•Comprehensive libraries for creating static, animated, and
interactive visualizations in Python.
•Often used in conjunction with NumPy and Pandas for data
analysis.
Key Components:
•Figure: The overall window or page on which everything is
drawn.
•Axes: The area where data is plotted (could have multiple
axes in one figure).
•Plot Types: Line plots, scatter plots, bar charts, histograms,
etc.
Basic Usage:
•Importing Matplotlib: import matplotlib.pyplot as plt.
•Creating a simple plot: plt.plot(x, y).
•Showing the plot: plt.show().
INTRODUCTION
Common Plot Types:
•Line Plots: Used for continuous data, showing trends over time.
•Scatter Plots: Used to show the relationship between two variables.
•Bar Plots: Used for categorical data comparison.
•Histograms: Used to show the distribution of numerical data.
Customization:
•titles and labels: plt.title(), plt.xlabel(), plt.ylabel().
•ChaAddingnging colors, line styles, and markers.
•Adding legends with plt.legend().
Saving Plots:
•Exporting a plot to a file (PNG, JPG, etc.):
plt.savefig('filename.png').
Integration with Pandas:
•Easy plotting of data directly from DataFrames using .plot()
method.
Viz Essentials (Seaborn and Matplotlib
Style, color, axis
Enhance visual appeal
Matplotlib Seaborn
Captivate audience with creativity
Data visualization
CUSTOMIZING VISUALS
Data Visualization Techniques
Line Plots
Show trends over time
Bar Charts
Compare categories visually
Scatter Plots
Display correlations and patterns
VISUALIZING TRENDS
Histograms, Box Plots, Pie Charts
Box Plots
Display of data distribution and outliers
COMPARISON PLOTS
Histograms
Visual representation of data distribution
Pie Charts
Illustration of proportions and
percentages
HANDS-ON SESSION
Practice time!
YOURNAME@EXAMPLE.COM 18 OCTOBER 2024
Closing Thoughts
It’s a wrap!
THANK YOU
ANYIKA, LORRETA U.
09071234510
Follow on X, LinkedIn, FB & IG @ Anyika
Lorreta

More Related Content

PPTX
DATA ANALYSIS AND VISUALISATION using python 2
PPTX
Data-Analysis-and-Visualization-in-Python-1.pptx
PPTX
CH 4_TYBSC(CS)_Data Science_Visualisation
PDF
Data visualization
PPTX
EDA.pptx
PPTX
Data-Visualization-in-Machine-Learning.pptx
PPTX
data analytics and visualization CO4_18_Data Types for Plotting.pptx
PPTX
EDA.pptx
DATA ANALYSIS AND VISUALISATION using python 2
Data-Analysis-and-Visualization-in-Python-1.pptx
CH 4_TYBSC(CS)_Data Science_Visualisation
Data visualization
EDA.pptx
Data-Visualization-in-Machine-Learning.pptx
data analytics and visualization CO4_18_Data Types for Plotting.pptx
EDA.pptx

Similar to Unlocking Insights Data Analysis Visualization (20)

PDF
DAVLectuer3 Exploratory data analysis .pdf
PPTX
BDA_MO_1_S6_Basic_data_analytics_,reporting,_and_apply_basic_data.pptx
PPTX
Lec 04 -Visualization dataset using Python - Copy.pptx
PPTX
Data Exploration in Python.pptx
PPTX
11-11_EDA Samia.pptx 11-11_EDA Samia.pptx
PPTX
UNIT_4_data visualization.pptx
PPTX
Python for Data Science
PPTX
Introduction to matplotlib
PPTX
Types of Data in Machine Learning, Number aand Categorical
PPTX
Python_Matplotlib_13. _Slides.pptx
PPTX
Matplotlib_Presentation jk jdjklskncncsjkk
PPTX
Python Pyplot Class XII
DOCX
UNIT-4.docx
PPTX
PYTHON-Chapter 4-Plotting and Data Science PyLab - MAULIK BORSANIYA
PPTX
Data Visualization in Python of b.tech student.pptx
PPTX
Python_Matplotlib_13_Slides_With_Diagrams.pptx
PPTX
Data Visualization1.pptx
PPTX
Data-Visualization-with-Python-4 PPT.ppt
DOCX
Data visualization using py plot part i
PDF
Chapter3_Visualizations2.pdf
DAVLectuer3 Exploratory data analysis .pdf
BDA_MO_1_S6_Basic_data_analytics_,reporting,_and_apply_basic_data.pptx
Lec 04 -Visualization dataset using Python - Copy.pptx
Data Exploration in Python.pptx
11-11_EDA Samia.pptx 11-11_EDA Samia.pptx
UNIT_4_data visualization.pptx
Python for Data Science
Introduction to matplotlib
Types of Data in Machine Learning, Number aand Categorical
Python_Matplotlib_13. _Slides.pptx
Matplotlib_Presentation jk jdjklskncncsjkk
Python Pyplot Class XII
UNIT-4.docx
PYTHON-Chapter 4-Plotting and Data Science PyLab - MAULIK BORSANIYA
Data Visualization in Python of b.tech student.pptx
Python_Matplotlib_13_Slides_With_Diagrams.pptx
Data Visualization1.pptx
Data-Visualization-with-Python-4 PPT.ppt
Data visualization using py plot part i
Chapter3_Visualizations2.pdf
Ad

Recently uploaded (20)

PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Encapsulation theory and applications.pdf
PDF
Electronic commerce courselecture one. Pdf
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Machine learning based COVID-19 study performance prediction
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PPTX
Spectroscopy.pptx food analysis technology
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
Empathic Computing: Creating Shared Understanding
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PPTX
Big Data Technologies - Introduction.pptx
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
KodekX | Application Modernization Development
Digital-Transformation-Roadmap-for-Companies.pptx
Encapsulation theory and applications.pdf
Electronic commerce courselecture one. Pdf
Chapter 3 Spatial Domain Image Processing.pdf
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Machine learning based COVID-19 study performance prediction
NewMind AI Weekly Chronicles - August'25 Week I
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
Spectroscopy.pptx food analysis technology
Understanding_Digital_Forensics_Presentation.pptx
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Empathic Computing: Creating Shared Understanding
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Advanced methodologies resolving dimensionality complications for autism neur...
Big Data Technologies - Introduction.pptx
Spectral efficient network and resource selection model in 5G networks
KodekX | Application Modernization Development
Ad

Unlocking Insights Data Analysis Visualization

  • 1. UNLOCKING INSIGHTS: DATA ANALYTICS AND VISUALIZATION A Guide to EDA and Visualization OCTOBER 19, 2024 By: Anyika, Lorreta
  • 3. DATA ANALYTICS The systematic computational analysis of data to discover meaningful patterns, trends, and insights that can inform decision-making and improve processes. KEY COMPONENTS • Data Collection • Data Cleaning and preparation • Exploratory Data Analysis (EDA) • Data Visualization • Reporting and Interpretation • Implementation and Decision- making
  • 4. Definition, Goals & Overview 01 02 03 Data Cleaning Handle missing values, outliers, duplicates Feature Engineering Create new features for analysis EXPLORATORY DATA ANALYSIS Examine patterns, outliers, correlations A step in data analysis where we explore the dataset, understand its structure and discover initial insights.
  • 5. Data Cleaning, Aggregation, Visualization Clean Data Prepare data for analysis Aggregate Data Summarize information Visualize Data Create impactful visuals PANDAS TECHNIQUES
  • 6. Create Interactive Visualizations Powerful plotting library Matplotlib Statistical data visualization Seaborn INTERACTIVE VISUALS
  • 7. Viz Essentials (Seaborn and Matplotlib INTRODUCTION Introduction •Comprehensive libraries for creating static, animated, and interactive visualizations in Python. •Often used in conjunction with NumPy and Pandas for data analysis. Key Components: •Figure: The overall window or page on which everything is drawn. •Axes: The area where data is plotted (could have multiple axes in one figure). •Plot Types: Line plots, scatter plots, bar charts, histograms, etc. Basic Usage: •Importing Matplotlib: import matplotlib.pyplot as plt. •Creating a simple plot: plt.plot(x, y). •Showing the plot: plt.show().
  • 8. INTRODUCTION Common Plot Types: •Line Plots: Used for continuous data, showing trends over time. •Scatter Plots: Used to show the relationship between two variables. •Bar Plots: Used for categorical data comparison. •Histograms: Used to show the distribution of numerical data. Customization: •titles and labels: plt.title(), plt.xlabel(), plt.ylabel(). •ChaAddingnging colors, line styles, and markers. •Adding legends with plt.legend(). Saving Plots: •Exporting a plot to a file (PNG, JPG, etc.): plt.savefig('filename.png'). Integration with Pandas: •Easy plotting of data directly from DataFrames using .plot() method. Viz Essentials (Seaborn and Matplotlib
  • 9. Style, color, axis Enhance visual appeal Matplotlib Seaborn Captivate audience with creativity Data visualization CUSTOMIZING VISUALS
  • 10. Data Visualization Techniques Line Plots Show trends over time Bar Charts Compare categories visually Scatter Plots Display correlations and patterns VISUALIZING TRENDS
  • 11. Histograms, Box Plots, Pie Charts Box Plots Display of data distribution and outliers COMPARISON PLOTS Histograms Visual representation of data distribution Pie Charts Illustration of proportions and percentages
  • 13. YOURNAME@EXAMPLE.COM 18 OCTOBER 2024 Closing Thoughts
  • 14. It’s a wrap! THANK YOU ANYIKA, LORRETA U. 09071234510 Follow on X, LinkedIn, FB & IG @ Anyika Lorreta