SlideShare a Scribd company logo
MATLAB MODELLING OF SPT AND GRAIN SIZE DATA IN
PRODUCING SOIL PROFILE
CE 400: PROJECT AND THESIS
Submitted by-
Debojit Sarker
Student ID: 0704015
Supervised by-
Dr. Md. Zoynul Abedin
Professor,
Department of Civil Engineering,
BUET.
Objectives:
To develop a MATLAB computer model that could produce the
soil-profile at a particular location using GPS coordinates or
chainage location.
To validate the model using known soil profile data.
To use predicted borehole log in case studies of designing
practical problems (e.g. Pile Capacity and Liquefaction).
Project Site
Jajira Approach Road of Padma Multipurpose
Bridge Project in Madaripur district
Subsurface Investigation:
• Determining the nature of soil at the site and its stratification.
• Obtaining disturbed and undisturbed soil samples for visual identification and
appropriate laboratory tests.
• Determining the depth and nature of bedrock, if and when encountered.
• Performing some in situ field tests, such as Standard Penetration Test (SPT)
• Assessing any special construction problems with respect to the existing
structure(s) nearby
• Determining the position of the R.L. & water table.
Planning for Soil Exploration
Table-1 gives guidelines for initial
planning of borehole spacing. In our
study 15 borings were conducted
within 20KM chainage at Jajira
approach road of Padma
multipurpose bridge project.
Table 1: Spacing of Borings
Position of Boreholes
APBH 05
APBH 06
APBH07
APBH08
APBH09
APBH10
APBH11
APBH12
APBH13
APBH14
APBH15
APBH16
APBH17
APBH18
APBH19
Bangladesh Geological Survey indicates that the project site Jajira of Madaripur district, in general, is
underlain by recent alluvium. The Padma superficial alluvial river deposits typically comprise normally-
consolidated, low strength compressible clays, or silts and fine sands of low density.
Applicability and Usefulness of In-situ Tests
Standard Penetration Test
The test consists of the following:
Driving the standard split-barrel sampler of dimensions a
distance of 460 mm into the soil at the bottom of the boring.
Counting the number of blows to drive the sampler the
last two 150 mm distances ( total = 300 mm) to obtain the N
number.
Using a 63.5-kg driving mass (or hammer) falling “free”
from a height of 760 mm. several hammer configurations
are available.
Standard Dimensions of Standard Split SpoonSPT arrangements
Correlations for Standard Penetration Test
Cohesive
Cohesionless
Correlations for Standard Penetration Test
Prediction of pile capacity by SPT (after Shoospasha et. at. 2013)
Correlations for Standard Penetration Test
Skin Friction of pile:
Cohesive (clay):
α Method
Qs=α*Cu*p*ΔL
Sladen (1992):
α=C * ( eff/ Cu)^0.45ϭ
C=0.5 for driven piles
Cohesionless (sand) according
to mayerhof,1976:
fav=0.02*Pa*N-avg (for high
displacement driven pile)
fav=0.01*Pa*N-avg (for low
displacement driven pile)
Qs=p*L*fav
(p=peremeter of pile)
Pile end bearing capacity:
Cohesive (clay):
(Mayerhof)
Qp=9*Cu*Ap
(Ap=area of pile tip)
Cohesionless (sand):
Meyerhof(1976)
Qp=qp * Ap
qp=0.4*Pa*N*L/D <=
4*Pa*N
(N= avg value of SPT)
For Foundation design and analysis purpose (pile foundation)
Clay:
Visic(1977)
Qp=Ap * Cu * Nc*
Nc*=4/3*(ln(Irr)
+1)+3.1416/2 +1
O'Neil & Reese (1999)
Ir=347*(Cu/Pa) - 33 <= 300
Sand:
Briaud et al. (1985)
Qp=qp*Ap
qp=19.7*Pa*(N60)^0.36
Clay:
λ method, Vijayvergiya and
focht (1972)
fav= λ*( effective avgϭ
+2*Cu)
Qs=p*L*fav
p= perimeter of pile section
Sand:
Briaud et al. (1985)
fav= 0.224*pa*(N60 avg)^0.29
Pa = atmospheric pressure=100
KN/m^2
Correlations for Standard Penetration Test
For Foundation design and analysis purpose (Seismic Soil Liquefaction)
Grain Size Distribution
Soil Type Particle Size
Range, mm
Retained on Mesh
Size/ Sieve No.
Boulder
Cobble
Gravel:
 
 
Sand:
 
 
Silt
Clay
 
 
Coarse
Medium
Fine
Coarse
Medium
Fine
 
>300
300-75
75-19
19-9.5
9.5-4.75
4.75-2.00
2.00-0.425
0.425-0.075
0.075-0.002
<0.002
12”
3”
¾”
3/8”
No. 4
No. 10
No. 40
No. 200
---
---
Engineering Classification (For particles smaller than 75mm and
based on estimated weights)
Coarse grained soils
(More than 50% of
the material
retained on No. 200
sieve (0.075 mm)
Gravels (More than
50% of coarse
fraction retained on
No. 4 sieve (4.75
mm)
Clean gravels
Less than 5% fines
Gravel with fines
More than 12% fines
Sands (over 50% of
coarse fraction
smaller than 4.75
mm)
Clean Sands
Less than 5% fines
Sands with fines
More than 12% fines
Fine grained soils
(Over 50% of the
material smaller
than 0.075 mm)
Silts & Clays
WL < 50
Inorganic
Organic
Silts & Clays
WL > 50
Inorganic
Organic
Soils of high organic origin
Particle Size Distribution of Soil
Typical sieve analysis Graph [at APBH 13]
MATLAB
MATLAB®
 is a high-level language and interactive environment for
numerical computation, visualization, and programming. Using
MATLAB, you can analyze data, develop algorithms, and create
models and applications.
The language, tools, and built-in math functions enable you to
explore multiple approaches and reach a solution faster than with
spreadsheets or traditional programming languages, such as C/C++
or Java™
.
MATLAB R2013a Win8 screenshot:
Input method for SPT profile (MS Excel
Spreadsheet):
chainage
- depth
17600 18600 19600 20100 20600 21100 21600 24100 24582 25100 25600 26600 27100 27600
1.5 4 5 5 5 6 5 2 5 5 5 5 4 6 10
3 4 5 3 3 20 5 6 17 17 3 4 7 1 12
4.5 6 6 26 16 18 33 5 10 9 13 3 2 9 11
6 10 7 27 31 12 31 24 6 10 14 11 15 5 3
7.5 11 7 31 26 28 30 19 8 11 12 13 16 18 11
9 11 8 30 15 29 9 23 11 26 16 13 11 16 12
10.5 12 2 32 17 24 12 32 12 22 14 24 18 9 32
12 17 15 33 15 21 13 35 22 24 9 23 38 14 14
13.5 15 37 32 14 20 14 20 24 18 4 19 31 19 16
15 29 29 31 26 32 11 18 23 21 5 23 14 13 21
16.5 27 30 38 24 43 23 25     7        
18 30 16 42 23 34 22 22     42        
19.5 26 21 46 22 39 21 19     25        
SPT contour profile:
Figure : SPT contour profile
from chainage 17600 [APBH 05] to 27600 [APBH 19], up to 19.5m depth
Input method for soil-profile (MS Excel
Spreadsheet):
APBH-05 APBH-06 APBH-07 APBH-08 APBH-09 APBH-10 APBH-11 APBH-12 APBH-13 APBH-14
Start End Avg
Chainage 17600 18600 19600 20100 20600 21100 21600 24100 24582 25100
Sand % Fine % Sand % Fine % Sand % Fine % Sand % Fine % Sand % Fine % Sand % Fine % Sand % Fine % Sand % Fine % Sand % Fine % Sand % Fine %
1.35 1.8 1.35 D1 86 14 92 8 94 6 90 10 86 14 94 6 15 85 18 82 8 92 14 86
2.85 3.3 3.075 D2 93 7 83 17 94 6 92 8 93 7 94 6 87 13 86 14 94 6 4 96
4.35 4.8 4.575 D3 94 6 84 16 86 14 93 7 87 13         82 18 94 6    
5.85 6.3 6.075 D4 91 9     92 8 89 11 92 8 92 8 91 9     94 6 83 17
7.35 7.82 7.585 D5     84 16     88 12 88 12 94 6 90 10 94 6 93 7 87 13
8.85 9.3 9.075 D6 87 13     87 13     88 12     91 9 95 5        
10.35 10.8 10.575 D7 88 12     89 11 91 9 87 13 90 10 92 8     88 12 2 98
11.85 12.3 12.075 D8 90 10 85 15 92 8 94 6 91 9 90 10 91 9 63 37 92 8 20 80
13.35 13.8 13.575 D9 85 15 89 11 87 13 89 11 91 9 86 14     63 37     17 83
14.85 15.3 15.075 D10 89 11 90 10 87 13 90 10 89 11 88 12     84 16 94 6 17 83
16.35 16.8 16.575 D11     92 8 90 10 92 8 90 10 90 10 84 16         10 90
17.85 18.3 18.075 D12 96 4 95 5 67 33 92 8     87 13 89 11         90 10
19.35 19.8 19.575 D13     94 6             88 12 88 12         92 8
Soil-profile
(from chainage 17600 to 27600, up to 19.5m depth)
Predicted Borehole Log
(At chainage 26100)
Location
Latitude (deg) 23.4009
Longitude (deg) 90.1735
0 0 cohesive very soft N/A 0 0
1.5 5 cohesive soft N/A 46.2 23
3 6 cohesive soft N/A 48.8 42
4.5 3 cohesive soft N/A 39.9 54
6 13 cohesionless medium 0.63 N/A 66
7.5 15 cohesionless medium 0.64 N/A 79
9 12 cohesionless medium 0.55 N/A 91
10.5 21 cohesionless dense 0.7 N/A 103
12 31 cohesionless dense 0.83 N/A 115
13.5 25 cohesionless dense 0.72 N/A 128
15 19 cohesionless medium 0.61 N/A 140
16.5
18
19.5
effectivestress
γ (kN/m^2) 15
γ sat
(kN/m^2)
18
RelativeDensity
UndrainedShear
Strength(kPa)
GraphicLog
Depth(meter)
SampleType
SampleNumber
BlowCounts
(blows/foot)
SoilType
Consistency
Groundwater Depth (m):
2.5
Elevation(m) PWD:
5.804
Total Depth of Boring:
15
Project Number:Project: Client: Boring No.
Address: Madaripur
Position:
Chainage: 26100
0
5
6
3
13
15
12
21
31
25
19
0
1.5
3
4.5
6
7.5
9
10.5
12
13.5
15
16.5
18
19.5
The ultimate load-carrying
capacity Qu of a pile is given
by the equation :
Qu = Qp +Qs
Where ,
Qp = Load carrying capacity
of the pile point
Qs = Frictional resistance
(skin friction) derived from
the soil-pile interface.
Allowable pile capacity,
Qa = Qu/ F.S.
Estimating pile capacity (at chainage 21100)
Liquefaction Potential Index (at chainage 21100)
Summary
  The developed MATLAB model can predict an intermittent borehole log with reasonable
accuracy.
 The developed model gives SPT contours that may be used to identify the soil spatial
stiffness.
 The program yields grain size surface plots that may be used to identify the soil profile.
 The estimation of pile capacity suggests that the predicted borehole estimates the SPT
values well.
 The variation in liquefaction potential suggests that the model be refined for grain size
estimation.
Thank You

More Related Content

DOCX
Results of ETABS on HIGH RISE RESIDENTIAL BUILDINGS
PPT
Presentation Toyota
PDF
083 infra finalanupam
PDF
Modeling a Magnetic Stirrer Coupling for the Dispersion of Particulate Materials
PDF
透明結構物形貌量測技術發展趨勢
PDF
5 economics
PDF
Presentation 1 4 ginanger
PPTX
Frequency-Dependent Rubber Bushing Model
Results of ETABS on HIGH RISE RESIDENTIAL BUILDINGS
Presentation Toyota
083 infra finalanupam
Modeling a Magnetic Stirrer Coupling for the Dispersion of Particulate Materials
透明結構物形貌量測技術發展趨勢
5 economics
Presentation 1 4 ginanger
Frequency-Dependent Rubber Bushing Model

Viewers also liked (6)

PDF
PPT
Matlab practical and lab session
PDF
Advanced MATLAB Tutorial for Engineers & Scientists
PPT
Matlab Basic Tutorial
PDF
Introduction to Matlab
PPTX
Matlab Introduction
Matlab practical and lab session
Advanced MATLAB Tutorial for Engineers & Scientists
Matlab Basic Tutorial
Introduction to Matlab
Matlab Introduction
Ad

Similar to MATLAB Modeling of SPT and Grain Size Data in Producing Soil Profile (20)

PDF
BW Fittings Brochure
PPTX
RESPONSE SURFACE METHODOLOGY PRESENTATION.pptx
PPTX
Capitulo 02 grupo 01
PDF
DB Cable
PPTX
Internship at HONDA MOTOR CYCLE SCOOTER INDIA LIMITED
PPTX
Concrete Mix design
PDF
IRJET- Geotechnical Investigation of Different Soil Samples using Regression ...
PPTX
Adaptive Aperture Commissioning Presentation at 57th PTCOG
PDF
Consolidated Drained (CD) Triaxial Test.pdf
 
PDF
Robust 03015 process RGray apex15
PPTX
ASSESSMENT OF THE BEARING CAPACITY FOR A SHALLOW FOUNDATION_ A MULTI_DETERMIN...
PDF
Christopher Kelley - National Rotor Testbed Design
PDF
TRAC Project Workshop 2 Presentation 2
PPTX
Site investigation for multistorey building
PDF
Low Voltage Flexible Reeling Cables Prysmian Protolon Cordaflex Cables
PPTX
Standard_Penetration_Test__SPT_.pptx
PPTX
Long term performance efficiency of MLCS under climatic
PDF
MAIN CANOPY BAJAJ HR(22.09.2016)
PDF
Sachpazis_PILE Analysis_Design to EC2
DOCX
Site surveying-report-2
BW Fittings Brochure
RESPONSE SURFACE METHODOLOGY PRESENTATION.pptx
Capitulo 02 grupo 01
DB Cable
Internship at HONDA MOTOR CYCLE SCOOTER INDIA LIMITED
Concrete Mix design
IRJET- Geotechnical Investigation of Different Soil Samples using Regression ...
Adaptive Aperture Commissioning Presentation at 57th PTCOG
Consolidated Drained (CD) Triaxial Test.pdf
 
Robust 03015 process RGray apex15
ASSESSMENT OF THE BEARING CAPACITY FOR A SHALLOW FOUNDATION_ A MULTI_DETERMIN...
Christopher Kelley - National Rotor Testbed Design
TRAC Project Workshop 2 Presentation 2
Site investigation for multistorey building
Low Voltage Flexible Reeling Cables Prysmian Protolon Cordaflex Cables
Standard_Penetration_Test__SPT_.pptx
Long term performance efficiency of MLCS under climatic
MAIN CANOPY BAJAJ HR(22.09.2016)
Sachpazis_PILE Analysis_Design to EC2
Site surveying-report-2
Ad

Recently uploaded (20)

PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Sustainable Sites - Green Building Construction
PPTX
Internet of Things (IOT) - A guide to understanding
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
Digital Logic Computer Design lecture notes
PPTX
additive manufacturing of ss316l using mig welding
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
PPTX
Current and future trends in Computer Vision.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
Artificial Intelligence
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
UNIT 4 Total Quality Management .pptx
Sustainable Sites - Green Building Construction
Internet of Things (IOT) - A guide to understanding
Model Code of Practice - Construction Work - 21102022 .pdf
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Digital Logic Computer Design lecture notes
additive manufacturing of ss316l using mig welding
Lecture Notes Electrical Wiring System Components
CYBER-CRIMES AND SECURITY A guide to understanding
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
Current and future trends in Computer Vision.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Operating System & Kernel Study Guide-1 - converted.pdf
Artificial Intelligence

MATLAB Modeling of SPT and Grain Size Data in Producing Soil Profile

  • 1. MATLAB MODELLING OF SPT AND GRAIN SIZE DATA IN PRODUCING SOIL PROFILE CE 400: PROJECT AND THESIS Submitted by- Debojit Sarker Student ID: 0704015 Supervised by- Dr. Md. Zoynul Abedin Professor, Department of Civil Engineering, BUET.
  • 2. Objectives: To develop a MATLAB computer model that could produce the soil-profile at a particular location using GPS coordinates or chainage location. To validate the model using known soil profile data. To use predicted borehole log in case studies of designing practical problems (e.g. Pile Capacity and Liquefaction).
  • 3. Project Site Jajira Approach Road of Padma Multipurpose Bridge Project in Madaripur district
  • 4. Subsurface Investigation: • Determining the nature of soil at the site and its stratification. • Obtaining disturbed and undisturbed soil samples for visual identification and appropriate laboratory tests. • Determining the depth and nature of bedrock, if and when encountered. • Performing some in situ field tests, such as Standard Penetration Test (SPT) • Assessing any special construction problems with respect to the existing structure(s) nearby • Determining the position of the R.L. & water table.
  • 5. Planning for Soil Exploration Table-1 gives guidelines for initial planning of borehole spacing. In our study 15 borings were conducted within 20KM chainage at Jajira approach road of Padma multipurpose bridge project. Table 1: Spacing of Borings
  • 6. Position of Boreholes APBH 05 APBH 06 APBH07 APBH08 APBH09 APBH10 APBH11 APBH12 APBH13 APBH14 APBH15 APBH16 APBH17 APBH18 APBH19 Bangladesh Geological Survey indicates that the project site Jajira of Madaripur district, in general, is underlain by recent alluvium. The Padma superficial alluvial river deposits typically comprise normally- consolidated, low strength compressible clays, or silts and fine sands of low density.
  • 7. Applicability and Usefulness of In-situ Tests
  • 8. Standard Penetration Test The test consists of the following: Driving the standard split-barrel sampler of dimensions a distance of 460 mm into the soil at the bottom of the boring. Counting the number of blows to drive the sampler the last two 150 mm distances ( total = 300 mm) to obtain the N number. Using a 63.5-kg driving mass (or hammer) falling “free” from a height of 760 mm. several hammer configurations are available. Standard Dimensions of Standard Split SpoonSPT arrangements
  • 9. Correlations for Standard Penetration Test Cohesive Cohesionless
  • 10. Correlations for Standard Penetration Test Prediction of pile capacity by SPT (after Shoospasha et. at. 2013)
  • 11. Correlations for Standard Penetration Test Skin Friction of pile: Cohesive (clay): α Method Qs=α*Cu*p*ΔL Sladen (1992): α=C * ( eff/ Cu)^0.45ϭ C=0.5 for driven piles Cohesionless (sand) according to mayerhof,1976: fav=0.02*Pa*N-avg (for high displacement driven pile) fav=0.01*Pa*N-avg (for low displacement driven pile) Qs=p*L*fav (p=peremeter of pile) Pile end bearing capacity: Cohesive (clay): (Mayerhof) Qp=9*Cu*Ap (Ap=area of pile tip) Cohesionless (sand): Meyerhof(1976) Qp=qp * Ap qp=0.4*Pa*N*L/D <= 4*Pa*N (N= avg value of SPT) For Foundation design and analysis purpose (pile foundation) Clay: Visic(1977) Qp=Ap * Cu * Nc* Nc*=4/3*(ln(Irr) +1)+3.1416/2 +1 O'Neil & Reese (1999) Ir=347*(Cu/Pa) - 33 <= 300 Sand: Briaud et al. (1985) Qp=qp*Ap qp=19.7*Pa*(N60)^0.36 Clay: λ method, Vijayvergiya and focht (1972) fav= λ*( effective avgϭ +2*Cu) Qs=p*L*fav p= perimeter of pile section Sand: Briaud et al. (1985) fav= 0.224*pa*(N60 avg)^0.29 Pa = atmospheric pressure=100 KN/m^2
  • 12. Correlations for Standard Penetration Test For Foundation design and analysis purpose (Seismic Soil Liquefaction)
  • 13. Grain Size Distribution Soil Type Particle Size Range, mm Retained on Mesh Size/ Sieve No. Boulder Cobble Gravel:     Sand:     Silt Clay     Coarse Medium Fine Coarse Medium Fine   >300 300-75 75-19 19-9.5 9.5-4.75 4.75-2.00 2.00-0.425 0.425-0.075 0.075-0.002 <0.002 12” 3” ¾” 3/8” No. 4 No. 10 No. 40 No. 200 --- --- Engineering Classification (For particles smaller than 75mm and based on estimated weights) Coarse grained soils (More than 50% of the material retained on No. 200 sieve (0.075 mm) Gravels (More than 50% of coarse fraction retained on No. 4 sieve (4.75 mm) Clean gravels Less than 5% fines Gravel with fines More than 12% fines Sands (over 50% of coarse fraction smaller than 4.75 mm) Clean Sands Less than 5% fines Sands with fines More than 12% fines Fine grained soils (Over 50% of the material smaller than 0.075 mm) Silts & Clays WL < 50 Inorganic Organic Silts & Clays WL > 50 Inorganic Organic Soils of high organic origin
  • 14. Particle Size Distribution of Soil Typical sieve analysis Graph [at APBH 13]
  • 15. MATLAB MATLAB®  is a high-level language and interactive environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java™ .
  • 16. MATLAB R2013a Win8 screenshot:
  • 17. Input method for SPT profile (MS Excel Spreadsheet): chainage - depth 17600 18600 19600 20100 20600 21100 21600 24100 24582 25100 25600 26600 27100 27600 1.5 4 5 5 5 6 5 2 5 5 5 5 4 6 10 3 4 5 3 3 20 5 6 17 17 3 4 7 1 12 4.5 6 6 26 16 18 33 5 10 9 13 3 2 9 11 6 10 7 27 31 12 31 24 6 10 14 11 15 5 3 7.5 11 7 31 26 28 30 19 8 11 12 13 16 18 11 9 11 8 30 15 29 9 23 11 26 16 13 11 16 12 10.5 12 2 32 17 24 12 32 12 22 14 24 18 9 32 12 17 15 33 15 21 13 35 22 24 9 23 38 14 14 13.5 15 37 32 14 20 14 20 24 18 4 19 31 19 16 15 29 29 31 26 32 11 18 23 21 5 23 14 13 21 16.5 27 30 38 24 43 23 25     7         18 30 16 42 23 34 22 22     42         19.5 26 21 46 22 39 21 19     25        
  • 18. SPT contour profile: Figure : SPT contour profile from chainage 17600 [APBH 05] to 27600 [APBH 19], up to 19.5m depth
  • 19. Input method for soil-profile (MS Excel Spreadsheet): APBH-05 APBH-06 APBH-07 APBH-08 APBH-09 APBH-10 APBH-11 APBH-12 APBH-13 APBH-14 Start End Avg Chainage 17600 18600 19600 20100 20600 21100 21600 24100 24582 25100 Sand % Fine % Sand % Fine % Sand % Fine % Sand % Fine % Sand % Fine % Sand % Fine % Sand % Fine % Sand % Fine % Sand % Fine % Sand % Fine % 1.35 1.8 1.35 D1 86 14 92 8 94 6 90 10 86 14 94 6 15 85 18 82 8 92 14 86 2.85 3.3 3.075 D2 93 7 83 17 94 6 92 8 93 7 94 6 87 13 86 14 94 6 4 96 4.35 4.8 4.575 D3 94 6 84 16 86 14 93 7 87 13         82 18 94 6     5.85 6.3 6.075 D4 91 9     92 8 89 11 92 8 92 8 91 9     94 6 83 17 7.35 7.82 7.585 D5     84 16     88 12 88 12 94 6 90 10 94 6 93 7 87 13 8.85 9.3 9.075 D6 87 13     87 13     88 12     91 9 95 5         10.35 10.8 10.575 D7 88 12     89 11 91 9 87 13 90 10 92 8     88 12 2 98 11.85 12.3 12.075 D8 90 10 85 15 92 8 94 6 91 9 90 10 91 9 63 37 92 8 20 80 13.35 13.8 13.575 D9 85 15 89 11 87 13 89 11 91 9 86 14     63 37     17 83 14.85 15.3 15.075 D10 89 11 90 10 87 13 90 10 89 11 88 12     84 16 94 6 17 83 16.35 16.8 16.575 D11     92 8 90 10 92 8 90 10 90 10 84 16         10 90 17.85 18.3 18.075 D12 96 4 95 5 67 33 92 8     87 13 89 11         90 10 19.35 19.8 19.575 D13     94 6             88 12 88 12         92 8
  • 20. Soil-profile (from chainage 17600 to 27600, up to 19.5m depth)
  • 21. Predicted Borehole Log (At chainage 26100) Location Latitude (deg) 23.4009 Longitude (deg) 90.1735 0 0 cohesive very soft N/A 0 0 1.5 5 cohesive soft N/A 46.2 23 3 6 cohesive soft N/A 48.8 42 4.5 3 cohesive soft N/A 39.9 54 6 13 cohesionless medium 0.63 N/A 66 7.5 15 cohesionless medium 0.64 N/A 79 9 12 cohesionless medium 0.55 N/A 91 10.5 21 cohesionless dense 0.7 N/A 103 12 31 cohesionless dense 0.83 N/A 115 13.5 25 cohesionless dense 0.72 N/A 128 15 19 cohesionless medium 0.61 N/A 140 16.5 18 19.5 effectivestress γ (kN/m^2) 15 γ sat (kN/m^2) 18 RelativeDensity UndrainedShear Strength(kPa) GraphicLog Depth(meter) SampleType SampleNumber BlowCounts (blows/foot) SoilType Consistency Groundwater Depth (m): 2.5 Elevation(m) PWD: 5.804 Total Depth of Boring: 15 Project Number:Project: Client: Boring No. Address: Madaripur Position: Chainage: 26100 0 5 6 3 13 15 12 21 31 25 19 0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15 16.5 18 19.5
  • 22. The ultimate load-carrying capacity Qu of a pile is given by the equation : Qu = Qp +Qs Where , Qp = Load carrying capacity of the pile point Qs = Frictional resistance (skin friction) derived from the soil-pile interface. Allowable pile capacity, Qa = Qu/ F.S. Estimating pile capacity (at chainage 21100)
  • 23. Liquefaction Potential Index (at chainage 21100)
  • 24. Summary   The developed MATLAB model can predict an intermittent borehole log with reasonable accuracy.  The developed model gives SPT contours that may be used to identify the soil spatial stiffness.  The program yields grain size surface plots that may be used to identify the soil profile.  The estimation of pile capacity suggests that the predicted borehole estimates the SPT values well.  The variation in liquefaction potential suggests that the model be refined for grain size estimation.