SlideShare a Scribd company logo
Published by QualityDigest.com on 01/01/1999 pg. 1
Using Microsoft Excel for Weibull Analysis
by
William Dorner
Published by QualityDigest.com on 01/01/1999 pg. 2
Many people use Microsoft Excel on a daily basis. Yet few people realize the extent of Excel's
analytical capabilities. Fewer still put these capabilities to work for process improvement, product
improvement and profit. Most Excel users are aware of the common formulas and charts. But with
some creativity, users can produce tools like control charts, Pareto charts and box-and-whisker plots
(see "Using Excel for Data Analysis," Quality Digest, October 1997). And with a little guidance, users
can employ more advanced statistical methods with Excel. This article presents a how-to approach
for one such advanced technique-Weibull analysis.
You haven't turned the page yet? Those of you who remain probably fall under one of two categories:
those familiar with reliability data analysis, and Excel enthusiasts who are curious to learn one more
way to exploit this versatile software. I predict readers in both groups will be glad they stuck around.
For the uninitiated, Weibull analysis is a method for modeling data sets containing values greater
than zero, such as failure data. Weibull analysis can make predictions about a product's life, compare
the reliability of competing product designs, statistically establish warranty policies or proactively
manage spare parts inventories, to name just a few common industrial applications. In academia,
Weibull analysis has modeled such diverse phenomena as the length of labor strikes, AIDS mortality
and earthquake probabilities.
Learning by example
Let's ignore the formulas for now and start by looking at an example of Weibull analysis in action.
Imagine that you work for a toy company that wants to compare the reliability of two proposed
designs for a jack-in-the-box spring housing. The desired reliability at 400,000 cycles is 0.90. In
other words, the toy company would like 90 percent of the spring housings to survive at least
400,000 cycles. This reliability goal is expressed mathematically as R(400,000) 0.90. Ten units
were assembled with each of the two housing designs (Design A and Design B). These 20 units were
tested until their spring housings failed.
Published by QualityDigest.com on 01/01/1999 pg. 3
Figure 1 shows the number of cycles before failure for each item
tested.
The data in Figure 1 don't clearly indicate whether either design
meets the desired reliability goal. Both designs had at least one
failure before 400,000 cycles, yet clearly the average number of
cycles before failure exceeds 400,000 for both designs. A
comparison of sample averages using a Student's t test reveals no
statistical difference between the average cycles for Design A and
the average cycles for Design B (p-value = 0.965). But as a simple measure of central tendency, the
sample average gives no information about the spread or shape of the distribution of failure times.
Could the two designs' averages be the same, but their reliability be quite different? How can you be
more scientific about comparing the reliability of the two proposed designs?
Preparing to analyze
Modeling the data using Weibull analysis requires some preparation. For now, focus on the data
from Design A.
1. Open Excel and into cell A1, type the label: Design A Cycles. Enter the failure data for Design A
into cells A2:A11. Highlight cells A1:A11 and click on the Sort Ascending button to order the failure
cycles from lowest to highest.
2. In cell B1, type the label: Rank. In cells B2:B11, type the integers 1-10 (see Figure 2).
3. In Column C, put an estimate of the proportion of the population that will fail by the number of
cycles listed in Column A. This can be accomplished using several different methods, the most
Published by QualityDigest.com on 01/01/1999 pg. 4
common of which is median ranks. In cell C1, type the label: Median Ranks. In cell C2, enter the
formula: =((B2-0.3)/(10+0.4)). Next, copy cell C2 down through cell C11. Note that in the formula
for median ranks, the 10 in the denominator is the total number of Design A units tested.
4. Type into cell D1 the label: 1/(1-Median Rank). Then, in D2, enter the formula: =1/(1-C2). Copy
cell D2 down through cell D11.
5. Into cell E1, enter the label: ln(ln(1/(1-Median Rank))). In cell E2, type the formula: =LN(LN(D2)).
Copy cell E2 down through cell E11.
6. Finally, you'll need to transform the Cycles data. In cell F1, type the label: ln(Design A Cycles). In
cell F2, type the formula: =LN(A2). Copy cell F2 down through cell F11.
7. Again, compare your spreadsheet with Figure 2. After you confirm that everything is correct, save
your workbook.
Estimating Weibull Parameters
Why can we expect the graph of the ln(Cycles) vs. the transformed median ranks to plot as a straight
line?
With some effort, the Weibull cumulative distribution function can be transformed so that it appears
in the familiar form of a straight line:Y=mX+b: Here's how:
Comparing this equation with the simple equation for a line, we see that the left side of the equation
corresponds to Y, lnx corresponds to X,? corresponds to m, and - ln corresponds to b. Thus, when
we perform the linear regression, the estimate for the Weibull parameter comes directly from the
slope of the line. The estimate for the? parameter must be calculated as follows:
Published by QualityDigest.com on 01/01/1999 pg. 5
Fitting a line to the data
At this point, you're ready to perform the Weibull
analysis. The beauty of this method is that you can expect
to see a straight line when you plot the data in Column E
vs. Column F.2 By performing a simple linear regression,
you can obtain parameter estimates that will enable you
to make inferences about Design A's reliability.3
First, be sure that the Analysis ToolPak Add-In is loaded
into Excel. From the menu bar, select Tools . Add-Ins.
Click on the checkbox for Analysis ToolPak, and then click
OK.
To perform the simple linear regression:
1. While on the page you just created, from the menu bar,
select Tools and Data Analysis. Scroll down and highlight
"Regression" and click OK. A data-entry window will pop
up.
2. Under "Input Y Range," type: $E$1:$E$11.
3. For "Input X Range," type: $F$1:$F$11.
4. Click to add a checkmark in the box for "Labels."
5. For "Output Options," select "New Worksheet Ply."
6. Click to add a checkmark in the box for "Line Fit Plots."
7. Click OK. Excel will perform the regression and place
the output on a new worksheet.
Reformatting the output
Before interpreting the output, you'll need to do some tidying up. The columns do not automatically
adjust to their optimal widths. To do this, within the worksheet that you just created, click on column
Estimating Weibull Parameters
Why can we expect the graph of the
ln(Cycles) vs. the transformed median ranks
to plot as a straight line?
With some effort, the Weibull cumulative
distribution function can be transformed so
that it appears in the familiar form of a
straight line: 𝑌 = 𝑚𝑋 + 𝑏. Here's how:
Comparing this equation with the simple
equation for a line, we see that the left side
of the equation corresponds to Y, ln(x)
corresponds to X, corresponds to m, and -
ln corresponds to b. Thus, when we
perform the linear regression, the estimate
for the Weibull parameter comes directly
from the slope of the line. The estimate for
the parameter must be calculated as
follows:
Published by QualityDigest.com on 01/01/1999 pg. 6
heading A and drag to column heading I. Now double-click on the boundary to the right of any
column heading. Your table should look similar to Figure 3.
Now scroll to the right and click once on the graph. Stretch the graph by clicking and dragging on
the handle in the lower right corner. From the menu bar, with the graph still selected, click View .
Chart Window. Reformat the graph according to your preferences. It's best to use a solid line and no
point markers for the Predicted line and delete the legend. Also, move the horizontal axis by clicking
on the vertical axis with the right mouse button, selecting "Format Axis," clicking on the "Scale" tab
and changing the "Value (X) Axis Crosses At" to -3 (see Figure 4).
Published by QualityDigest.com on 01/01/1999 pg. 7
In cell A19, type the label: Beta (or Shape Parameter)=. In cell B19, type the formula: =B18. In cell
A20, type the label: Alpha (or Characteristic Life)=. In cell B20, type the formula: =EXP(-B17/B18).
Your results should closely resemble Figure 3. For Design A, b=4.25 and a=693,380.4
An identical analysis using the Design B data yields a = 2.53 and an =723,105.
Interpreting the results
The Weibull shape parameter, called , indicates whether the failure rate is increasing, constant or
decreasing. A <1.0 indicates that the product has a decreasing failure rate. This scenario is typical
of "infant mortality" and indicates that the product is failing during its "burn-in" period. A =1.0
indicates a constant failure rate. Frequently, components that have survived burn-in will
subsequently exhibit a constant failure rate. A >1.0 indicates an increasing failure rate. This is
typical of products that are wearing out. Such is the case with the spring housings-both designs A
and B have values much higher than 1.0. The housings fail due to fatigue, i.e., they wear out.
The Weibull characteristic life, called, is a measure of the scale, or spread, in the distribution of data.
It so happens that equals the number of cycles at which 63.2 percent of the product has failed. In
other words, for a Weibull distribution R( =0.368, regardless of the value of . For example, with
Design A housings, about 37 percent of the housings should survive at least 693,380 cycles.
While this is interesting, it still doesn't reveal whether either jack-in-the-box design meets the
reliability goal of R(400,000) 0.90. For this, you need to know the formula for reliability assuming a
Weibull distribution:
where? x is the time (or number of cycles) until failure.
The formula looks intimidating, but by simply plugging in the known values for , and x, you can
obtain the desired reliability estimate.
Published by QualityDigest.com on 01/01/1999 pg. 8
Computing the above formulas can be confusing and laborious using a calculator. Besides, you can't
visualize or compare the reliability of each design for multiple cycle values. Excel provides a better
way.
Creating a reliability calculator worksheet
1. From your Design A regression output worksheet, highlight and copy cells A19:B20. Activate a new
worksheet ply and locate the cursor in cell A1. Select Edit . Paste Special, click on Values, and click
OK. This will paste your and labels and values into cells A1:B2 of the new worksheet. Resize the
columns as needed.
2. In cell D1, type the label: Cycles.
3. In cells D2:D11, type the values 100,000-1 million in increments of 100,000.
4. In cell E1, type the label: Survival Probability.
5. In cell E2, type the formula: =WEIBULL(D2,$B$1,$B$2,TRUE).
6. Copy cell E2 down through cell E11.
7. In cell F1, type the label: Reliability.
8. In cell F2, type the formula: =1-E2.
9. Copy cell F2 down through cell F11.
10. Reformat cells as desired. Compare your worksheet with the top portion of? Figure 5.
Published by QualityDigest.com on 01/01/1999 pg. 9
You've now created a Weibull reliability calculator. You supply the , , and cycles of interest, and
Excel calculates the reliabilities for you. By merely changing the inputs in cells B1, B2 and D2:D11,
you can get reliability estimates for any Weibull distribution of interest.
Likewise, sometimes you'll need to compute the number of cycles (or time to failure) corresponding
to a certain reliability level. For example, 99 percent of Design A housings will have failed by how
many cycles?
Unfortunately, Excel doesn't have an inverse Weibull function. To perform this calculation (called
solving for "critical values"), follow these steps:
1. On your Weibull reliability calculator worksheet, type in the label and values as shown in cells
C13:C18 in Figure 5.
2. In cell D13, type the label: Cycles.
3. In cell D14, enter the formula: =$B$2*(-LN(C14))^(1/$B$1).
4. Copy cell D14 down through D18.
We find that for Design A of the jack-in-the-box, R(992,975)=0.01, or 99 percent of the housings will
have failed by 992,975 cycles.
Published by QualityDigest.com on 01/01/1999 pg. 10
Creating a survival graph
Perhaps the best way to compare the reliability of Design A with
that of Design B is by using a survival graph. This line graph
depicts the survival probabilities of each housing type at various
numbers of cycles. Using the formulas discussed above, enter the
data into a new worksheet (see Figure 6). Use the Chart Wizard to
construct an X-Y scatterplot. Select line styles of your choice and
delete the point markers. The resulting survival graph looks like
Figure 7.
Figure 7 allows a comprehensive comparison of the two designs'
survival rates. Note that at 400,000 cycles, about 90 percent of
Design A housings have survived, whereas only about 80 percent of
Design B housings have survived. Therefore, for the stated
reliability goal of R(400,000) 0.90, Design A is clearly superior.
However, about 10 percent of Design B housings will survive to 1
million cycles, vs. fewer than 1 percent of Design A. This graph
clearly shows the importance of defining the reliability goal in order to choose the more desirable
design.
A warranty example
Having settled upon Design A as the superior alternative, suppose your company plans to offer a
warranty on the jack-in-the-box. Of course, you would want to allocate suitable funds to honor the
warranty, so as not to be blindsided by unexpected warranty costs. You've decided to set the
warranty period so that no more than 1 percent of the units sold would fail before the warranty
period expires. How can you determine what length of warranty to offer?
Published by QualityDigest.com on 01/01/1999 pg. 11
The established Weibull model shows 99 percent of the housings should survive at least 235,056
cycles (see Figure 5). Market research shows that a heavily used jack-in-the-box is cycled 100 times
per day. We find that 235,056 cycles equates to about 6.4 years of use.
Armed with this information, and knowing that the competition only offers a two-year warranty on
its jack-in-the-boxes, your company might choose to be conservative and offer a five-year warranty.
This would ensure domination of the competition from a marketing standpoint, yet still allow for
warranty costs to stay at or below the desired levels.
The above example is somewhat simplistic. Interested readers can find more sophisticated
illustrations of warranty strategy using Weibull analysis in academic articles, such as Jayprakash
Patankar and Amitava Mitra's "Effects of Warranty Execution on Warranty Reserve Costs"
(Management Science, 1995).
A brief statistics overview
Weibull analysis involves fitting a data set to the following cumulative distribution function (cdf):5
?
Confusion has arisen in the past due to the lack of standardized nomenclature for the Weibull cdf. Its
creator, Waloddi Weibull, himself published multiple versions of this formula using different
Published by QualityDigest.com on 01/01/1999 pg. 12
nomenclatures. Arthur Hallinan Jr. provides an excellent history of the various forms of the Weibull
distribution in "A Review of the Weibull Distribution" (Journal of Quality Technology, 1993).
The format above is the most commonly accepted one. Unfortunately, in Excel, the "Help" screen for
the "=WEIBULL" function gives the formula with the and parameters reversed (i.e., the
characteristic life is labeled and the shape parameter is labeled).
Conclusion
The Weibull distribution's strength is its versatility. Depending on the parameters' values, the
Weibull distribution can approximate an exponential, a normal or a skewed distribution.
The Weibull distribution's virtually limitless versatility is matched by Excel's countless capabilities.
An astute data analyst who understands the theory behind a given analysis can often get results from
Excel that others might assume require specialized statistical software. With Excel, Weibull analysis
lies well within reach for most engineers with a statistics background.
For more information
The Excel file used in this article and an explanation of estimating Weibull parameters are available
from our Web site at www.qualitydigest.com/jan99/html/weibull.html.
Notes
1. For simplicity, this article deals with complete failure data, i.e., all samples were tested until they
failed. In practice, reliability data analysis frequently involves censored data, or samples for which,
for one reason or another, failure times are unknown. Often, tests are suspended before all samples
fail. Or perhaps items may fail due to a cause other than the one being studied.
The issues involved in analyzing and interpreting censored data are complex. Improper analysis of
censored data can yield misleading results, which Margaret Mackisack and Ronald Stillman point
out in "A Cautionary Tale About Weibull Analysis" (IEEE Transactions on Reliability, 1996). For
further technical details about analyzing censored life data, readers also can consult Wayne Nelson's
book Applied Life Data Analysis (John Wiley & Sons, 1982) or William Meeker and Luis Escobar's
book Statistical Methods for Reliability Data (John Wiley & Sons, 1998).
2. For a full explanation of why you can expect a straight line, see this article at our Web site:
www.qualitydigest.com/jan99/html/weibull.html .
Published by QualityDigest.com on 01/01/1999 pg. 13
3. Many methods exist for estimating Weibull distribution parameters from a set of data. This article
uses the method called probability plotting. Readers interested in other methods, such as maximum
likelihood estimation or hazard plotting, should consult Nelson's book, Meeker and Escobar's book
or Bryan Dodson's book Weibull Analysis with Software (ASQ Quality Press, 1994).
4. Some software packages may give slightly different parameter estimates than the ones in this
article. That is because these applications regress the transformed median ranks (Y) on the
transformed lifetimes (X) rather than vice versa. "Simulation studies show that Y on X regression
produces almost double the bias in the estimation of the shape parameter as the X on Y regression,"
according to Dodson. Moreover, the universal convention for displaying a Weibull probability plot is
to depict "ln(lifetime)" on the horizontal axis. The regression method presented in this article
automatically generates the plot in this standard format.
5. The type of Weibull distribution discussed in this article is called the two-parameter Weibull
distribution. This simple form is adequate for a majority of Weibull analysis scenarios. However, if
the transformed failure data plot has a curved rather than a straight line appearance, or if is found
to be greater than 6.0, then a third parameter may be needed to adequately model the data. The third
parameter, included in the aptly named three-parameter Weibull distribution, effectively shifts the
entire distribution to the right. This location parameter is most commonly called [𝜸] (the Greek letter
gamma). In practice, [𝜸] can be interpreted as the earliest possible time at which failure may occur.
Of course, [𝜸] may never be larger than the value of the earliest failure from the data set. Readers
who encounter a curved regression plot or a value greater than 6.0 should consult Hallinan's
article or John McCool's article "Inference on the Weibull Location Parameter" (Journal of Quality
Technology, 1998) for guidance on fitting a three-parameter Weibull model.
ABOUT THE AUTHOR
William W. Dorner
William W. Dorner is Manager, Global Reliability & Compliance Testing at Allegion, PLC in
Indianapolis, Indiana. He is a Certified Quality Engineer and a member of ASQ and ASA.
Slight edits by Melvin Carter

More Related Content

PDF
Θέματα πανελληνίων στην χημεία 2017
PPSX
2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ
PDF
Επαναληπτικό διαγώνισμα μέχρι το Διαφορικό Λογισμό 2020
PPT
Οδηγός δημοσίευσης επιστημονικών εργασιών
PPTX
Chapter 7(documnet databse termininology) no sql for mere mortals
PDF
(νεο) ιδιότητες συναρτήσεων προτεινόμενες ασκήσεις
PDF
ΑΕΠΠ - μάθημα 27
PPTX
Ενσωμάτωση και CSS
Θέματα πανελληνίων στην χημεία 2017
2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ
Επαναληπτικό διαγώνισμα μέχρι το Διαφορικό Λογισμό 2020
Οδηγός δημοσίευσης επιστημονικών εργασιών
Chapter 7(documnet databse termininology) no sql for mere mortals
(νεο) ιδιότητες συναρτήσεων προτεινόμενες ασκήσεις
ΑΕΠΠ - μάθημα 27
Ενσωμάτωση και CSS

What's hot (12)

PDF
Φύλλο εργασίας για HTML & CSS
PDF
διαγώνισμα θερμοχημεία χημική κινητική
PPT
Python Κεφ. 1.6.1 Πίνακες
PDF
Συστήματα Ψηφιακών Ηλεκτρονικών Θεωρία ΚΕΦ 11
PDF
Table of contents [data structure and algorithmic thinking with python]
PPTX
Time series analysis
PDF
ΑΕΠΠ: 22ο Φύλλο Ασκήσεων
PPTX
ΝΕΟΙ ΚΑΙ ΒΙΝΤΕΟΠΑΙΧΝΙΔΙΑ
PDF
Στατιστική - Διαφάνειες - Μάθημα 3ο
PDF
Λίστες & Συναρτήσεις στην Python
PPT
Εισαγωγή στις αρχές της επιστήμης των ΗΥ Κεφ 2 2 7_3
PPTX
2.2.7.2 δομή ακολουθίας
Φύλλο εργασίας για HTML & CSS
διαγώνισμα θερμοχημεία χημική κινητική
Python Κεφ. 1.6.1 Πίνακες
Συστήματα Ψηφιακών Ηλεκτρονικών Θεωρία ΚΕΦ 11
Table of contents [data structure and algorithmic thinking with python]
Time series analysis
ΑΕΠΠ: 22ο Φύλλο Ασκήσεων
ΝΕΟΙ ΚΑΙ ΒΙΝΤΕΟΠΑΙΧΝΙΔΙΑ
Στατιστική - Διαφάνειες - Μάθημα 3ο
Λίστες & Συναρτήσεις στην Python
Εισαγωγή στις αρχές της επιστήμης των ΗΥ Κεφ 2 2 7_3
2.2.7.2 δομή ακολουθίας
Ad

Viewers also liked (20)

PDF
We just had a failure will weibull analysis help
PDF
Using microsoft excel for weibull analysis
PDF
An introduction to weibull analysis
PDF
デブサミ2014【13-E-3】クラウド時代の環境構築・デプロイ自動化戦略
PPT
Technology Tools for Writing
PPTX
Windows と leopard
PPTX
Learn to do Primary Market Research: Interviews and Surveys
PDF
デブサミ東北Lt「itで日本を元気に!」
PPT
Vestia en Governance of Governance en Vestia 29-2-2012
PPTX
Desenmascarando los mitos de gestión/ Debunking Management Myths
PDF
CAS 2 Treball
PPSX
PPTX
PPT
Malmberg en Beeld en Geluid 070411
PPT
Duurzaam Inkopen - Rijksgebouwendienst
PDF
Configuring windows 7 to provide secure wireless access point services to wi fi
PPTX
Organizing training 12052013
PPTX
Access to public sector information
We just had a failure will weibull analysis help
Using microsoft excel for weibull analysis
An introduction to weibull analysis
デブサミ2014【13-E-3】クラウド時代の環境構築・デプロイ自動化戦略
Technology Tools for Writing
Windows と leopard
Learn to do Primary Market Research: Interviews and Surveys
デブサミ東北Lt「itで日本を元気に!」
Vestia en Governance of Governance en Vestia 29-2-2012
Desenmascarando los mitos de gestión/ Debunking Management Myths
CAS 2 Treball
Malmberg en Beeld en Geluid 070411
Duurzaam Inkopen - Rijksgebouwendienst
Configuring windows 7 to provide secure wireless access point services to wi fi
Organizing training 12052013
Access to public sector information
Ad

Similar to Using Microsoft Excel for Weibull Analysis by William Dorner (20)

PPTX
Elementary Data Analysis with MS Excel_Day-5
DOCX
BUS 308 Week 4 Lecture 3 Developing Relationships in Exc.docx
DOCX
Convenience shoppingSTAT-S301Fall 2019Question Set 1.docx
DOCX
DBM380 v14Create a DatabaseDBM380 v14Page 2 of 2Create a D.docx
PPTX
Advanced Statistics Homework Help
DOCX
Measures and Strengths of AssociationRemember that while w.docx
PPT
Gordoncorr
DOCX
Week 4 Lecture 12 Significance Earlier we discussed co.docx
PDF
Biology statistics made_simple_using_excel
PDF
PDF
Six sigma pedagogy
PDF
Eviews forecasting
PPT
Cairo 02 Stat Inference
PDF
Introduction to Business Statistics 6th Edition Ronald M. Weiers
PPTX
Formulas in ms excel for statistics(report2 in ict math ed)
PDF
Statistical data handling
PPTX
Using Google Sheets statistics functions
DOCX
Data AnalysisInstructions of Excel 2016By Yancy Chow.docx
PDF
Excel Slope Instruction
PPTX
DATA ANALYSIS AND BUSINESS MODELING LAB.pptx
Elementary Data Analysis with MS Excel_Day-5
BUS 308 Week 4 Lecture 3 Developing Relationships in Exc.docx
Convenience shoppingSTAT-S301Fall 2019Question Set 1.docx
DBM380 v14Create a DatabaseDBM380 v14Page 2 of 2Create a D.docx
Advanced Statistics Homework Help
Measures and Strengths of AssociationRemember that while w.docx
Gordoncorr
Week 4 Lecture 12 Significance Earlier we discussed co.docx
Biology statistics made_simple_using_excel
Six sigma pedagogy
Eviews forecasting
Cairo 02 Stat Inference
Introduction to Business Statistics 6th Edition Ronald M. Weiers
Formulas in ms excel for statistics(report2 in ict math ed)
Statistical data handling
Using Google Sheets statistics functions
Data AnalysisInstructions of Excel 2016By Yancy Chow.docx
Excel Slope Instruction
DATA ANALYSIS AND BUSINESS MODELING LAB.pptx

Recently uploaded (20)

PPTX
Supervised vs unsupervised machine learning algorithms
PDF
Introduction to the R Programming Language
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PDF
Lecture1 pattern recognition............
PDF
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
PPTX
Data_Analytics_and_PowerBI_Presentation.pptx
PPTX
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
PPTX
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
PPTX
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
PPTX
Introduction-to-Cloud-ComputingFinal.pptx
PPT
Miokarditis (Inflamasi pada Otot Jantung)
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
PPTX
Introduction to machine learning and Linear Models
PPT
Reliability_Chapter_ presentation 1221.5784
PPTX
1_Introduction to advance data techniques.pptx
PPTX
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
PPTX
IB Computer Science - Internal Assessment.pptx
PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
Supervised vs unsupervised machine learning algorithms
Introduction to the R Programming Language
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
Lecture1 pattern recognition............
168300704-gasification-ppt.pdfhghhhsjsjhsuxush
Data_Analytics_and_PowerBI_Presentation.pptx
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
Introduction-to-Cloud-ComputingFinal.pptx
Miokarditis (Inflamasi pada Otot Jantung)
oil_refinery_comprehensive_20250804084928 (1).pptx
Introduction to machine learning and Linear Models
Reliability_Chapter_ presentation 1221.5784
1_Introduction to advance data techniques.pptx
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
IB Computer Science - Internal Assessment.pptx
IBA_Chapter_11_Slides_Final_Accessible.pptx
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx

Using Microsoft Excel for Weibull Analysis by William Dorner

  • 1. Published by QualityDigest.com on 01/01/1999 pg. 1 Using Microsoft Excel for Weibull Analysis by William Dorner
  • 2. Published by QualityDigest.com on 01/01/1999 pg. 2 Many people use Microsoft Excel on a daily basis. Yet few people realize the extent of Excel's analytical capabilities. Fewer still put these capabilities to work for process improvement, product improvement and profit. Most Excel users are aware of the common formulas and charts. But with some creativity, users can produce tools like control charts, Pareto charts and box-and-whisker plots (see "Using Excel for Data Analysis," Quality Digest, October 1997). And with a little guidance, users can employ more advanced statistical methods with Excel. This article presents a how-to approach for one such advanced technique-Weibull analysis. You haven't turned the page yet? Those of you who remain probably fall under one of two categories: those familiar with reliability data analysis, and Excel enthusiasts who are curious to learn one more way to exploit this versatile software. I predict readers in both groups will be glad they stuck around. For the uninitiated, Weibull analysis is a method for modeling data sets containing values greater than zero, such as failure data. Weibull analysis can make predictions about a product's life, compare the reliability of competing product designs, statistically establish warranty policies or proactively manage spare parts inventories, to name just a few common industrial applications. In academia, Weibull analysis has modeled such diverse phenomena as the length of labor strikes, AIDS mortality and earthquake probabilities. Learning by example Let's ignore the formulas for now and start by looking at an example of Weibull analysis in action. Imagine that you work for a toy company that wants to compare the reliability of two proposed designs for a jack-in-the-box spring housing. The desired reliability at 400,000 cycles is 0.90. In other words, the toy company would like 90 percent of the spring housings to survive at least 400,000 cycles. This reliability goal is expressed mathematically as R(400,000) 0.90. Ten units were assembled with each of the two housing designs (Design A and Design B). These 20 units were tested until their spring housings failed.
  • 3. Published by QualityDigest.com on 01/01/1999 pg. 3 Figure 1 shows the number of cycles before failure for each item tested. The data in Figure 1 don't clearly indicate whether either design meets the desired reliability goal. Both designs had at least one failure before 400,000 cycles, yet clearly the average number of cycles before failure exceeds 400,000 for both designs. A comparison of sample averages using a Student's t test reveals no statistical difference between the average cycles for Design A and the average cycles for Design B (p-value = 0.965). But as a simple measure of central tendency, the sample average gives no information about the spread or shape of the distribution of failure times. Could the two designs' averages be the same, but their reliability be quite different? How can you be more scientific about comparing the reliability of the two proposed designs? Preparing to analyze Modeling the data using Weibull analysis requires some preparation. For now, focus on the data from Design A. 1. Open Excel and into cell A1, type the label: Design A Cycles. Enter the failure data for Design A into cells A2:A11. Highlight cells A1:A11 and click on the Sort Ascending button to order the failure cycles from lowest to highest. 2. In cell B1, type the label: Rank. In cells B2:B11, type the integers 1-10 (see Figure 2). 3. In Column C, put an estimate of the proportion of the population that will fail by the number of cycles listed in Column A. This can be accomplished using several different methods, the most
  • 4. Published by QualityDigest.com on 01/01/1999 pg. 4 common of which is median ranks. In cell C1, type the label: Median Ranks. In cell C2, enter the formula: =((B2-0.3)/(10+0.4)). Next, copy cell C2 down through cell C11. Note that in the formula for median ranks, the 10 in the denominator is the total number of Design A units tested. 4. Type into cell D1 the label: 1/(1-Median Rank). Then, in D2, enter the formula: =1/(1-C2). Copy cell D2 down through cell D11. 5. Into cell E1, enter the label: ln(ln(1/(1-Median Rank))). In cell E2, type the formula: =LN(LN(D2)). Copy cell E2 down through cell E11. 6. Finally, you'll need to transform the Cycles data. In cell F1, type the label: ln(Design A Cycles). In cell F2, type the formula: =LN(A2). Copy cell F2 down through cell F11. 7. Again, compare your spreadsheet with Figure 2. After you confirm that everything is correct, save your workbook. Estimating Weibull Parameters Why can we expect the graph of the ln(Cycles) vs. the transformed median ranks to plot as a straight line? With some effort, the Weibull cumulative distribution function can be transformed so that it appears in the familiar form of a straight line:Y=mX+b: Here's how: Comparing this equation with the simple equation for a line, we see that the left side of the equation corresponds to Y, lnx corresponds to X,? corresponds to m, and - ln corresponds to b. Thus, when we perform the linear regression, the estimate for the Weibull parameter comes directly from the slope of the line. The estimate for the? parameter must be calculated as follows:
  • 5. Published by QualityDigest.com on 01/01/1999 pg. 5 Fitting a line to the data At this point, you're ready to perform the Weibull analysis. The beauty of this method is that you can expect to see a straight line when you plot the data in Column E vs. Column F.2 By performing a simple linear regression, you can obtain parameter estimates that will enable you to make inferences about Design A's reliability.3 First, be sure that the Analysis ToolPak Add-In is loaded into Excel. From the menu bar, select Tools . Add-Ins. Click on the checkbox for Analysis ToolPak, and then click OK. To perform the simple linear regression: 1. While on the page you just created, from the menu bar, select Tools and Data Analysis. Scroll down and highlight "Regression" and click OK. A data-entry window will pop up. 2. Under "Input Y Range," type: $E$1:$E$11. 3. For "Input X Range," type: $F$1:$F$11. 4. Click to add a checkmark in the box for "Labels." 5. For "Output Options," select "New Worksheet Ply." 6. Click to add a checkmark in the box for "Line Fit Plots." 7. Click OK. Excel will perform the regression and place the output on a new worksheet. Reformatting the output Before interpreting the output, you'll need to do some tidying up. The columns do not automatically adjust to their optimal widths. To do this, within the worksheet that you just created, click on column Estimating Weibull Parameters Why can we expect the graph of the ln(Cycles) vs. the transformed median ranks to plot as a straight line? With some effort, the Weibull cumulative distribution function can be transformed so that it appears in the familiar form of a straight line: 𝑌 = 𝑚𝑋 + 𝑏. Here's how: Comparing this equation with the simple equation for a line, we see that the left side of the equation corresponds to Y, ln(x) corresponds to X, corresponds to m, and - ln corresponds to b. Thus, when we perform the linear regression, the estimate for the Weibull parameter comes directly from the slope of the line. The estimate for the parameter must be calculated as follows:
  • 6. Published by QualityDigest.com on 01/01/1999 pg. 6 heading A and drag to column heading I. Now double-click on the boundary to the right of any column heading. Your table should look similar to Figure 3. Now scroll to the right and click once on the graph. Stretch the graph by clicking and dragging on the handle in the lower right corner. From the menu bar, with the graph still selected, click View . Chart Window. Reformat the graph according to your preferences. It's best to use a solid line and no point markers for the Predicted line and delete the legend. Also, move the horizontal axis by clicking on the vertical axis with the right mouse button, selecting "Format Axis," clicking on the "Scale" tab and changing the "Value (X) Axis Crosses At" to -3 (see Figure 4).
  • 7. Published by QualityDigest.com on 01/01/1999 pg. 7 In cell A19, type the label: Beta (or Shape Parameter)=. In cell B19, type the formula: =B18. In cell A20, type the label: Alpha (or Characteristic Life)=. In cell B20, type the formula: =EXP(-B17/B18). Your results should closely resemble Figure 3. For Design A, b=4.25 and a=693,380.4 An identical analysis using the Design B data yields a = 2.53 and an =723,105. Interpreting the results The Weibull shape parameter, called , indicates whether the failure rate is increasing, constant or decreasing. A <1.0 indicates that the product has a decreasing failure rate. This scenario is typical of "infant mortality" and indicates that the product is failing during its "burn-in" period. A =1.0 indicates a constant failure rate. Frequently, components that have survived burn-in will subsequently exhibit a constant failure rate. A >1.0 indicates an increasing failure rate. This is typical of products that are wearing out. Such is the case with the spring housings-both designs A and B have values much higher than 1.0. The housings fail due to fatigue, i.e., they wear out. The Weibull characteristic life, called, is a measure of the scale, or spread, in the distribution of data. It so happens that equals the number of cycles at which 63.2 percent of the product has failed. In other words, for a Weibull distribution R( =0.368, regardless of the value of . For example, with Design A housings, about 37 percent of the housings should survive at least 693,380 cycles. While this is interesting, it still doesn't reveal whether either jack-in-the-box design meets the reliability goal of R(400,000) 0.90. For this, you need to know the formula for reliability assuming a Weibull distribution: where? x is the time (or number of cycles) until failure. The formula looks intimidating, but by simply plugging in the known values for , and x, you can obtain the desired reliability estimate.
  • 8. Published by QualityDigest.com on 01/01/1999 pg. 8 Computing the above formulas can be confusing and laborious using a calculator. Besides, you can't visualize or compare the reliability of each design for multiple cycle values. Excel provides a better way. Creating a reliability calculator worksheet 1. From your Design A regression output worksheet, highlight and copy cells A19:B20. Activate a new worksheet ply and locate the cursor in cell A1. Select Edit . Paste Special, click on Values, and click OK. This will paste your and labels and values into cells A1:B2 of the new worksheet. Resize the columns as needed. 2. In cell D1, type the label: Cycles. 3. In cells D2:D11, type the values 100,000-1 million in increments of 100,000. 4. In cell E1, type the label: Survival Probability. 5. In cell E2, type the formula: =WEIBULL(D2,$B$1,$B$2,TRUE). 6. Copy cell E2 down through cell E11. 7. In cell F1, type the label: Reliability. 8. In cell F2, type the formula: =1-E2. 9. Copy cell F2 down through cell F11. 10. Reformat cells as desired. Compare your worksheet with the top portion of? Figure 5.
  • 9. Published by QualityDigest.com on 01/01/1999 pg. 9 You've now created a Weibull reliability calculator. You supply the , , and cycles of interest, and Excel calculates the reliabilities for you. By merely changing the inputs in cells B1, B2 and D2:D11, you can get reliability estimates for any Weibull distribution of interest. Likewise, sometimes you'll need to compute the number of cycles (or time to failure) corresponding to a certain reliability level. For example, 99 percent of Design A housings will have failed by how many cycles? Unfortunately, Excel doesn't have an inverse Weibull function. To perform this calculation (called solving for "critical values"), follow these steps: 1. On your Weibull reliability calculator worksheet, type in the label and values as shown in cells C13:C18 in Figure 5. 2. In cell D13, type the label: Cycles. 3. In cell D14, enter the formula: =$B$2*(-LN(C14))^(1/$B$1). 4. Copy cell D14 down through D18. We find that for Design A of the jack-in-the-box, R(992,975)=0.01, or 99 percent of the housings will have failed by 992,975 cycles.
  • 10. Published by QualityDigest.com on 01/01/1999 pg. 10 Creating a survival graph Perhaps the best way to compare the reliability of Design A with that of Design B is by using a survival graph. This line graph depicts the survival probabilities of each housing type at various numbers of cycles. Using the formulas discussed above, enter the data into a new worksheet (see Figure 6). Use the Chart Wizard to construct an X-Y scatterplot. Select line styles of your choice and delete the point markers. The resulting survival graph looks like Figure 7. Figure 7 allows a comprehensive comparison of the two designs' survival rates. Note that at 400,000 cycles, about 90 percent of Design A housings have survived, whereas only about 80 percent of Design B housings have survived. Therefore, for the stated reliability goal of R(400,000) 0.90, Design A is clearly superior. However, about 10 percent of Design B housings will survive to 1 million cycles, vs. fewer than 1 percent of Design A. This graph clearly shows the importance of defining the reliability goal in order to choose the more desirable design. A warranty example Having settled upon Design A as the superior alternative, suppose your company plans to offer a warranty on the jack-in-the-box. Of course, you would want to allocate suitable funds to honor the warranty, so as not to be blindsided by unexpected warranty costs. You've decided to set the warranty period so that no more than 1 percent of the units sold would fail before the warranty period expires. How can you determine what length of warranty to offer?
  • 11. Published by QualityDigest.com on 01/01/1999 pg. 11 The established Weibull model shows 99 percent of the housings should survive at least 235,056 cycles (see Figure 5). Market research shows that a heavily used jack-in-the-box is cycled 100 times per day. We find that 235,056 cycles equates to about 6.4 years of use. Armed with this information, and knowing that the competition only offers a two-year warranty on its jack-in-the-boxes, your company might choose to be conservative and offer a five-year warranty. This would ensure domination of the competition from a marketing standpoint, yet still allow for warranty costs to stay at or below the desired levels. The above example is somewhat simplistic. Interested readers can find more sophisticated illustrations of warranty strategy using Weibull analysis in academic articles, such as Jayprakash Patankar and Amitava Mitra's "Effects of Warranty Execution on Warranty Reserve Costs" (Management Science, 1995). A brief statistics overview Weibull analysis involves fitting a data set to the following cumulative distribution function (cdf):5 ? Confusion has arisen in the past due to the lack of standardized nomenclature for the Weibull cdf. Its creator, Waloddi Weibull, himself published multiple versions of this formula using different
  • 12. Published by QualityDigest.com on 01/01/1999 pg. 12 nomenclatures. Arthur Hallinan Jr. provides an excellent history of the various forms of the Weibull distribution in "A Review of the Weibull Distribution" (Journal of Quality Technology, 1993). The format above is the most commonly accepted one. Unfortunately, in Excel, the "Help" screen for the "=WEIBULL" function gives the formula with the and parameters reversed (i.e., the characteristic life is labeled and the shape parameter is labeled). Conclusion The Weibull distribution's strength is its versatility. Depending on the parameters' values, the Weibull distribution can approximate an exponential, a normal or a skewed distribution. The Weibull distribution's virtually limitless versatility is matched by Excel's countless capabilities. An astute data analyst who understands the theory behind a given analysis can often get results from Excel that others might assume require specialized statistical software. With Excel, Weibull analysis lies well within reach for most engineers with a statistics background. For more information The Excel file used in this article and an explanation of estimating Weibull parameters are available from our Web site at www.qualitydigest.com/jan99/html/weibull.html. Notes 1. For simplicity, this article deals with complete failure data, i.e., all samples were tested until they failed. In practice, reliability data analysis frequently involves censored data, or samples for which, for one reason or another, failure times are unknown. Often, tests are suspended before all samples fail. Or perhaps items may fail due to a cause other than the one being studied. The issues involved in analyzing and interpreting censored data are complex. Improper analysis of censored data can yield misleading results, which Margaret Mackisack and Ronald Stillman point out in "A Cautionary Tale About Weibull Analysis" (IEEE Transactions on Reliability, 1996). For further technical details about analyzing censored life data, readers also can consult Wayne Nelson's book Applied Life Data Analysis (John Wiley & Sons, 1982) or William Meeker and Luis Escobar's book Statistical Methods for Reliability Data (John Wiley & Sons, 1998). 2. For a full explanation of why you can expect a straight line, see this article at our Web site: www.qualitydigest.com/jan99/html/weibull.html .
  • 13. Published by QualityDigest.com on 01/01/1999 pg. 13 3. Many methods exist for estimating Weibull distribution parameters from a set of data. This article uses the method called probability plotting. Readers interested in other methods, such as maximum likelihood estimation or hazard plotting, should consult Nelson's book, Meeker and Escobar's book or Bryan Dodson's book Weibull Analysis with Software (ASQ Quality Press, 1994). 4. Some software packages may give slightly different parameter estimates than the ones in this article. That is because these applications regress the transformed median ranks (Y) on the transformed lifetimes (X) rather than vice versa. "Simulation studies show that Y on X regression produces almost double the bias in the estimation of the shape parameter as the X on Y regression," according to Dodson. Moreover, the universal convention for displaying a Weibull probability plot is to depict "ln(lifetime)" on the horizontal axis. The regression method presented in this article automatically generates the plot in this standard format. 5. The type of Weibull distribution discussed in this article is called the two-parameter Weibull distribution. This simple form is adequate for a majority of Weibull analysis scenarios. However, if the transformed failure data plot has a curved rather than a straight line appearance, or if is found to be greater than 6.0, then a third parameter may be needed to adequately model the data. The third parameter, included in the aptly named three-parameter Weibull distribution, effectively shifts the entire distribution to the right. This location parameter is most commonly called [𝜸] (the Greek letter gamma). In practice, [𝜸] can be interpreted as the earliest possible time at which failure may occur. Of course, [𝜸] may never be larger than the value of the earliest failure from the data set. Readers who encounter a curved regression plot or a value greater than 6.0 should consult Hallinan's article or John McCool's article "Inference on the Weibull Location Parameter" (Journal of Quality Technology, 1998) for guidance on fitting a three-parameter Weibull model. ABOUT THE AUTHOR William W. Dorner William W. Dorner is Manager, Global Reliability & Compliance Testing at Allegion, PLC in Indianapolis, Indiana. He is a Certified Quality Engineer and a member of ASQ and ASA. Slight edits by Melvin Carter