James Goin and Hunter Goforth
Electrical and Computer
Engineering Presentation
Torque Vector Series PHEV
Performance
•  IVM-60mph: 5.3 s
•  50-70mph: 2.9 s
•  Top speed: 137 km/h (85 mph)
•  EV range: 80 km (50 miles)
•  Power: 400 kW (536 hp)
•  Torque: 4200 Nm (3098 lb ft)
Unique Characteristics
•  Torque vectoring
•  Fully electric drivetrain
FRONT	
  
REAR	
  
Fuel	
  
Tank	
  
Generator	
  
Bosch	
  SMG	
  
180	
  80kW	
  
Engine:	
  0.8L	
  
E85	
  78	
  kW	
  
Gearbox	
  
4.2:1	
  
Gearbox	
  
4.2:1	
  
Motor:	
  
Enstroj	
  
EMRAX	
  268	
  
200kW	
  
Charger:	
  
Brusa	
  
NLG513	
  
ESS:	
  A123	
  7-­‐
mod	
  15s3p	
  
Kit	
  18.9	
  kWh	
  
Motor:	
  
Enstroj	
  
EMRAX	
  268	
  
200kW	
  
LV System Design and
Integration
LV Harness Design Methods
Identify components and signals
–  Connector assemblies
–  Controls team
•  GPIO/analog
•  CAN
–  Mechanical team
•  Possible routing
•  Space claim
LV Harness Documentation
Mentor Graphics Vesys
–  Schematic design
•  12V power
•  CAN communications
•  Analog/digital I/O
–  Routing
•  Component placement
•  Bus design
–  Validation
•  Continuity
•  Simulation
–  Documentation
•  Signal tables
LV Harness Routing
RELAYS
CHARGER
RELAYS
INVERTER
GENERATOR
CABIN
ELECTRONICS ESS
MOTOR	
  
CONTROLLER
MOTOR	
  
CONTROLLER
COOLANT	
  
PUMP
HSC
RELAYS
HSC
FRONT	
  
ACCM	
  
LV Harness Routing
RELAYS
CHARGER
ACCM
INVERTER
GENERATOR
CABIN
ELECTRONICS ESS
MOTOR	
  
CONTROLLER
MOTOR	
  
CONTROLLER
COOLANT	
  
PUMP
HSC
RELAYS
HSC
12V
FRONT	
  
RELAYS
CHARGER
RELAYS
INVERTER
GENERATOR
CABIN
ELECTRONICS ESS
MOTOR	
  
CONTROLLER
MOTOR	
  
CONTROLLER
COOLANT	
  
PUMP
HSC
RELAYS
HSC
FRONT	
  
LV Harness Protection
ACCM	
  
Example 1
Single-harness design
•  Serviceable exterior routing
•  Protected under body panel
ACCM	
  
LV Harness Protection
RELAYS
CHARGER
RELAYS
INVERTER
GENERATOR
CABIN
ELECTRONICS ESS
MOTOR	
  
CONTROLLER
MOTOR	
  
CONTROLLER
COOLANT	
  
PUMP
HSC
RELAYS
HSC
FRONT	
  
ACCM	
  
Example 1
Single-harness design
•  Serviceable exterior routing
•  Protected under body panel
Exterior routing
•  Debris from road
•  Liquids
•  Mounting
Passing into engine bay and trunk
•  Abrasion
•  Tension strain
ACCM	
  
LV Harness Protection
RELAYS
CHARGER
RELAYS
INVERTER
GENERATOR
CABIN
ELECTRONICS ESS
MOTOR	
  
CONTROLLER
MOTOR	
  
CONTROLLER
COOLANT	
  
PUMP
HSC
RELAYS
HSC
FRONT	
  
ACCM	
  
Example 2
Route to cabin electronics
•  Competition required LEDs/switches
•  Shifting embedded controller
•  Ease of access to engine bay harness
CCM	
  
LV Harness Protection
RELAYS
CHARGER
RELAYS
INVERTER
GENERATOR
CABIN
ELECTRONICS ESS
MOTOR	
  
CONTROLLER
MOTOR	
  
CONTROLLER
COOLANT	
  
PUMP
HSC
RELAYS
HSC
FRONT	
  
ACCM	
  
Example 2
Route to cabin electronics
•  Competition required LEDs/switches
•  Shifting embedded controller
•  Ease of access to engine bay harness
Engine
•  Vibration
•  Heat
Passing Into Cabin from Engine Bay
•  Abrasion
•  Tension and strain relief
LV Harness Protection
Protection Methods
•  Shielded Champlain® CAN cable
•  Layers of protection
•  Taped wire bundle
•  Split loom
•  Thermal tape
•  Outer layer Tesa® acrylic adhesive
Abrasion resistant
Noise damping
Temperature resistant
Strength ideal for bundling
LV Harness Protection
Justification
Adherence to electrical design rules for
competition:
•  “SAE J1128 or J 1127 standard for wire,
automotive rated insulation”
•  “Exterior routing must use split loom”
•  “Protection by cable grommets at pass-
through locations”
•  “Wiring cannot be installed below components
containing liquids”
•  “Strain relieved and securely fastened to
prevent movement”
LV Fusing and Relays
12V	
  BaTery	
  
Front	
  Fuse/Relay	
  Box	
  
Radiator	
  Fans	
  
Generator	
  Control	
  
ACCM	
  
HVIL	
  
CompeYYon	
  LEDs	
  
Front	
  Cooling	
  Pump	
  
Rear	
  Fuse/Relay	
  Box	
  
HSC	
  
BMS	
  
Motor	
  Controllers	
  
Rear	
  Cooling	
  Pump	
  
Team-added components
LV Fusing
•  Multiplexed Vehicle Electrical Center (MVEC)
–  Power distribution slave module
–  CAN controlled
–  8 relays and 16 fuses
–  30 A per output pin
–  200 A maximum rating
–  2 MVECs used
LV Fabrication Methods
•  Champlain EXRAD 150UT Powertrain Wire
•  Best practices for
–  Crimping
–  Soldering
–  Strain relief
–  Packaging
–  Shielding
–  Abrasion / thermal protection methods
–  NASA guidelines
•  Weekly training workshop
LV Validation Methods
Hardware-in-the-Loop (HIL) Testbench
–  Fabricated harnesses testbenched with dSPACE HIL
Simulator
–  Determines potential harness connection faults
–  Confirms component functionality
LV Design
Planned but un-
integrated LV
harness locations
Motor	
  controllers	
  
RouYng	
  from	
  engine	
  bay	
  to	
  rear	
  
Full integration of LV
harnesses part of Vehicle
Development Process Year 3
LV Integration
Engine Bay
Engine	
  
MVEC	
  
Inverter/Converter	
  
LV Integration
Split	
  loom	
  conduit	
  
•  Abrasion	
  resistance	
  
•  Protects	
  from	
  liquids,	
  debris	
  
•  SYffness	
  preserves	
  bend	
  radius	
  
LV Integration
Adhesive	
  thermal	
  padding	
  and	
  grommet	
  for	
  pass-­‐through	
  	
  
•  Provides	
  sealing	
  of	
  cabin	
  from	
  engine	
  bay	
  
•  Protects	
  harness	
  at	
  point	
  of	
  pass-­‐through	
  
•  Restricts	
  harness	
  movement	
  
LV Integration
LV	
  routed	
  away	
  from	
  HV	
  
•  Avoid	
  harmful	
  EMI	
  issues	
  
•  Simplifies	
  rouYng	
  
	
  
LV Integration
LV	
  routed	
  away	
  from	
  liquid	
  holding	
  components	
  
•  No	
  risk	
  of	
  spillage	
  on	
  electronics	
  
	
  
HV System Design and
Integration
HV Component Location
Component
•  Energy Storage System (ESS): A123
7 module 15s3p LiFePo4 battery
pack.
Front
Energy	
  
Storage	
  
System	
  (ESS)	
  
Requirements
•  Simpler space claim
•  Simplified routing
•  Improved consumer acceptability
•  Protection
Tradeoffs
•  Less accessible for maintenance
Requirements
•  Allows torque-vectored design
•  Controller/inverter near motors,
simplified routings
Tradeoffs
•  Weight distribution
HV Component Location
Component
•  Motors: EMRAX 268 200kW motors
•  Inverters: Bamocar D3 motor
controller / inverter
Motor	
  
Energy	
  
Storage	
  
System	
  (ESS)	
  
Motor	
  
Inverter	
  
Inverter	
  
Front
Requirements
•  Space claim with ESS location
•  Weight distribution
Tradeoffs
•  Heat/vibration/noise near other
components
HV Component Location
Component
•  Engine: 800 cc E85
•  Motor: Bosch SMG 180
Motor	
  
Energy	
  
Storage	
  
System	
  (ESS)	
  
Motor	
  
Inverter	
  
Inverter	
  
Motor	
   Engine	
  
Front
Requirements
•  Gensert proximity to engine
•  Proximity to 12V batter
Tradeoffs
•  Must route more connections
through junction box
•  Less room for additional
components in engine bay
HV Component Location
Component
•  Inverter: INVCON generator
controller / inverter with built in
12V DC / DC converter and ACCM
power.
Motor	
  
Energy	
  
Storage	
  
System	
  (ESS)	
  
Motor	
  
Inverter	
  
Inverter	
  
Motor	
  
Inverter	
  
Engine	
  
Front
Requirements
•  Proximity to front junction box for
routing
•  More trunk space
Tradeoffs
•  Proximity to engine
•  Long route to ESS
HV Component Location
Component
•  Charger: Brusa NLG513 liquid
cooled
•  Charge port: Chevrolet Volt charge
port
Motor	
  
Energy	
  
Storage	
  
System	
  (ESS)	
  
Motor	
  
Inverter	
  
Inverter	
  
Charger	
  
Motor	
  
Charge	
  
Port	
  
Inverter	
  
Engine	
  
Front
Requirements
•  More trunk space
•  Protection
•  Easy routing to front junction box
Tradeoffs
•  Heat/vibration from engine
•  More HV routing in engine bay
HV Component Location
Component
•  Automatic Climate Control Module	
  
(ACCM): Denso ES34 electric
compressor
Motor	
  
Energy	
  
Storage	
  
System	
  (ESS)	
  
Motor	
  
Inverter	
  
Inverter	
  
Charger	
  
Motor	
  
ACCM	
  
Charge	
  
Port	
  
Inverter	
  
Engine	
  
Front
Requirements
•  Appropriate fusing
•  Simplified HV routing
•  Protection of fuses
Tradeoffs
•  Less space in engine bay, and in
rear assembly near motor
controllers and motor
Component
•  Mersen UL Rate Junction Boxes
HV Component Location
Motor	
  
Energy	
  
Storage	
  
System	
  (ESS)	
  
Motor	
  
Inverter	
  
Rear	
  
JuncYon	
  
Box	
  
Inverter	
  
Front	
  
JuncYon	
  
Box	
  
Charger	
  
Motor	
  
ACCM	
  
Charge	
  
Port	
  
Inverter	
  
Engine	
  
Front
HV System Component Location
HV System Design
Component	
  
Min	
  
Voltag
e	
  (V)	
  
Nominal	
  
Voltage	
  
(V)	
  
Max	
  
Voltage	
  
(V)	
  
Energy	
  Storage	
  System	
  (ESS)	
  	
   263	
   340	
   378	
  
Onboard	
  Charger	
   200	
   360	
   520	
  
Generator	
  (Built	
  in	
  DC/DC	
  
Converter)	
  	
  
150	
   370	
   410	
  
AutomaYc	
  Climate	
  Control	
  
Module	
  (ACCM)	
  
200	
   300	
   420	
  
Motors	
   50	
   320	
   700	
  
Motor	
  Controllers	
  	
   200	
   300	
   700	
  
Voltage (V)
HV System Design
Component	
  
Min	
  
Voltag
e	
  (V)	
  
Nominal	
  
Voltage	
  
(V)	
  
Max	
  
Voltage	
  
(V)	
  
ConCnuous	
  
Power	
  (kW)	
  
Peak	
  
Power	
  
(kW)	
  
Energy	
  Storage	
  System	
  (ESS)	
  	
   263	
   340	
   378	
   60	
   177	
  
Onboard	
  Charger	
   200	
   360	
   520	
   3.7	
   3.7	
  
Generator	
  (Built	
  in	
  DC/DC	
  
Converter)	
  	
  
150	
   370	
   410	
   42	
   85	
  
AutomaYc	
  Climate	
  Control	
  
Module	
  (ACCM)	
  
200	
   300	
   420	
   8	
   8	
  
Motors	
   50	
   320	
   700	
   80	
   200	
  
Motor	
  Controllers	
  	
   200	
   300	
   700	
   60	
   140	
  
HV System Design
ESS
ACCM
CHARGER
TPIM
GENSET
HV System Design
Front
Junction
Box
Rear
Junction
Box
HV System Integration
•  HV Junction Box Design
–  Mersen Design Reviews
•  80+ hours of design review
•  UL certification for final design
•  Confirmation of simulation data
•  Components sent from Mersen, students assembled boxes
HV System Integration
•  HV Junction Box Design
–  Humidity and temperature
–  Heat generated
–  Vibration
–  Creepage and clearance
–  Isolation
–  Serviceability
–  Optimized wire routing
–  Minimal size
•  Champlain EXRAD XLE
shielded cable
•  Best practices for
•  Wire sizing
•  Crimping
•  Soldering
•  Insulating
•  Strain relief / bend radius
•  Shielding
•  Abrasion / thermal protection
Methods
•  NASA guidelines
•  Training workshops
HV Fabrication
HV Validation
–  Creepage/clearance
–  Resistivity of connections
–  Isolation resistance testing
–  Ground fault detection
–  Bus ripple
–  Bus bleed-down
Ripple
Analysi
s
Frequency (Hz) 5,570.42 10,345.07 19,098.59
Voltage Ripple (V) 5 6 4
Current Ripple (A) 6 8 2
HV System Integration
Engine Bay
Design vs. Integration:
Rotation of junction box
180 degrees to fit bend
radius
HV System Integration
Front Junction Box
HV System Integration
Front Rear
Engine Bay to Rear Subframe
Design vs. Integration: Routing between fuel tank and
transmission tunnel to ensure HV is not lowest point on vehicle
and avoid routing underneath liquid-holding components.	
  
HV System Integration
Bamocar Motor Controller/Inverter
HV System Integration
Rear Junction Box, Motors, ESS
HV System Integration
3-Phase Traction Motor Terminals
HV Fuse Overview
Load Conditions
• Nominal and peak current
• Operating voltage
• Load Type (capacitive or resistive)
Source Conditions
• Power output
• Ambient temperature (derating)
• Short-circuit current (I2t analysis)
• Intended cycle life
Standards
• UL certified
• IEC 60269 standard
• Mersen design reviews
HV Wire Overview
Exrad XLE Cable Specifications
•  High voltage and current
•  Automotive grade
•  High dielectric insulation
•  High temperature tolerance
•  High bend radius
•  Shielded (reduce EMI)
•  Orange
Conditions
•  Fuse blows before cable fails
Standards
•  UL 758 and ISO 6722 accordance
•  SAE certified
Selection Overview
Note: load profiles approximated from supplier specification sheet
Component Fuse	
  Size	
  (A)
Wire	
  Gauge	
  
(AWG)
Wire	
  Ampacity	
  
(A)
Nominal	
  Current	
  
(A)
Peak	
  Current	
  
(A)	
  
Charger 12 10	
  Shielded 80 12.25 	
  12.75
Genset	
  Inverter 300 1/0	
  Shielded 339 210 400
TPIM	
  (Inverter) 200 1/0	
  Shielded 339 200 400
ACCM 20 10	
  	
  Shielded 80 12.5 25.6
Junction	
  Fuse 350 1/0	
  Shielded 339 250 500
ESS 350 1/0	
  Shielded 339 230 690
ESS Example
ESS
•  V = 375 VDC
•  R = 0.05 Ω
•  isc= 7.34 kA
Fuse
•  350 A rated
•  Δtpeak >> 100 s
•  Max V = 700 VDC
•  Max isc = 100 kA
Dual Motors
•  iavg = 230 A
•  ipeak = 690A
•  Δtpeak = 10 s
Requirements
• Capacitive load = time delay fuse to prevent nuisance blows
• 1.5 x 230 A (nominal) ≈ 350 A (rule of thumb)
• Allowed time at peak current:
•  10 s (Motor Δtpeak ) < 150 s (fuse) < 300 s (cable)
• Max voltage
•  375 VDC (ESS) < 700 VDC (fuse) < 1000 VDC (cable)
• Short circuit current
•  7.34 kA (ESS) < 100 kA (fuse)
1/0 Cable
LoadSource
1/0 Cable
ESS Fuse
350 A Fuse Specification
Model: Mersen A70QS350
•  Type: Time Delay
•  Max Voltage: 700 VDC
•  Impulse: 100 kA I.R
•  Temperature: 25°C
Paramete
r
Current
(A)
Melt Time
(s)
Nominal 230 >> 100
Peak 690 >> 100
Extreme 1500 3
Short
Circuit 7.3k < 0.01
Nominal
230A
Peak
690A
Extreme
1500A
3 s
ESS Design and
Implementation
ESS Design
Trunk Installation
•  Rugged lid
•  Easy to access MSD
ESS Design
Trunk Installation
•  Rugged lid
•  Easy to access MSD
Two-tier Design
•  Simplified packaging
•  Improved routing
•  Serviceable hardware
shelf
ESS Design
Trunk Installation
•  Rugged lid
•  Easy to access MSD
Two-tier Design
•  Simplified packaging
•  Improved routing
•  Serviceable hardware
shelf
Routing
•  Serviceable
•  Minimizes EMI noise
•  Bus bars
•  Connectors route
easily to rear junction
box
ESS Design
	
  	
  
350V Output
•  Finger-proof
•  Pluggable
•  HVIL
•  Simplified routing
ESS Design
350V Output
ESS Design
Separation of HV and LV on shelf to minimize EMI risk
ESS Design
Separation of HV and LV on shelf to minimize EMI risk
ESS Design
Separation of HV and LV on shelf to minimize EMI risk
ESS Design
Separation of HV and LV on shelf to minimize EMI risk
ESS Integration
ESS Integration
ESS Integration
Design vs. Integration: Extra length in wire
runs to meet bend radius
ESS Integration
Design vs. Integration: Additional quick-
disconnects to remove shelf
ESS Integration
Bus bars and finger-proof covers
ESS Integration
Pluggable, rotating HV connectors
ESS Integration
Design vs. Integration
Bottom of trunk
Aluminum ESS
enclosure
Interior connection
ESS Integration
6mm clearance
NYSR: 12.7 mm
(>300V)
ESS Integration
Design vs. Integration
Bottom of trunk
ESS enclosure
(conductive)
Lug connection
Acrylic	
  
Spacer	
  
ESS Integration
Design vs. Integration
Acrylic	
  
Spacer	
  
ESS Integration
ESS Integration
ESS Integration
Design vs. Integration: Moving lugs to maintain clearance from lid
ESS Integration
Design vs. Integration: Moving lugs to maintain clearance from lid
ESS Integration
Design vs. Integration: Moving lugs to maintain clearance from lid
ESS Integration
Design vs. Integration: Moving lugs to maintain clearance from lid
UWash_ECE_Presentation
Questions?

More Related Content

PDF
Bell-Everman KAOS Positioning Stage
PDF
Swiss Parking Systems
DOC
Resume Fikrat
PPTX
Electric Vehicle Service Equipment (EVSE)
PDF
Caminhão para mineração subterranea cat ad60
PDF
2010 GMC Sierra Toledo Brochure
PDF
Hoist vfd control
PPT
1550091 634842733511023750
Bell-Everman KAOS Positioning Stage
Swiss Parking Systems
Resume Fikrat
Electric Vehicle Service Equipment (EVSE)
Caminhão para mineração subterranea cat ad60
2010 GMC Sierra Toledo Brochure
Hoist vfd control
1550091 634842733511023750

What's hot (16)

PPTX
Quad Copter
PDF
Whats new in Medium Voltage Drives
PDF
Sensing in automotive powertrain and braking systems
PDF
Paragon Honda: 2010 Honda CR-V
PDF
Nidec asi electric motors & generators
PDF
EZEferry Presentation at PVA Green Waters Conference
PDF
Image servlet
PPTX
Sensors in karizma_zmr
PDF
E lnt technical document
PPT
Baldor_LEMUG
PDF
Weg system-drive-vfd-ac-motors-usasysvfd613-brochure-english
PPTX
Training ppt on Chittaranjan Locomotive Works
PPTX
Telinstra Presentation
PDF
Skt presentation
PDF
Nidec asi electric power solutions for pipeline applications
PPT
Vmax architecture
Quad Copter
Whats new in Medium Voltage Drives
Sensing in automotive powertrain and braking systems
Paragon Honda: 2010 Honda CR-V
Nidec asi electric motors & generators
EZEferry Presentation at PVA Green Waters Conference
Image servlet
Sensors in karizma_zmr
E lnt technical document
Baldor_LEMUG
Weg system-drive-vfd-ac-motors-usasysvfd613-brochure-english
Training ppt on Chittaranjan Locomotive Works
Telinstra Presentation
Skt presentation
Nidec asi electric power solutions for pipeline applications
Vmax architecture
Ad

Similar to UWash_ECE_Presentation (20)

PDF
Nidec asi capability overview for lng and oil&gas applications
PDF
uwaft_electrical_ecocar2_y3
PPTX
REMC Team Presentation_Final
PPTX
Special Lab for Electrical machines (1).pptx
PPT
Poster Energy Storage_AT_ver6
PPTX
Power Electronics Application in Electric Vehicles.pptx
PDF
Offshore platform powered with new electrical motor drive system_presentation...
PPTX
phần them vao xe hybrid va cach sua chua.pptx
PPTX
Soil sieve analysis
PDF
Minemaster Electric Ev commander Equipment Sudbury, Ontario, CA
PPT
Automotive four strok Engine working , services and mentenance and repair .ppt
PPT
Presentation2
PPTX
Seminar__SuyashChvan_8055.pptx
PPTX
Oil Exploration and Extraction - John Herbst - v2 - 2010
PPTX
Oil Exploration and Extraction - John Herbst - version 2 - 2010
PDF
Engage with...Equipmake
 
PPT
Troubleshooting Variable Speed Drives
PDF
Steel Production Sets Extreme Demands and Only the Strongest Survives!
PDF
Flyer-E-Mobility-en
PDF
Standby power systems for hospitals
Nidec asi capability overview for lng and oil&gas applications
uwaft_electrical_ecocar2_y3
REMC Team Presentation_Final
Special Lab for Electrical machines (1).pptx
Poster Energy Storage_AT_ver6
Power Electronics Application in Electric Vehicles.pptx
Offshore platform powered with new electrical motor drive system_presentation...
phần them vao xe hybrid va cach sua chua.pptx
Soil sieve analysis
Minemaster Electric Ev commander Equipment Sudbury, Ontario, CA
Automotive four strok Engine working , services and mentenance and repair .ppt
Presentation2
Seminar__SuyashChvan_8055.pptx
Oil Exploration and Extraction - John Herbst - v2 - 2010
Oil Exploration and Extraction - John Herbst - version 2 - 2010
Engage with...Equipmake
 
Troubleshooting Variable Speed Drives
Steel Production Sets Extreme Demands and Only the Strongest Survives!
Flyer-E-Mobility-en
Standby power systems for hospitals
Ad

UWash_ECE_Presentation

  • 1. James Goin and Hunter Goforth Electrical and Computer Engineering Presentation
  • 2. Torque Vector Series PHEV Performance •  IVM-60mph: 5.3 s •  50-70mph: 2.9 s •  Top speed: 137 km/h (85 mph) •  EV range: 80 km (50 miles) •  Power: 400 kW (536 hp) •  Torque: 4200 Nm (3098 lb ft) Unique Characteristics •  Torque vectoring •  Fully electric drivetrain FRONT   REAR   Fuel   Tank   Generator   Bosch  SMG   180  80kW   Engine:  0.8L   E85  78  kW   Gearbox   4.2:1   Gearbox   4.2:1   Motor:   Enstroj   EMRAX  268   200kW   Charger:   Brusa   NLG513   ESS:  A123  7-­‐ mod  15s3p   Kit  18.9  kWh   Motor:   Enstroj   EMRAX  268   200kW  
  • 3. LV System Design and Integration
  • 4. LV Harness Design Methods Identify components and signals –  Connector assemblies –  Controls team •  GPIO/analog •  CAN –  Mechanical team •  Possible routing •  Space claim
  • 5. LV Harness Documentation Mentor Graphics Vesys –  Schematic design •  12V power •  CAN communications •  Analog/digital I/O –  Routing •  Component placement •  Bus design –  Validation •  Continuity •  Simulation –  Documentation •  Signal tables
  • 6. LV Harness Routing RELAYS CHARGER RELAYS INVERTER GENERATOR CABIN ELECTRONICS ESS MOTOR   CONTROLLER MOTOR   CONTROLLER COOLANT   PUMP HSC RELAYS HSC FRONT   ACCM  
  • 7. LV Harness Routing RELAYS CHARGER ACCM INVERTER GENERATOR CABIN ELECTRONICS ESS MOTOR   CONTROLLER MOTOR   CONTROLLER COOLANT   PUMP HSC RELAYS HSC 12V FRONT  
  • 8. RELAYS CHARGER RELAYS INVERTER GENERATOR CABIN ELECTRONICS ESS MOTOR   CONTROLLER MOTOR   CONTROLLER COOLANT   PUMP HSC RELAYS HSC FRONT   LV Harness Protection ACCM   Example 1 Single-harness design •  Serviceable exterior routing •  Protected under body panel
  • 9. ACCM   LV Harness Protection RELAYS CHARGER RELAYS INVERTER GENERATOR CABIN ELECTRONICS ESS MOTOR   CONTROLLER MOTOR   CONTROLLER COOLANT   PUMP HSC RELAYS HSC FRONT   ACCM   Example 1 Single-harness design •  Serviceable exterior routing •  Protected under body panel Exterior routing •  Debris from road •  Liquids •  Mounting Passing into engine bay and trunk •  Abrasion •  Tension strain
  • 10. ACCM   LV Harness Protection RELAYS CHARGER RELAYS INVERTER GENERATOR CABIN ELECTRONICS ESS MOTOR   CONTROLLER MOTOR   CONTROLLER COOLANT   PUMP HSC RELAYS HSC FRONT   ACCM   Example 2 Route to cabin electronics •  Competition required LEDs/switches •  Shifting embedded controller •  Ease of access to engine bay harness
  • 11. CCM   LV Harness Protection RELAYS CHARGER RELAYS INVERTER GENERATOR CABIN ELECTRONICS ESS MOTOR   CONTROLLER MOTOR   CONTROLLER COOLANT   PUMP HSC RELAYS HSC FRONT   ACCM   Example 2 Route to cabin electronics •  Competition required LEDs/switches •  Shifting embedded controller •  Ease of access to engine bay harness Engine •  Vibration •  Heat Passing Into Cabin from Engine Bay •  Abrasion •  Tension and strain relief
  • 12. LV Harness Protection Protection Methods •  Shielded Champlain® CAN cable •  Layers of protection •  Taped wire bundle •  Split loom •  Thermal tape •  Outer layer Tesa® acrylic adhesive Abrasion resistant Noise damping Temperature resistant Strength ideal for bundling
  • 13. LV Harness Protection Justification Adherence to electrical design rules for competition: •  “SAE J1128 or J 1127 standard for wire, automotive rated insulation” •  “Exterior routing must use split loom” •  “Protection by cable grommets at pass- through locations” •  “Wiring cannot be installed below components containing liquids” •  “Strain relieved and securely fastened to prevent movement”
  • 14. LV Fusing and Relays 12V  BaTery   Front  Fuse/Relay  Box   Radiator  Fans   Generator  Control   ACCM   HVIL   CompeYYon  LEDs   Front  Cooling  Pump   Rear  Fuse/Relay  Box   HSC   BMS   Motor  Controllers   Rear  Cooling  Pump   Team-added components
  • 15. LV Fusing •  Multiplexed Vehicle Electrical Center (MVEC) –  Power distribution slave module –  CAN controlled –  8 relays and 16 fuses –  30 A per output pin –  200 A maximum rating –  2 MVECs used
  • 16. LV Fabrication Methods •  Champlain EXRAD 150UT Powertrain Wire •  Best practices for –  Crimping –  Soldering –  Strain relief –  Packaging –  Shielding –  Abrasion / thermal protection methods –  NASA guidelines •  Weekly training workshop
  • 17. LV Validation Methods Hardware-in-the-Loop (HIL) Testbench –  Fabricated harnesses testbenched with dSPACE HIL Simulator –  Determines potential harness connection faults –  Confirms component functionality
  • 18. LV Design Planned but un- integrated LV harness locations Motor  controllers   RouYng  from  engine  bay  to  rear   Full integration of LV harnesses part of Vehicle Development Process Year 3
  • 19. LV Integration Engine Bay Engine   MVEC   Inverter/Converter  
  • 20. LV Integration Split  loom  conduit   •  Abrasion  resistance   •  Protects  from  liquids,  debris   •  SYffness  preserves  bend  radius  
  • 21. LV Integration Adhesive  thermal  padding  and  grommet  for  pass-­‐through     •  Provides  sealing  of  cabin  from  engine  bay   •  Protects  harness  at  point  of  pass-­‐through   •  Restricts  harness  movement  
  • 22. LV Integration LV  routed  away  from  HV   •  Avoid  harmful  EMI  issues   •  Simplifies  rouYng    
  • 23. LV Integration LV  routed  away  from  liquid  holding  components   •  No  risk  of  spillage  on  electronics    
  • 24. HV System Design and Integration
  • 25. HV Component Location Component •  Energy Storage System (ESS): A123 7 module 15s3p LiFePo4 battery pack. Front Energy   Storage   System  (ESS)   Requirements •  Simpler space claim •  Simplified routing •  Improved consumer acceptability •  Protection Tradeoffs •  Less accessible for maintenance
  • 26. Requirements •  Allows torque-vectored design •  Controller/inverter near motors, simplified routings Tradeoffs •  Weight distribution HV Component Location Component •  Motors: EMRAX 268 200kW motors •  Inverters: Bamocar D3 motor controller / inverter Motor   Energy   Storage   System  (ESS)   Motor   Inverter   Inverter   Front
  • 27. Requirements •  Space claim with ESS location •  Weight distribution Tradeoffs •  Heat/vibration/noise near other components HV Component Location Component •  Engine: 800 cc E85 •  Motor: Bosch SMG 180 Motor   Energy   Storage   System  (ESS)   Motor   Inverter   Inverter   Motor   Engine   Front
  • 28. Requirements •  Gensert proximity to engine •  Proximity to 12V batter Tradeoffs •  Must route more connections through junction box •  Less room for additional components in engine bay HV Component Location Component •  Inverter: INVCON generator controller / inverter with built in 12V DC / DC converter and ACCM power. Motor   Energy   Storage   System  (ESS)   Motor   Inverter   Inverter   Motor   Inverter   Engine   Front
  • 29. Requirements •  Proximity to front junction box for routing •  More trunk space Tradeoffs •  Proximity to engine •  Long route to ESS HV Component Location Component •  Charger: Brusa NLG513 liquid cooled •  Charge port: Chevrolet Volt charge port Motor   Energy   Storage   System  (ESS)   Motor   Inverter   Inverter   Charger   Motor   Charge   Port   Inverter   Engine   Front
  • 30. Requirements •  More trunk space •  Protection •  Easy routing to front junction box Tradeoffs •  Heat/vibration from engine •  More HV routing in engine bay HV Component Location Component •  Automatic Climate Control Module   (ACCM): Denso ES34 electric compressor Motor   Energy   Storage   System  (ESS)   Motor   Inverter   Inverter   Charger   Motor   ACCM   Charge   Port   Inverter   Engine   Front
  • 31. Requirements •  Appropriate fusing •  Simplified HV routing •  Protection of fuses Tradeoffs •  Less space in engine bay, and in rear assembly near motor controllers and motor Component •  Mersen UL Rate Junction Boxes HV Component Location Motor   Energy   Storage   System  (ESS)   Motor   Inverter   Rear   JuncYon   Box   Inverter   Front   JuncYon   Box   Charger   Motor   ACCM   Charge   Port   Inverter   Engine   Front
  • 33. HV System Design Component   Min   Voltag e  (V)   Nominal   Voltage   (V)   Max   Voltage   (V)   Energy  Storage  System  (ESS)     263   340   378   Onboard  Charger   200   360   520   Generator  (Built  in  DC/DC   Converter)     150   370   410   AutomaYc  Climate  Control   Module  (ACCM)   200   300   420   Motors   50   320   700   Motor  Controllers     200   300   700   Voltage (V)
  • 34. HV System Design Component   Min   Voltag e  (V)   Nominal   Voltage   (V)   Max   Voltage   (V)   ConCnuous   Power  (kW)   Peak   Power   (kW)   Energy  Storage  System  (ESS)     263   340   378   60   177   Onboard  Charger   200   360   520   3.7   3.7   Generator  (Built  in  DC/DC   Converter)     150   370   410   42   85   AutomaYc  Climate  Control   Module  (ACCM)   200   300   420   8   8   Motors   50   320   700   80   200   Motor  Controllers     200   300   700   60   140  
  • 37. HV System Integration •  HV Junction Box Design –  Mersen Design Reviews •  80+ hours of design review •  UL certification for final design •  Confirmation of simulation data •  Components sent from Mersen, students assembled boxes
  • 38. HV System Integration •  HV Junction Box Design –  Humidity and temperature –  Heat generated –  Vibration –  Creepage and clearance –  Isolation –  Serviceability –  Optimized wire routing –  Minimal size
  • 39. •  Champlain EXRAD XLE shielded cable •  Best practices for •  Wire sizing •  Crimping •  Soldering •  Insulating •  Strain relief / bend radius •  Shielding •  Abrasion / thermal protection Methods •  NASA guidelines •  Training workshops HV Fabrication
  • 40. HV Validation –  Creepage/clearance –  Resistivity of connections –  Isolation resistance testing –  Ground fault detection –  Bus ripple –  Bus bleed-down Ripple Analysi s Frequency (Hz) 5,570.42 10,345.07 19,098.59 Voltage Ripple (V) 5 6 4 Current Ripple (A) 6 8 2
  • 41. HV System Integration Engine Bay Design vs. Integration: Rotation of junction box 180 degrees to fit bend radius
  • 43. HV System Integration Front Rear Engine Bay to Rear Subframe Design vs. Integration: Routing between fuel tank and transmission tunnel to ensure HV is not lowest point on vehicle and avoid routing underneath liquid-holding components.  
  • 44. HV System Integration Bamocar Motor Controller/Inverter
  • 45. HV System Integration Rear Junction Box, Motors, ESS
  • 46. HV System Integration 3-Phase Traction Motor Terminals
  • 47. HV Fuse Overview Load Conditions • Nominal and peak current • Operating voltage • Load Type (capacitive or resistive) Source Conditions • Power output • Ambient temperature (derating) • Short-circuit current (I2t analysis) • Intended cycle life Standards • UL certified • IEC 60269 standard • Mersen design reviews
  • 48. HV Wire Overview Exrad XLE Cable Specifications •  High voltage and current •  Automotive grade •  High dielectric insulation •  High temperature tolerance •  High bend radius •  Shielded (reduce EMI) •  Orange Conditions •  Fuse blows before cable fails Standards •  UL 758 and ISO 6722 accordance •  SAE certified
  • 49. Selection Overview Note: load profiles approximated from supplier specification sheet Component Fuse  Size  (A) Wire  Gauge   (AWG) Wire  Ampacity   (A) Nominal  Current   (A) Peak  Current   (A)   Charger 12 10  Shielded 80 12.25  12.75 Genset  Inverter 300 1/0  Shielded 339 210 400 TPIM  (Inverter) 200 1/0  Shielded 339 200 400 ACCM 20 10    Shielded 80 12.5 25.6 Junction  Fuse 350 1/0  Shielded 339 250 500 ESS 350 1/0  Shielded 339 230 690
  • 50. ESS Example ESS •  V = 375 VDC •  R = 0.05 Ω •  isc= 7.34 kA Fuse •  350 A rated •  Δtpeak >> 100 s •  Max V = 700 VDC •  Max isc = 100 kA Dual Motors •  iavg = 230 A •  ipeak = 690A •  Δtpeak = 10 s Requirements • Capacitive load = time delay fuse to prevent nuisance blows • 1.5 x 230 A (nominal) ≈ 350 A (rule of thumb) • Allowed time at peak current: •  10 s (Motor Δtpeak ) < 150 s (fuse) < 300 s (cable) • Max voltage •  375 VDC (ESS) < 700 VDC (fuse) < 1000 VDC (cable) • Short circuit current •  7.34 kA (ESS) < 100 kA (fuse) 1/0 Cable LoadSource 1/0 Cable
  • 51. ESS Fuse 350 A Fuse Specification Model: Mersen A70QS350 •  Type: Time Delay •  Max Voltage: 700 VDC •  Impulse: 100 kA I.R •  Temperature: 25°C Paramete r Current (A) Melt Time (s) Nominal 230 >> 100 Peak 690 >> 100 Extreme 1500 3 Short Circuit 7.3k < 0.01 Nominal 230A Peak 690A Extreme 1500A 3 s
  • 53. ESS Design Trunk Installation •  Rugged lid •  Easy to access MSD
  • 54. ESS Design Trunk Installation •  Rugged lid •  Easy to access MSD Two-tier Design •  Simplified packaging •  Improved routing •  Serviceable hardware shelf
  • 55. ESS Design Trunk Installation •  Rugged lid •  Easy to access MSD Two-tier Design •  Simplified packaging •  Improved routing •  Serviceable hardware shelf Routing •  Serviceable •  Minimizes EMI noise •  Bus bars •  Connectors route easily to rear junction box
  • 56. ESS Design     350V Output •  Finger-proof •  Pluggable •  HVIL •  Simplified routing
  • 58. ESS Design Separation of HV and LV on shelf to minimize EMI risk
  • 59. ESS Design Separation of HV and LV on shelf to minimize EMI risk
  • 60. ESS Design Separation of HV and LV on shelf to minimize EMI risk
  • 61. ESS Design Separation of HV and LV on shelf to minimize EMI risk
  • 64. ESS Integration Design vs. Integration: Extra length in wire runs to meet bend radius
  • 65. ESS Integration Design vs. Integration: Additional quick- disconnects to remove shelf
  • 66. ESS Integration Bus bars and finger-proof covers
  • 68. ESS Integration Design vs. Integration Bottom of trunk Aluminum ESS enclosure Interior connection
  • 70. ESS Integration Design vs. Integration Bottom of trunk ESS enclosure (conductive) Lug connection Acrylic   Spacer  
  • 71. ESS Integration Design vs. Integration Acrylic   Spacer  
  • 74. ESS Integration Design vs. Integration: Moving lugs to maintain clearance from lid
  • 75. ESS Integration Design vs. Integration: Moving lugs to maintain clearance from lid
  • 76. ESS Integration Design vs. Integration: Moving lugs to maintain clearance from lid
  • 77. ESS Integration Design vs. Integration: Moving lugs to maintain clearance from lid