SlideShare a Scribd company logo
Visualising Multi-objective Data:
From League Tables to Optimisers, and back
David Walker
College of Engineering, Mathematics and Physical Sciences
University of Exeter
D.J.Walker@exeter.ac.uk
8th March 2017 – University of Plymouth
David Walker Visualising Multi-objective Data 8th March 2017 1 / 17
League Tables
Times Good University Guide, 2009
8 KPIs – NSS, research quality, student-staff ratio, services and
facilities spend, entry standards, completion, good honours, graduate
prospects
Uni NSS RAE
Student
staff
ratio
£/
student
Entry
Reqs.
Compl-
etion
1/
2:1
Pros-
pects
Ox. 0.840 6.200 11.600 2884.000 502.000 98.600 90.100 83.900
Camb. - 6.500 12.200 2299.000 518.000 97.900 85.400 88.400
Imp. 0.760 5.800 10.400 3218.000 473.000 96.000 69.100 89.300
LSE 0.740 6.300 12.600 1562.000 469.000 96.900 75.200 87.700
Warw. 0.760 5.600 13.600 1881.000 448.000 96.700 79.400 74.900
UCL 0.760 5.500 9.100 1702.000 434.000 94.300 75.100 81.500
Dur. 0.780 5.200 15.400 1375.000 447.000 96.400 78.800 75.900
York 0.770 5.500 13.100 1313.000 423.000 95.200 74.700 70.500
Bristol 0.750 5.200 14.700 1535.000 430.000 95.800 78.400 81.500
King’s 0.770 4.700 11.900 1696.000 406.000 93.200 72.100 80.400
David Walker Visualising Multi-objective Data 8th March 2017 2 / 17
Visualisation
Visualisation is a useful alternative to presenting data in a table – human
beings are well suited to understanding information visually
0.0 0.2 0.4 0.6 0.8 1.00.0
0.2
0.4
0.6
0.8
1.0
0.20.40.60.8
0.2
0.4
0.6
0.8
0.2
0.4
0.6
0.8
David Walker Visualising Multi-objective Data 8th March 2017 3 / 17
Visualisation
Visualisation is a useful alternative to presenting data in a table – human
beings are well suited to understanding information visually
0.0 0.2 0.4 0.6 0.8 1.00.0
0.2
0.4
0.6
0.8
1.0
0.20.40.60.8
0.2
0.4
0.6
0.8
0.2
0.4
0.6
0.8
Unfortunately people can generally only think in three dimensions
David Walker Visualising Multi-objective Data 8th March 2017 3 / 17
High-dimensional Visualisation
−1.5 −1.0 −0.5 0.0 0.5 1.0
−1.0
−0.5
0.0
0.5
1.0
1.5
f1,f2 f1,f3 f1,f4 f1,f5
f2,f3 f2,f4 f2,f5
f3,f4 f3,f5
f4,f5
f1 f2 f3 f4 f5
0.0
0.5
1.0
1.5
2.0
David Walker Visualising Multi-objective Data 8th March 2017 4 / 17
Evolutionary Many-objective Optimisation
Evolutionary algorithms generate solutions to many-objective
optimisation problems – comprising M = 4 (or more) conflicting
objectives
The quality of a solution p is evaluated using a set of objective
functions:
y = (f1(p), . . . , fM(p))
Compare pairs of solutions using dominance:
f(p) f(q) ⇔ ∀m(fm(p) ≤ fm(q)) ∧ ∃m(fm(p) < fm(q))
David Walker Visualising Multi-objective Data 8th March 2017 5 / 17
Evolutionary Many-objective Optimisation
Evolutionary algorithms generate solutions to many-objective
optimisation problems – comprising M = 4 (or more) conflicting
objectives
The quality of a solution p is evaluated using a set of objective
functions:
y = (f1(p), . . . , fM(p))
Compare pairs of solutions using dominance:
f(p) f(q) ⇔ ∀m(fm(p) ≤ fm(q)) ∧ ∃m(fm(p) < fm(q))
Visualise individuals according to their dominance relationships
David Walker Visualising Multi-objective Data 8th March 2017 5 / 17
Pareto Shells
Non-dominated Sorting
1 Set k = 1
2 Identify all of the
non-dominated individuals
and assign them to shell k
3 Increment k
4 If individuals remain, return
to step 2
Shell 1
Shell 4
Oxford
St Andrews
Warwick
Durham
York
Bristol
King's
Leicester
Nottingham
Southampton
Edinburgh
Lancaster
Glasgow
Aberdeen
Manchester
Strathclyde
Cambridge
Imperial
LSE
UCL
SOAS
Sheffield
East Anglia
Cardiff
Reading
Liverpool
Kent
Sussex
Essex
Hull
Royal Holloway
Bradford
Bedfordshire
Abertay
Bath
Newcastle
Surrey
Keele
Birmingham
Aston
Queen's Belfast
Queen Mary
Dundee
Heriot-Watt
City
Robert Gordon
N'ham Trent
Bournemouth
Brighton
Napier
UWIC Cardiff
Stirling
Brunel
Ulster
B'ham City
Glamorgan
Hertfordshire
Roehampton
Leeds
Oxford Brookes
Staffordshire
Coventry
Aberystwyth
Bangor
Swansea
Goldsmiths
Construct a graph
Arrange individuals (nodes) into columns according to Pareto shell
Place edges between individuals in adjacent shells where one
dominates the other
David Walker Visualising Multi-objective Data 8th March 2017 6 / 17
University League Tables
Colour nodes according to
average rank
Rank the individuals m
times (once for each
KPI) giving rim – the
rank of individual i on
KPI m
Average these ranks
¯ri =
1
M
M
m=1
rim
Shell 1
Shell 2
Shell 3
Shell 4
Shell 5
Shell 6Oxford (1)
St Andrews (7)
Warwick (4)
Durham (9)
York (11)
Bristol (10)
King's (8)
Loughborough (24)
Exeter (17)
Leicester (16)
Nottingham (12)
Southampton (13)
Edinburgh (15)
Lancaster (21)
Glasgow (17)
Aberdeen (29)
Manchester (22)
Strathclyde (36)
Cambridge (6)
Imperial (2)
LSE (5)
UCL (3)
SOAS (27)
Sheffield (20)
East Anglia (35)
Cardiff (26)
Reading (34)
Liverpool (31)
Kent (37)
Sussex (38)
Essex (43)
Hull (49)
Royal Holloway (33)
Bradford (42)
Bedfordshire (91)
Abertay (99)
Bath (14)
Newcastle (19)
Surrey (39)
Keele (40)
Birmingham (23)
Aston (30)
Queen's Belfast (25)
Queen Mary (28)
Dundee (41)
Heriot-Watt (44)
City (50)
Robert Gordon (55)
N'ham Trent (56)
Bournemouth (59)
Brighton (58)
Napier (71)
UWIC Cardiff (86)
Stirling (47)
Brunel (46)
Ulster (52)
B'ham City (60)
Glamorgan (69)
Hertfordshire (70)
Roehampton (80)
Leeds (32)
Oxford Brookes (53)
Staffordshire (72)
Coventry (68)
Aberystwyth (48)
Bangor (54)
Swansea (45)
Goldsmiths (51)
Portsmouth (60)
Plymouth (57)
Central Lancs (64)
West England (63)
Winchester (65)
Glasgow Cal (66)
Lampeter (81)
Bath Spa (75)
Northumbria (67)
U. Arts (72)
S'field Hallam (74)
De Montfort (78)
Canterbury CC (82)
Sunderland (84)
Salford (77)
Chester (87)
Huddersfield (89)
York St John (95)
Manchester Met (89)
Leeds Met (93)
Anglia Ruskin (103)
Bucks New (105)
QM Edinburgh (79)
Chichester (76)
Gloucestershire (62)
Derby (89)
West Scotland (100)
Edge Hill (106)
Cumbria (101)
Teesside (91)
Middlesex (98)
East London (104)
Worcester (85)
Northampton (83)
Kingston (94)
Soton Solent (110)
Wolverhampton (109)
London S Bank (112)
Liverpool JM (96)
Greenwich (108)
Thames Valley (113)
Westminster (97)
Bolton (111)
UWCN (107)
Lincoln (102)
D. Walker, R. Everson and J. Fieldsend, Visualisation and Ordering of Many-objective Populations. In Proc. IEEE Congress on
Evolutionary Computation (CEC 2010), pp3664–3671, 2010.
David Walker Visualising Multi-objective Data 8th March 2017 7 / 17
Water Quality Indicators
D. Walker, D. Jakovljevic´c, D. Savi´c and M. Radovanovi´c,
Multi-criterion Water Quality Analysis of the Danube River
in Serbia: A Visualisation Approach. Water Research 79
(158–172), 2015.
David Walker Visualising Multi-objective Data 8th March 2017 8 / 17
Heatmaps
A heatmap is a graphical
representation of a dataset –
rows indicate individuals and
columns indicate KPIs
“Warm” colours indicate large
values
“Cool” colours indicate small
values
1 2 3 4 5 6 7 8
Criteria
0
20
40
60
80
100
Individuals 15
30
45
60
75
90
105
David Walker Visualising Multi-objective Data 8th March 2017 9 / 17
Seriation of Heatmaps
Reorder the rows of the heatmap so that similar individuals are placed
together and patterns can be identified
Seriation is a procedure for permuting items based on their similarity
Aij = 1 −
1
M(N − 1)2
M
m=1
(rim − rjm)2
g(π) =
N
i=1
N
j=1
Aij (πi − πj )2
D. Walker, R. Everson and J. Fieldsend, Visualisation Mutually Non-dominating Solution Sets in Many-objective Optimisation.
In IEEE Transactions on Evolutionary Computation 17(2)165–184, 2013.
David Walker Visualising Multi-objective Data 8th March 2017 10 / 17
Seriation of Heatmaps
0 20 40 60 80 100
0
20
40
60
80
100
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
David Walker Visualising Multi-objective Data 8th March 2017 11 / 17
Seriation of Heatmaps
0 20 40 60 80 100
0
20
40
60
80
100
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0 20 40 60 80 100
0
20
40
60
80
100
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
David Walker Visualising Multi-objective Data 8th March 2017 11 / 17
Seriation of Heatmaps: University League Tables
1 2 3 4 5 6 7 8
Criteria
0
20
40
60
80
100
Individuals
15
30
45
60
75
90
105
David Walker Visualising Multi-objective Data 8th March 2017 12 / 17
Seriation of Heatmaps: University League Tables
1 2 3 4 5 6 7 8
Criteria
0
20
40
60
80
100
Individuals
15
30
45
60
75
90
105
1 2 3 4 5 6 7 8
Criteria
72
68
49
5
53
9
Individuals
15
30
45
60
75
90
105
David Walker Visualising Multi-objective Data 8th March 2017 12 / 17
Seriation of Heatmaps: Radar Waveform Design
Seriate according to individuals then KPIs to reveal further
information
1 2 3 4 5 6 7 8 9
Criteria
0
20
40
60
80
100
120
140
160
180
Individuals
20
40
60
80
100
120
140
160
180
200
1 2 3 4 5 6 7 8 9
Criteria
77
28
142
185
104
114
147
65
76
32
Individuals
20
40
60
80
100
120
140
160
180
200
David Walker Visualising Multi-objective Data 8th March 2017 13 / 17
Seriation of Heatmaps: Radar Waveform Design
Seriate according to individuals then KPIs to reveal further
information
1 2 3 4 5 6 7 8 9
Criteria
0
20
40
60
80
100
120
140
160
180
Individuals
20
40
60
80
100
120
140
160
180
200
1 2 3 4 5 6 7 8 9
Criteria
77
28
142
185
104
114
147
65
76
32
Individuals
20
40
60
80
100
120
140
160
180
200
4 9 2 8 6 5 7 1 3
Criteria
77
28
142
185
104
114
147
65
76
32
Individuals
20
40
60
80
100
120
140
160
180
200
David Walker Visualising Multi-objective Data 8th March 2017 13 / 17
Treemaps
Visualise data represented as a tree
using space to illustrate the importance
of a node
Additional degrees of freedom (e.g.,
colour)
Many different algorithms for arranging
a treemap
Classification of the top 100
websites visited in 2010
(UK, France, Germany,
Italy, Spain, Switzerland,
Brazil, US and Australia)
David Walker Visualising Multi-objective Data 8th March 2017 14 / 17
Dominance trees
Step 1: Pareto sorting
Construct a partial ordering of individuals using Pareto sorting – this
results in a graph
Set 2: Prune edges using dominance distance
Remove edges such that each node has exactly one parent node (retain
the parent with the smallest dominance distance) and insert an artificial
“root” using the global best
A
B
C
D
E
F
D. Walker, Visualising Multi-objective Populations with Treemaps. In Proc. Genetic and Evolutionary Computation Conference
(GECCO 2015) Companion Volume, 963–970, 2015.
David Walker Visualising Multi-objective Data 8th March 2017 15 / 17
Dominance trees
Step 1: Pareto sorting
Construct a partial ordering of individuals using Pareto sorting – this
results in a graph
Set 2: Prune edges using dominance distance
Remove edges such that each node has exactly one parent node (retain
the parent with the smallest dominance distance) and insert an artificial
“root” using the global best
A
B
C
D
E
F
nr
A
B
C
D
E
F
D. Walker, Visualising Multi-objective Populations with Treemaps. In Proc. Genetic and Evolutionary Computation Conference
(GECCO 2015) Companion Volume, 963–970, 2015.
David Walker Visualising Multi-objective Data 8th March 2017 15 / 17
Circular Treemaps
Good University Guide
Oxford
SOAS
Water Quality Analysis
David Walker Visualising Multi-objective Data 8th March 2017 16 / 17
Summary
Performance data
Performance data is ubiquitous
University league tables, hospital performance, quality of life, water
quality, optimisation. . .
By visualising it we can better understand and make use of this data
Visualisation Methods
Pareto shells
Seriation
Treemaps
David Walker Visualising Multi-objective Data 8th March 2017 17 / 17

More Related Content

PPTX
Multi-objective Optimisation of a Water Distribution Network with a Sequence-...
PPTX
PDF
Al-Huda CIBE- 4th African Islamic Finance Summit
PDF
An Educators Guide to Podcasting and Broadcasting by @TeacherCast
PPT
Job interview techniques
DOCX
India’s women bankers at the helm
PDF
PDF
Obama chronicles the book
Multi-objective Optimisation of a Water Distribution Network with a Sequence-...
Al-Huda CIBE- 4th African Islamic Finance Summit
An Educators Guide to Podcasting and Broadcasting by @TeacherCast
Job interview techniques
India’s women bankers at the helm
Obama chronicles the book

Viewers also liked (9)

PDF
Extreme JavaScript Performance
PPTX
Modelo kata de competencia digital. isdi
PDF
Turing machine
PDF
ガチでビジネス DALIを使った照明制御
PDF
Samad Oraee - Learn More About Foot Pain
PPTX
Texto sobre la Consulta Previa/Conamaq-Cidob
PDF
Boletín 08/03/2017
PDF
Come creare e gestire campagne Google AdWords per E-Commerce | La settimana d...
PDF
Einführung Open Data
Extreme JavaScript Performance
Modelo kata de competencia digital. isdi
Turing machine
ガチでビジネス DALIを使った照明制御
Samad Oraee - Learn More About Foot Pain
Texto sobre la Consulta Previa/Conamaq-Cidob
Boletín 08/03/2017
Come creare e gestire campagne Google AdWords per E-Commerce | La settimana d...
Einführung Open Data
Ad

Similar to Visualising Multi-objective Data: From League Tables to Optimisers, and back (20)

PDF
SCONUL Summer Conference 2018 - Simon Walker
PPTX
RDF2Vec: RDF Graph Embeddings for Data Mining
PPTX
Representing verifiable statistical index computations as linked data
PPTX
A discovery service for UK research data
PPTX
Business intelligence for higher education
PDF
EC-TEL 2016: Which Algorithms Suit Which Learning Environments?
PDF
Preparing for the UK Research Data Registry and Discovery Service
PDF
Parallelisation of the PC Algorithm (CAEPIA2015)
PDF
ACQSurvey (Poster)
PDF
Practical Data Visualization
PDF
Multi-Attribute Decision Making with VIKOR Method for Any Purpose Decision
PDF
Bicod2017
PDF
BICOD-2017
PPTX
Descriptive Statistics, Numerical Description
PDF
Model Analyses of Complex Systems Behavior using MADS,
PDF
Curses, tradeoffs, and scalable management: advancing evolutionary direct pol...
PPTX
A Comparison of Propositionalization Strategies for Creating Features from Li...
PPT
RichardPughspatial.ppt
PDF
STINGER: Multi-threaded Graph Streaming
PPTX
Introduction.pptx
SCONUL Summer Conference 2018 - Simon Walker
RDF2Vec: RDF Graph Embeddings for Data Mining
Representing verifiable statistical index computations as linked data
A discovery service for UK research data
Business intelligence for higher education
EC-TEL 2016: Which Algorithms Suit Which Learning Environments?
Preparing for the UK Research Data Registry and Discovery Service
Parallelisation of the PC Algorithm (CAEPIA2015)
ACQSurvey (Poster)
Practical Data Visualization
Multi-Attribute Decision Making with VIKOR Method for Any Purpose Decision
Bicod2017
BICOD-2017
Descriptive Statistics, Numerical Description
Model Analyses of Complex Systems Behavior using MADS,
Curses, tradeoffs, and scalable management: advancing evolutionary direct pol...
A Comparison of Propositionalization Strategies for Creating Features from Li...
RichardPughspatial.ppt
STINGER: Multi-threaded Graph Streaming
Introduction.pptx
Ad

Recently uploaded (20)

PPTX
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
PPTX
1_Introduction to advance data techniques.pptx
PDF
Business Analytics and business intelligence.pdf
PPTX
SAP 2 completion done . PRESENTATION.pptx
PDF
annual-report-2024-2025 original latest.
PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PPTX
STERILIZATION AND DISINFECTION-1.ppthhhbx
PPTX
Introduction to Knowledge Engineering Part 1
PDF
Lecture1 pattern recognition............
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PPTX
Market Analysis -202507- Wind-Solar+Hybrid+Street+Lights+for+the+North+Amer...
PPTX
climate analysis of Dhaka ,Banglades.pptx
PDF
Mega Projects Data Mega Projects Data
PPTX
IB Computer Science - Internal Assessment.pptx
PPTX
Supervised vs unsupervised machine learning algorithms
PPT
ISS -ESG Data flows What is ESG and HowHow
PDF
Clinical guidelines as a resource for EBP(1).pdf
PPTX
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PPTX
Data_Analytics_and_PowerBI_Presentation.pptx
AI Strategy room jwfjksfksfjsjsjsjsjfsjfsj
1_Introduction to advance data techniques.pptx
Business Analytics and business intelligence.pdf
SAP 2 completion done . PRESENTATION.pptx
annual-report-2024-2025 original latest.
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
STERILIZATION AND DISINFECTION-1.ppthhhbx
Introduction to Knowledge Engineering Part 1
Lecture1 pattern recognition............
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
Market Analysis -202507- Wind-Solar+Hybrid+Street+Lights+for+the+North+Amer...
climate analysis of Dhaka ,Banglades.pptx
Mega Projects Data Mega Projects Data
IB Computer Science - Internal Assessment.pptx
Supervised vs unsupervised machine learning algorithms
ISS -ESG Data flows What is ESG and HowHow
Clinical guidelines as a resource for EBP(1).pdf
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
IBA_Chapter_11_Slides_Final_Accessible.pptx
Data_Analytics_and_PowerBI_Presentation.pptx

Visualising Multi-objective Data: From League Tables to Optimisers, and back

  • 1. Visualising Multi-objective Data: From League Tables to Optimisers, and back David Walker College of Engineering, Mathematics and Physical Sciences University of Exeter D.J.Walker@exeter.ac.uk 8th March 2017 – University of Plymouth David Walker Visualising Multi-objective Data 8th March 2017 1 / 17
  • 2. League Tables Times Good University Guide, 2009 8 KPIs – NSS, research quality, student-staff ratio, services and facilities spend, entry standards, completion, good honours, graduate prospects Uni NSS RAE Student staff ratio £/ student Entry Reqs. Compl- etion 1/ 2:1 Pros- pects Ox. 0.840 6.200 11.600 2884.000 502.000 98.600 90.100 83.900 Camb. - 6.500 12.200 2299.000 518.000 97.900 85.400 88.400 Imp. 0.760 5.800 10.400 3218.000 473.000 96.000 69.100 89.300 LSE 0.740 6.300 12.600 1562.000 469.000 96.900 75.200 87.700 Warw. 0.760 5.600 13.600 1881.000 448.000 96.700 79.400 74.900 UCL 0.760 5.500 9.100 1702.000 434.000 94.300 75.100 81.500 Dur. 0.780 5.200 15.400 1375.000 447.000 96.400 78.800 75.900 York 0.770 5.500 13.100 1313.000 423.000 95.200 74.700 70.500 Bristol 0.750 5.200 14.700 1535.000 430.000 95.800 78.400 81.500 King’s 0.770 4.700 11.900 1696.000 406.000 93.200 72.100 80.400 David Walker Visualising Multi-objective Data 8th March 2017 2 / 17
  • 3. Visualisation Visualisation is a useful alternative to presenting data in a table – human beings are well suited to understanding information visually 0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0 0.20.40.60.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 David Walker Visualising Multi-objective Data 8th March 2017 3 / 17
  • 4. Visualisation Visualisation is a useful alternative to presenting data in a table – human beings are well suited to understanding information visually 0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0 0.20.40.60.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 Unfortunately people can generally only think in three dimensions David Walker Visualising Multi-objective Data 8th March 2017 3 / 17
  • 5. High-dimensional Visualisation −1.5 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 1.5 f1,f2 f1,f3 f1,f4 f1,f5 f2,f3 f2,f4 f2,f5 f3,f4 f3,f5 f4,f5 f1 f2 f3 f4 f5 0.0 0.5 1.0 1.5 2.0 David Walker Visualising Multi-objective Data 8th March 2017 4 / 17
  • 6. Evolutionary Many-objective Optimisation Evolutionary algorithms generate solutions to many-objective optimisation problems – comprising M = 4 (or more) conflicting objectives The quality of a solution p is evaluated using a set of objective functions: y = (f1(p), . . . , fM(p)) Compare pairs of solutions using dominance: f(p) f(q) ⇔ ∀m(fm(p) ≤ fm(q)) ∧ ∃m(fm(p) < fm(q)) David Walker Visualising Multi-objective Data 8th March 2017 5 / 17
  • 7. Evolutionary Many-objective Optimisation Evolutionary algorithms generate solutions to many-objective optimisation problems – comprising M = 4 (or more) conflicting objectives The quality of a solution p is evaluated using a set of objective functions: y = (f1(p), . . . , fM(p)) Compare pairs of solutions using dominance: f(p) f(q) ⇔ ∀m(fm(p) ≤ fm(q)) ∧ ∃m(fm(p) < fm(q)) Visualise individuals according to their dominance relationships David Walker Visualising Multi-objective Data 8th March 2017 5 / 17
  • 8. Pareto Shells Non-dominated Sorting 1 Set k = 1 2 Identify all of the non-dominated individuals and assign them to shell k 3 Increment k 4 If individuals remain, return to step 2 Shell 1 Shell 4 Oxford St Andrews Warwick Durham York Bristol King's Leicester Nottingham Southampton Edinburgh Lancaster Glasgow Aberdeen Manchester Strathclyde Cambridge Imperial LSE UCL SOAS Sheffield East Anglia Cardiff Reading Liverpool Kent Sussex Essex Hull Royal Holloway Bradford Bedfordshire Abertay Bath Newcastle Surrey Keele Birmingham Aston Queen's Belfast Queen Mary Dundee Heriot-Watt City Robert Gordon N'ham Trent Bournemouth Brighton Napier UWIC Cardiff Stirling Brunel Ulster B'ham City Glamorgan Hertfordshire Roehampton Leeds Oxford Brookes Staffordshire Coventry Aberystwyth Bangor Swansea Goldsmiths Construct a graph Arrange individuals (nodes) into columns according to Pareto shell Place edges between individuals in adjacent shells where one dominates the other David Walker Visualising Multi-objective Data 8th March 2017 6 / 17
  • 9. University League Tables Colour nodes according to average rank Rank the individuals m times (once for each KPI) giving rim – the rank of individual i on KPI m Average these ranks ¯ri = 1 M M m=1 rim Shell 1 Shell 2 Shell 3 Shell 4 Shell 5 Shell 6Oxford (1) St Andrews (7) Warwick (4) Durham (9) York (11) Bristol (10) King's (8) Loughborough (24) Exeter (17) Leicester (16) Nottingham (12) Southampton (13) Edinburgh (15) Lancaster (21) Glasgow (17) Aberdeen (29) Manchester (22) Strathclyde (36) Cambridge (6) Imperial (2) LSE (5) UCL (3) SOAS (27) Sheffield (20) East Anglia (35) Cardiff (26) Reading (34) Liverpool (31) Kent (37) Sussex (38) Essex (43) Hull (49) Royal Holloway (33) Bradford (42) Bedfordshire (91) Abertay (99) Bath (14) Newcastle (19) Surrey (39) Keele (40) Birmingham (23) Aston (30) Queen's Belfast (25) Queen Mary (28) Dundee (41) Heriot-Watt (44) City (50) Robert Gordon (55) N'ham Trent (56) Bournemouth (59) Brighton (58) Napier (71) UWIC Cardiff (86) Stirling (47) Brunel (46) Ulster (52) B'ham City (60) Glamorgan (69) Hertfordshire (70) Roehampton (80) Leeds (32) Oxford Brookes (53) Staffordshire (72) Coventry (68) Aberystwyth (48) Bangor (54) Swansea (45) Goldsmiths (51) Portsmouth (60) Plymouth (57) Central Lancs (64) West England (63) Winchester (65) Glasgow Cal (66) Lampeter (81) Bath Spa (75) Northumbria (67) U. Arts (72) S'field Hallam (74) De Montfort (78) Canterbury CC (82) Sunderland (84) Salford (77) Chester (87) Huddersfield (89) York St John (95) Manchester Met (89) Leeds Met (93) Anglia Ruskin (103) Bucks New (105) QM Edinburgh (79) Chichester (76) Gloucestershire (62) Derby (89) West Scotland (100) Edge Hill (106) Cumbria (101) Teesside (91) Middlesex (98) East London (104) Worcester (85) Northampton (83) Kingston (94) Soton Solent (110) Wolverhampton (109) London S Bank (112) Liverpool JM (96) Greenwich (108) Thames Valley (113) Westminster (97) Bolton (111) UWCN (107) Lincoln (102) D. Walker, R. Everson and J. Fieldsend, Visualisation and Ordering of Many-objective Populations. In Proc. IEEE Congress on Evolutionary Computation (CEC 2010), pp3664–3671, 2010. David Walker Visualising Multi-objective Data 8th March 2017 7 / 17
  • 10. Water Quality Indicators D. Walker, D. Jakovljevic´c, D. Savi´c and M. Radovanovi´c, Multi-criterion Water Quality Analysis of the Danube River in Serbia: A Visualisation Approach. Water Research 79 (158–172), 2015. David Walker Visualising Multi-objective Data 8th March 2017 8 / 17
  • 11. Heatmaps A heatmap is a graphical representation of a dataset – rows indicate individuals and columns indicate KPIs “Warm” colours indicate large values “Cool” colours indicate small values 1 2 3 4 5 6 7 8 Criteria 0 20 40 60 80 100 Individuals 15 30 45 60 75 90 105 David Walker Visualising Multi-objective Data 8th March 2017 9 / 17
  • 12. Seriation of Heatmaps Reorder the rows of the heatmap so that similar individuals are placed together and patterns can be identified Seriation is a procedure for permuting items based on their similarity Aij = 1 − 1 M(N − 1)2 M m=1 (rim − rjm)2 g(π) = N i=1 N j=1 Aij (πi − πj )2 D. Walker, R. Everson and J. Fieldsend, Visualisation Mutually Non-dominating Solution Sets in Many-objective Optimisation. In IEEE Transactions on Evolutionary Computation 17(2)165–184, 2013. David Walker Visualising Multi-objective Data 8th March 2017 10 / 17
  • 13. Seriation of Heatmaps 0 20 40 60 80 100 0 20 40 60 80 100 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 David Walker Visualising Multi-objective Data 8th March 2017 11 / 17
  • 14. Seriation of Heatmaps 0 20 40 60 80 100 0 20 40 60 80 100 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 20 40 60 80 100 0 20 40 60 80 100 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 David Walker Visualising Multi-objective Data 8th March 2017 11 / 17
  • 15. Seriation of Heatmaps: University League Tables 1 2 3 4 5 6 7 8 Criteria 0 20 40 60 80 100 Individuals 15 30 45 60 75 90 105 David Walker Visualising Multi-objective Data 8th March 2017 12 / 17
  • 16. Seriation of Heatmaps: University League Tables 1 2 3 4 5 6 7 8 Criteria 0 20 40 60 80 100 Individuals 15 30 45 60 75 90 105 1 2 3 4 5 6 7 8 Criteria 72 68 49 5 53 9 Individuals 15 30 45 60 75 90 105 David Walker Visualising Multi-objective Data 8th March 2017 12 / 17
  • 17. Seriation of Heatmaps: Radar Waveform Design Seriate according to individuals then KPIs to reveal further information 1 2 3 4 5 6 7 8 9 Criteria 0 20 40 60 80 100 120 140 160 180 Individuals 20 40 60 80 100 120 140 160 180 200 1 2 3 4 5 6 7 8 9 Criteria 77 28 142 185 104 114 147 65 76 32 Individuals 20 40 60 80 100 120 140 160 180 200 David Walker Visualising Multi-objective Data 8th March 2017 13 / 17
  • 18. Seriation of Heatmaps: Radar Waveform Design Seriate according to individuals then KPIs to reveal further information 1 2 3 4 5 6 7 8 9 Criteria 0 20 40 60 80 100 120 140 160 180 Individuals 20 40 60 80 100 120 140 160 180 200 1 2 3 4 5 6 7 8 9 Criteria 77 28 142 185 104 114 147 65 76 32 Individuals 20 40 60 80 100 120 140 160 180 200 4 9 2 8 6 5 7 1 3 Criteria 77 28 142 185 104 114 147 65 76 32 Individuals 20 40 60 80 100 120 140 160 180 200 David Walker Visualising Multi-objective Data 8th March 2017 13 / 17
  • 19. Treemaps Visualise data represented as a tree using space to illustrate the importance of a node Additional degrees of freedom (e.g., colour) Many different algorithms for arranging a treemap Classification of the top 100 websites visited in 2010 (UK, France, Germany, Italy, Spain, Switzerland, Brazil, US and Australia) David Walker Visualising Multi-objective Data 8th March 2017 14 / 17
  • 20. Dominance trees Step 1: Pareto sorting Construct a partial ordering of individuals using Pareto sorting – this results in a graph Set 2: Prune edges using dominance distance Remove edges such that each node has exactly one parent node (retain the parent with the smallest dominance distance) and insert an artificial “root” using the global best A B C D E F D. Walker, Visualising Multi-objective Populations with Treemaps. In Proc. Genetic and Evolutionary Computation Conference (GECCO 2015) Companion Volume, 963–970, 2015. David Walker Visualising Multi-objective Data 8th March 2017 15 / 17
  • 21. Dominance trees Step 1: Pareto sorting Construct a partial ordering of individuals using Pareto sorting – this results in a graph Set 2: Prune edges using dominance distance Remove edges such that each node has exactly one parent node (retain the parent with the smallest dominance distance) and insert an artificial “root” using the global best A B C D E F nr A B C D E F D. Walker, Visualising Multi-objective Populations with Treemaps. In Proc. Genetic and Evolutionary Computation Conference (GECCO 2015) Companion Volume, 963–970, 2015. David Walker Visualising Multi-objective Data 8th March 2017 15 / 17
  • 22. Circular Treemaps Good University Guide Oxford SOAS Water Quality Analysis David Walker Visualising Multi-objective Data 8th March 2017 16 / 17
  • 23. Summary Performance data Performance data is ubiquitous University league tables, hospital performance, quality of life, water quality, optimisation. . . By visualising it we can better understand and make use of this data Visualisation Methods Pareto shells Seriation Treemaps David Walker Visualising Multi-objective Data 8th March 2017 17 / 17