Elizabeth  Murnane	
Information Visualization
—  What  is  information  visualization?	
—  What  are  visualizations  good  for?	
—  Design  guidelines  &  techniques	
—  HCI              Visualization              User  Goals	
—  Responsibilities,  considerations,  alternate  solutions	
Today’s Plan
—  What  is  information  visualization?	
—  What  are  visualizations  good  for?	
—  Design  guidelines  &  techniques	
—  HCI              Visualization              User  Goals	
—  Responsibilities,  considerations,  alternate  solutions	
Today’s Plan
—  What  is  information  visualization?	
—  What  are  visualizations  good  for?	
—  Design  guidelines  &  techniques	
—  HCI              Visualization              User  Goals	
—  Responsibilities,  considerations,  alternate  solutions	
Today’s Plan
—  What  is  information  visualization?	
—  What  are  visualizations  good  for?	
—  Design  guidelines  &  techniques	
—  HCI              Visualization              User  Goals	
—  Responsibilities,  considerations,  alternate  solutions	
Today’s Plan
—  What  is  information  visualization?	
—  What  are  visualizations  good  for?	
—  Design  guidelines  &  techniques	
—  HCI              Visualization              User  Goals	
—  Responsibilities,  considerations,  alternate  solutions	
Today’s Plan
—  What  is  information  visualization?	
—  What  are  visualizations  good  for?	
—  Design  guidelines  &  techniques	
—  HCI              Visualization              User  Goals	
—  Responsibilities,  considerations,  alternate  solutions	
—  Have  fun!	
◦  Playing  with,  brainstorming  about,  and  evaluating  
visualizations	
Today’s Plan
—  Visualization:  “The  use  of  computer-­‐‑supported,  
interactive,  visual  representations  of  data  to  amplify  
cognition”  (Card  et  al.,  1998)	
—  Graphical  depiction  of  understandable  information	
◦  Transformation  of  data  to  information	
—  Mental  models	
—  Creates  an  “artificial  memory  that  best  supports  our  
natural  means  of  perception”  (Bertin)	
Key Concepts
—  Reason  about,  communicate,  document,  and  
preserve  knowledge  (Tufte)	
—  Quickly  understand  and  assimilate  information	
—  Gain  and  share  insights	
◦  Discovery  and  decision-­‐‑making	
◦  Explanation  and  dissemination	
—  Purpose  is  not  the  visualizations  themselves	
Why do we use visualizations?
—  Analyzing  information	
◦  Discover  paZerns  and  explore  trends	
◦  Determine  underlying  factors  and  notice  relationships	
◦  Reason,  plan,  problem-­‐‑solve	
—  Communicating  information	
◦  Present,  explain,  illustrate	
◦  Point  out  key  aspects  &  minimize  less  relevant  details	
◦  Education	
Viz Types: Viewing vs. Creating
An interactive meta-viz of Viz
Ralph  Lengler  &  Martin  J.  Eppler,  Towards  A  Periodic  
Table  of  Visualization  Methods  for  Management,  2007.	
Interactive  version  at:  www.visual-­‐‑literacy.org
—  Handle  the  expanding  volume  and  diversity  of  data	
—  Summarize,  organize,  and  incorporate  multiple  
layers  of  information  into  single  illustration	
—  An  aesthetic  and  appealing  format  makes  
comprehension  process  more  enjoyable	
Power of Visualization
Some classic examples
Napoleon’s March – Minard,1861
—  Illustrates  multiple  facets  of  the  data  (i.e.,  
geography,  time,  temperature,  army  size,  direction  
of  movement)	
—    Also  serves  as  a  record  of  the  data	
Napoleon’s March – Minard,1861
Cholera Epidemic
—  Norman:  “The  power  of  the  unaided  mind  is  highly  
overrated”	
—  Visualizations  aid  thinking	
◦  Increase  human  perceptual  processing  and  aZention	
◦  Expand  our  working  memory	
◦  Reduce  the  search  for  information	
◦  Enhance  our  ability  to  recognize  paZerns	
◦  Help  us  notice  irregularities  and  anomalies	
Amplifying Human Cognition
—  Multiply  66  x  43  in  your  head	
Multiplication
—  Multiply  66  x  43  in  your  head	
—  Multiply  66  x  43  on  paper	
Multiplication
—  Multiply  66  x  43  in  your  head	
—  Multiply  66  x  43  on  paper	
—  People  perform  5  times  faster  with  the  visual  aid	
Multiplication
—  Norman:  “The  power  of  the  unaided  mind  is  highly  
overrated”	
—  Visualizations  aid  thinking	
◦  Increase  human  perceptual  processing  and  aZention	
◦  Expand  our  working  memory	
◦  Reduce  the  search  for  information	
◦  Enhance  our  ability  to  recognize  paZerns	
◦  Help  us  notice  irregularities  and  anomalies	
Amplifying Human Cognition
What’s interesting here?
What’s interesting here?
Revealing Correlation
Revealing Outliers
v HCI+Viz:  Orient  visualizations  around  users  and  tasks,  
not  visualizations  themselves	
v Schneiderman  /  Carr	
—  Overview	
—  Zoom	
—  Filter	
—  Details-­‐‑on-­‐‑demand	
—  Relate	
—  History	
—  Extract	
Fulfilling User Tasks
v  Metaphors	
v  Tufte’s  Rules	
v  Gestalt  theories  of  form  and  configuration	
v  CRAP:  Contrast,  Repetition,  Alignment,  Proximity	
	
—  Utilize  multi-­‐‑functioning  graphical  elements	
◦  intuitive  cues  that  convey  information	
◦  meaning  through  shape,  size,  location,  color,  orientation,  motion	
—  Use  small  multiples	
◦  repetition,  similarity,  invite  comparison	
—  Show  process  and  causality	
—  Separate  and  layer	
◦  stratify,  order,  relate	
—  Use  color  effectively	
◦  highlight,  distinguish,  show  selection	
—  Avoid  extraneous  “junk”  components  that  add  cluZer  and  confusion	
◦  information  overload,  disruptive  with  no  purpose,  “above  all,  do  no  harm”	
Some Principles for Viz Design
Info Viz by Liz
Infographic Advertising from Honda
—  Informative  /  Aesthetic	
—  Dynamic  /  Static	
—  Interactivity	
—  Appropriateness  given  data,  domain,  application	
—  Alternative  sensory  inputs	
—  Social  visualization  &  transparency,  ambiguity,  
behavior	
Considerations and Choices
Info Viz by Liz
Baby Name Voyager
Facebook Friend Wheel
—  Schneiderman:  "ʺStatistics  alone  are  dangerous  and  they  
hide  a  lot”	
◦  Viz  can  help  reveal  problems  otherwise  hard  to  detect	
—  Heer:  Important  we  also  uncover,  assess,  and  verify  a    
visualization’s  credibility	
◦  Provide  interactivity  and  feedback	
—  Tufte:  “Graphical  integrity”	
—  Lie  Factor  &  exaggeration	
—  Careful  of  size,  area,  volume,  perspective,  baseline,  context	
—  Distortion  ever  useful?	
	
Truth in Visualization
Misleading Graphics
Stock  Market  Crash?!
Show full scale
Show context
—  Values  and  goals	
—  Good,  bad,  interesting,  effective,  informative,  overly  
complicated,  visually  appealing?	
—  Appropriate  graphical  representation  for  the  data?	
—  Who  are  the  users?	
—  Accessibility	
—  Methods  of  evaluation	
—  Testing  designs  with  people	
Evaluating Visualizations
Treemap
Info Viz by Liz
US Presidential Speeches Tag Cloud
Info Viz by Liz
isbarackobamathepresident.com
Oakland Crimespotting
hZp://oakland.crimespoZing.org/
—  hZp://visual.ly/	
◦  Info  graphics  &  data  viz  centered  community	
◦  Search  and  explore  visualizations  for  information  and  inspiration,  set  up  a  portfolio  
of  your  own  work  to  share,  and  follow  and  connect  with  other  designers	
◦  Offers  blog  with  posts  about  trends,  tools,  tips,  opportunities,  and  stories	
—  hZp://www.visualizing.org/	
◦  View  a  gallery  of  visualizations  or  upload  and  showcase  your  own	
◦  Enter  challenges  to  create  visualizations  from  a  given  dataset.  New  challenges  open  
up  all  the  time:  hZp://www.visualizing.org/contests/visualize-­‐‑us-­‐‑election	
—  hZp://www.google.com/publicdata/directory	
◦  Google'ʹs  visualization  engine  that  offers  an  online  tool  to  interactively  explore  and  
visualize  data.  	
◦  Use  public  datasets  from  around  the  world  or  upload  your  own  data	
—  hZp://www.informationisbeautiful.net/	
—  hZp://www.coolinfographics.com/	
—  hZp://infosthetics.com/	
Additional Resources

More Related Content

PPT
PPT
What Is Knowledge Management
PDF
Enhance, Scale and Accelerate Human Expertise with Augmented Intelligence
PPT
Public Partic Ntm 05 22 11
PPT
A Brief, Very Brief, Introduction to Task Based Models
PDF
Info design Urban week1-3
PPTX
What is Information Architecture and How Can It Help My Website?
PDF
Data+Design
What Is Knowledge Management
Enhance, Scale and Accelerate Human Expertise with Augmented Intelligence
Public Partic Ntm 05 22 11
A Brief, Very Brief, Introduction to Task Based Models
Info design Urban week1-3
What is Information Architecture and How Can It Help My Website?
Data+Design

What's hot (13)

PDF
August Designstorm: Alternative Reporting Formats
PPTX
Introduction to Knowledge Management
PDF
Information Architecture Workshop
PPT
Km In The Public Sector Satst
PDF
Humans and Intelligent Machines - The Cognitive Fabric Agenda
PDF
Thought Leadership And Wisdom London
PDF
Information Outlook Journey Mapping Article - "Connecting People To Other Peo...
PDF
Storytelling & Knowledge Management
PDF
Team building insights from artificial intelligence
PPTX
Eliciting Tacit Knowledge for Learning
PPTX
IT Leadership: The People Domain
PPT
Strategic Management
PPTX
Building Strategy Using Data-Derived Insights: Major Gifts
August Designstorm: Alternative Reporting Formats
Introduction to Knowledge Management
Information Architecture Workshop
Km In The Public Sector Satst
Humans and Intelligent Machines - The Cognitive Fabric Agenda
Thought Leadership And Wisdom London
Information Outlook Journey Mapping Article - "Connecting People To Other Peo...
Storytelling & Knowledge Management
Team building insights from artificial intelligence
Eliciting Tacit Knowledge for Learning
IT Leadership: The People Domain
Strategic Management
Building Strategy Using Data-Derived Insights: Major Gifts
Ad

Similar to Info Viz by Liz (20)

PDF
An Introduction To Information Design Coates Kathryn Ellison
PDF
An Introduction To Information Design Coates Kathryn Ellison
PDF
Data Visualization - Psychological and Analytical Tricks
PDF
Data visualization introduction
PPTX
Ideation through research
PPTX
Data visualization research project
PDF
Deep Customer Insights, Laurea, October 2015
PDF
Data Visualisation Literacy - Learning to See
PDF
The Best from the UX Summit in Chicago
PDF
Social Media Measurement by Daniel Backhaus at Infuz
PDF
SMART Seminar Series: Learning Journeys – Making learning visible in developi...
PDF
Finding, Evaluating, Understanding, and Using Information: Information Litera...
PDF
Introduction to Data Visualisation
PDF
Inclusive design workshop
PPTX
Systemic Learning Analytics Symposium, October 10th 2013
PDF
Meandering in-civic-intelligence.reduced
PPTX
Infographics for the social sector webinar
PPTX
Allstate Foundation
PDF
Data is love data viz best practices
An Introduction To Information Design Coates Kathryn Ellison
An Introduction To Information Design Coates Kathryn Ellison
Data Visualization - Psychological and Analytical Tricks
Data visualization introduction
Ideation through research
Data visualization research project
Deep Customer Insights, Laurea, October 2015
Data Visualisation Literacy - Learning to See
The Best from the UX Summit in Chicago
Social Media Measurement by Daniel Backhaus at Infuz
SMART Seminar Series: Learning Journeys – Making learning visible in developi...
Finding, Evaluating, Understanding, and Using Information: Information Litera...
Introduction to Data Visualisation
Inclusive design workshop
Systemic Learning Analytics Symposium, October 10th 2013
Meandering in-civic-intelligence.reduced
Infographics for the social sector webinar
Allstate Foundation
Data is love data viz best practices
Ad

Recently uploaded (20)

PDF
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
PDF
CloudStack 4.21: First Look Webinar slides
PDF
UiPath Agentic Automation session 1: RPA to Agents
PDF
Credit Without Borders: AI and Financial Inclusion in Bangladesh
PDF
Produktkatalog für HOBO Datenlogger, Wetterstationen, Sensoren, Software und ...
PDF
A proposed approach for plagiarism detection in Myanmar Unicode text
DOCX
search engine optimization ppt fir known well about this
PDF
Hindi spoken digit analysis for native and non-native speakers
PPT
Module 1.ppt Iot fundamentals and Architecture
PPTX
2018-HIPAA-Renewal-Training for executives
PPTX
Custom Battery Pack Design Considerations for Performance and Safety
PDF
Five Habits of High-Impact Board Members
PDF
Taming the Chaos: How to Turn Unstructured Data into Decisions
PDF
STKI Israel Market Study 2025 version august
PDF
Architecture types and enterprise applications.pdf
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PPTX
Microsoft Excel 365/2024 Beginner's training
PDF
1 - Historical Antecedents, Social Consideration.pdf
PPTX
Configure Apache Mutual Authentication
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
CloudStack 4.21: First Look Webinar slides
UiPath Agentic Automation session 1: RPA to Agents
Credit Without Borders: AI and Financial Inclusion in Bangladesh
Produktkatalog für HOBO Datenlogger, Wetterstationen, Sensoren, Software und ...
A proposed approach for plagiarism detection in Myanmar Unicode text
search engine optimization ppt fir known well about this
Hindi spoken digit analysis for native and non-native speakers
Module 1.ppt Iot fundamentals and Architecture
2018-HIPAA-Renewal-Training for executives
Custom Battery Pack Design Considerations for Performance and Safety
Five Habits of High-Impact Board Members
Taming the Chaos: How to Turn Unstructured Data into Decisions
STKI Israel Market Study 2025 version august
Architecture types and enterprise applications.pdf
Zenith AI: Advanced Artificial Intelligence
A contest of sentiment analysis: k-nearest neighbor versus neural network
Microsoft Excel 365/2024 Beginner's training
1 - Historical Antecedents, Social Consideration.pdf
Configure Apache Mutual Authentication

Info Viz by Liz

  • 2. —  What  is  information  visualization? —  What  are  visualizations  good  for? —  Design  guidelines  &  techniques —  HCI              Visualization              User  Goals —  Responsibilities,  considerations,  alternate  solutions Today’s Plan
  • 3. —  What  is  information  visualization? —  What  are  visualizations  good  for? —  Design  guidelines  &  techniques —  HCI              Visualization              User  Goals —  Responsibilities,  considerations,  alternate  solutions Today’s Plan
  • 4. —  What  is  information  visualization? —  What  are  visualizations  good  for? —  Design  guidelines  &  techniques —  HCI              Visualization              User  Goals —  Responsibilities,  considerations,  alternate  solutions Today’s Plan
  • 5. —  What  is  information  visualization? —  What  are  visualizations  good  for? —  Design  guidelines  &  techniques —  HCI              Visualization              User  Goals —  Responsibilities,  considerations,  alternate  solutions Today’s Plan
  • 6. —  What  is  information  visualization? —  What  are  visualizations  good  for? —  Design  guidelines  &  techniques —  HCI              Visualization              User  Goals —  Responsibilities,  considerations,  alternate  solutions Today’s Plan
  • 7. —  What  is  information  visualization? —  What  are  visualizations  good  for? —  Design  guidelines  &  techniques —  HCI              Visualization              User  Goals —  Responsibilities,  considerations,  alternate  solutions —  Have  fun! ◦  Playing  with,  brainstorming  about,  and  evaluating   visualizations Today’s Plan
  • 8. —  Visualization:  “The  use  of  computer-­‐‑supported,   interactive,  visual  representations  of  data  to  amplify   cognition”  (Card  et  al.,  1998) —  Graphical  depiction  of  understandable  information ◦  Transformation  of  data  to  information —  Mental  models —  Creates  an  “artificial  memory  that  best  supports  our   natural  means  of  perception”  (Bertin) Key Concepts
  • 9. —  Reason  about,  communicate,  document,  and   preserve  knowledge  (Tufte) —  Quickly  understand  and  assimilate  information —  Gain  and  share  insights ◦  Discovery  and  decision-­‐‑making ◦  Explanation  and  dissemination —  Purpose  is  not  the  visualizations  themselves Why do we use visualizations?
  • 10. —  Analyzing  information ◦  Discover  paZerns  and  explore  trends ◦  Determine  underlying  factors  and  notice  relationships ◦  Reason,  plan,  problem-­‐‑solve —  Communicating  information ◦  Present,  explain,  illustrate ◦  Point  out  key  aspects  &  minimize  less  relevant  details ◦  Education Viz Types: Viewing vs. Creating
  • 11. An interactive meta-viz of Viz Ralph  Lengler  &  Martin  J.  Eppler,  Towards  A  Periodic   Table  of  Visualization  Methods  for  Management,  2007. Interactive  version  at:  www.visual-­‐‑literacy.org
  • 12. —  Handle  the  expanding  volume  and  diversity  of  data —  Summarize,  organize,  and  incorporate  multiple   layers  of  information  into  single  illustration —  An  aesthetic  and  appealing  format  makes   comprehension  process  more  enjoyable Power of Visualization
  • 14. Napoleon’s March – Minard,1861
  • 15. —  Illustrates  multiple  facets  of  the  data  (i.e.,   geography,  time,  temperature,  army  size,  direction   of  movement) —   Also  serves  as  a  record  of  the  data Napoleon’s March – Minard,1861
  • 17. —  Norman:  “The  power  of  the  unaided  mind  is  highly   overrated” —  Visualizations  aid  thinking ◦  Increase  human  perceptual  processing  and  aZention ◦  Expand  our  working  memory ◦  Reduce  the  search  for  information ◦  Enhance  our  ability  to  recognize  paZerns ◦  Help  us  notice  irregularities  and  anomalies Amplifying Human Cognition
  • 18. —  Multiply  66  x  43  in  your  head Multiplication
  • 19. —  Multiply  66  x  43  in  your  head —  Multiply  66  x  43  on  paper Multiplication
  • 20. —  Multiply  66  x  43  in  your  head —  Multiply  66  x  43  on  paper —  People  perform  5  times  faster  with  the  visual  aid Multiplication
  • 21. —  Norman:  “The  power  of  the  unaided  mind  is  highly   overrated” —  Visualizations  aid  thinking ◦  Increase  human  perceptual  processing  and  aZention ◦  Expand  our  working  memory ◦  Reduce  the  search  for  information ◦  Enhance  our  ability  to  recognize  paZerns ◦  Help  us  notice  irregularities  and  anomalies Amplifying Human Cognition
  • 26. v HCI+Viz:  Orient  visualizations  around  users  and  tasks,   not  visualizations  themselves v Schneiderman  /  Carr —  Overview —  Zoom —  Filter —  Details-­‐‑on-­‐‑demand —  Relate —  History —  Extract Fulfilling User Tasks
  • 27. v  Metaphors v  Tufte’s  Rules v  Gestalt  theories  of  form  and  configuration v  CRAP:  Contrast,  Repetition,  Alignment,  Proximity —  Utilize  multi-­‐‑functioning  graphical  elements ◦  intuitive  cues  that  convey  information ◦  meaning  through  shape,  size,  location,  color,  orientation,  motion —  Use  small  multiples ◦  repetition,  similarity,  invite  comparison —  Show  process  and  causality —  Separate  and  layer ◦  stratify,  order,  relate —  Use  color  effectively ◦  highlight,  distinguish,  show  selection —  Avoid  extraneous  “junk”  components  that  add  cluZer  and  confusion ◦  information  overload,  disruptive  with  no  purpose,  “above  all,  do  no  harm” Some Principles for Viz Design
  • 30. —  Informative  /  Aesthetic —  Dynamic  /  Static —  Interactivity —  Appropriateness  given  data,  domain,  application —  Alternative  sensory  inputs —  Social  visualization  &  transparency,  ambiguity,   behavior Considerations and Choices
  • 34. —  Schneiderman:  "ʺStatistics  alone  are  dangerous  and  they   hide  a  lot” ◦  Viz  can  help  reveal  problems  otherwise  hard  to  detect —  Heer:  Important  we  also  uncover,  assess,  and  verify  a     visualization’s  credibility ◦  Provide  interactivity  and  feedback —  Tufte:  “Graphical  integrity” —  Lie  Factor  &  exaggeration —  Careful  of  size,  area,  volume,  perspective,  baseline,  context —  Distortion  ever  useful? Truth in Visualization
  • 38. —  Values  and  goals —  Good,  bad,  interesting,  effective,  informative,  overly   complicated,  visually  appealing? —  Appropriate  graphical  representation  for  the  data? —  Who  are  the  users? —  Accessibility —  Methods  of  evaluation —  Testing  designs  with  people Evaluating Visualizations
  • 45. —  hZp://visual.ly/ ◦  Info  graphics  &  data  viz  centered  community ◦  Search  and  explore  visualizations  for  information  and  inspiration,  set  up  a  portfolio   of  your  own  work  to  share,  and  follow  and  connect  with  other  designers ◦  Offers  blog  with  posts  about  trends,  tools,  tips,  opportunities,  and  stories —  hZp://www.visualizing.org/ ◦  View  a  gallery  of  visualizations  or  upload  and  showcase  your  own ◦  Enter  challenges  to  create  visualizations  from  a  given  dataset.  New  challenges  open   up  all  the  time:  hZp://www.visualizing.org/contests/visualize-­‐‑us-­‐‑election —  hZp://www.google.com/publicdata/directory ◦  Google'ʹs  visualization  engine  that  offers  an  online  tool  to  interactively  explore  and   visualize  data.   ◦  Use  public  datasets  from  around  the  world  or  upload  your  own  data —  hZp://www.informationisbeautiful.net/ —  hZp://www.coolinfographics.com/ —  hZp://infosthetics.com/ Additional Resources