SlideShare a Scribd company logo
Tools and Methods for
Improved Result Reproducibility in
Systems Biology (SEMS)
Department of Systems Biology and Bioinformatics
University of Rostock
Dagmar Waltemath, Martin Scharm, Ron Henkel, Olaf Wolkenhauer
e:Bio Kick-Off Meeting, 23-25 September 2013, Mainz
24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 1
24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 2
Reuse existing models.
0
20000
40000
60000
80000
100000
120000
0
100
200
300
400
500
600
700
800
900
Apr-05
Jul-05
Oct-05
Jan-06
Apr-06
Jul-06
Oct-06
Jan-07
Apr-07
Jul-07
Oct-07
Jan-08
Apr-08
Jul-08
Oct-08
Jan-09
Apr-09
Jul-09
Oct-09
Jan-10
Apr-10
Jul-10
Oct-10
Jan-11
Apr-11
Jul-11
Oct-11
Jan-12
NumberofAnnotations
NumberofModels
Models
Annotation
+ 140.811 derived models
(Models in BioModels Database; Figure courtesy Ron Henkel)
24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 3
Reproduce published results.
“[..] in Biomodels database the model BIOMD0000000139 and
BIOMD0000000140 are two different models and they are supposed to show
different results. Unfortunately simulating them [..] gives same result for
both the models. [..] “ (Quote: arvin mer on sbml-discuss)
(Figures produced in COPASI)
24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 4
SEMS – Improving result reproducibility
24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 5
"Quantitative models will be only as useful as
their access and reuse is easy for all scientists”
(Nicolas Le Novère, 2006)
Standard representation formats
(Fig. adapted from: Courtot, Waltemath et al. Nature MSB, 2011)
24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 6
Standard representation formats
NuML
SBRML
24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 7
(Fig. adapted from: Courtot, Waltemath et al. Nature MSB, 2011)
Standard representation formats
MAMO
NuML
SBRML
24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 8
(Fig. adapted from: Courtot, Waltemath et al. Nature MSB, 2011)
Data links
MAMO
NuML
SBRML
24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 9
(Fig. adapted from: Courtot, Waltemath et al. Nature MSB, 2011)
Data links
MAMO
NuML
SBRML
(Fig. adapted from: Courtot, Waltemath et al. Nature MSB, 2011)
24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 10
Project goals
1. Specify and establish a standard for the description of
simulation experiments (SED-ML) Waltemath et al. BMC Sys Biol (2011)
2. Develop methods for simulation management with focus on
model provenance Waltemath et al. Bioinformatics (2013)
3. Establish links between model-related data on storage level
Henkel et al. INFORMATIK2012 (2012)
4. Promote reproducible science
24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 11
Standard representation of simulation experiments
http://sed-ml.org/
24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 12
Model provenance
(Figure courtesy Martin Scharm)
24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 13
Model provenance: BiVeS & BudHat
http://budhat.sems.uni-rostock.de
VANTED
24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 14
ModelGraphs:Linking model-related data
(Fig.: Henkel et al. INFORMATIK2012 (2012))
(Figure courtesy Ron Henkel, COMBINE2013)
24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 15
Document
Tyson1991
Cell Cycle 6
var
C2 pM CellReaction3 CP
Uniprot:P04551 Uniprot:P04551 GO:0005623
Interpro:
IPR006670
isVersionOf
isVersion
hasPart
is
asProduct
asReactant isContainedIn
Pubmed:
1831270
Kegg Pathway
sce04111
isDescribedBy
is
EC-Code:
3.1.3.16
isVersionOf
Document
Tyson1991
Cell Cycle 6
var
C2 pM CellReaction3 CP
Uniprot:P04551 Uniprot:P04551 GO:0005623
Interpro:
IPR006670
isVersionOf
isVersion
hasPart
is
asProduct
asReactant isContainedIn
Pubmed:
1831270
Kegg Pathway
sce04111
isDescribedBy
is
EC-Code:
3.1.3.16
isVersionOf
Document
SEDML
Modelrefere
nce
Output
Datagenera
tor
Simulation Task
Variable
Variable
Document
Tyson_1991
C2 CP
time
environment
isDescribedBy Pubmed:
1831270
time timeCPC2 CP C2
is_connected is_connected
is_mapped_to
is_connected
SBO:
Ontology
SBO:0000
SBO:544 SBO:236SBO:231
isA
SBO:064 SBO:545SBO:004 SBO:003
http://sems.uni-rostock.de/projects/morre/
ModelGraphs:Linking model-related data
24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 16
Document
Tyson1991
Cell Cycle 6
var
C2 pM CellReaction3 CP
Uniprot:P04551 Uniprot:P04551 GO:0005623
Interpro:
IPR006670
isVersionOf
isVersion
hasPart
is
asProduct
asReactant isContainedIn
Pubmed:
1831270
Kegg Pathway
sce04111
isDescribedBy
is
EC-Code:
3.1.3.16
isVersionOf
Document
SEDML
Modelrefere
nce
Output
Datagenera
tor
Simulation Task
Variable
Variable
Document
Tyson_1991
C2 CP
time
environment
isDescribedBy Pubmed:
1831270
time timeCPC2 CP C2
is_connected is_connected
is_mapped_to
is_connected
SBO:
Ontology
SBO:0000
SBO:544 SBO:236SBO:231
isA
SBO:064 SBO:545SBO:004 SBO:003
Model
Publication
Annotation
Person
Simulation
Show me models by Tyson,
dealing with the Cell Cycle and
simulating concentration of cdc2!
Summary
24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 17
track development
store retrieve
rank
Retrieval
Ranking
Δ
Δ
Version 1
Version 2
latest
Version Control
Do
cu
me
ntTys
on
19
91
Cel
l
Cy
cle
6
var
C2 pM
Cel
l
Re
act
ion
3
CP
Unipr
ot:P0
4551
Unipr
ot:P0
4551
GO:0
0056
23
Inte
rpro
:
IPR
006
670
isVersion
Of
isVersion
hasPart
is
Pub
med:
1831
270
Kegg
Path
way
sce04
111
isDescrib
edBy
is
EC-
Code:
3.1.3.
16
isVersion
Of
Docu
ment
SEDM
L
Model
refere
nce
Outpu
t
Datag
enera
tor
Simul
ation
Task
Varia
ble
Varia
ble
Doc
ume
nt
Tyso
n_19
91
C2 CP
time
envi
ron
men
t
isDescribedBy
Pubm
ed:
183127
0
Pubm
ed:
183127
0
time timeCPC2 CP C2
Do
cu
me
ntTys
on
19
91
Cel
l
Cy
cle
6
var
C2 pM
Cel
l
Re
act
ion
3
CP
Unipr
ot:P0
4551
Unipr
ot:P0
4551
GO:0
0056
23
Inte
rpro
:
IPR
006
670
isVersion
Of
isVersion
hasPart
is
Pub
med:
1831
270
Kegg
Path
way
sce04
111
isDescrib
edBy
is
EC-
Code:
3.1.3.
16
isVersion
Of
Do
cu
me
ntTys
on
19
91
Cel
l
Cy
cle
6
var
C2 pM
Cel
l
Re
act
ion
3
CP
Unipr
ot:P0
4551
Unipr
ot:P0
4551
GO:0
0056
23
Inte
rpro
:
IPR
006
670
isVersion
Of
isVersion
hasPart
is
Pub
med:
1831
270
Kegg
Path
way
sce04
111
isDescrib
edBy
is
EC-
Code:
3.1.3.
16
isVersion
Of
Do
cu
me
ntTys
on
19
91
Cel
l
Cy
cle
6
var
C2 pM
Cel
l
Re
act
ion
3
CP
Unipr
ot:P0
4551
Unipr
ot:P0
4551
GO:0
0056
23
Inte
rpro
:
IPR
006
670
isVersion
Of
isVersion
hasPart
is
Pub
med:
1831
270
Kegg
Path
way
sce04
111
isDescrib
edBy
is
EC-
Code:
3.1.3.
16
isVersion
Of
Doc
ume
nt
Tyso
n_19
91
C2 CP
time
envi
ron
men
t
isDescribedBy
Pubm
ed:
183127
0
Pubm
ed:
183127
0
time timeCPC2 CP C2
Do
cu
me
ntTys
on
19
91
Cel
l
Cy
cle
6
var
C2 pM
Cel
l
Re
act
ion
3
CP
Unipr
ot:P0
4551
Unipr
ot:P0
4551
GO:0
0056
23
Inte
rpro
:
IPR
006
670
isVersion
Of
isVersion
hasPart
is
Pub
med:
1831
270
Kegg
Path
way
sce04
111
isDescrib
edBy
is
EC-
Code:
3.1.3.
16
isVersion
Of
Do
cu
me
ntTys
on
19
91
Cel
l
Cy
cle
6
var
C2 pM
Cel
l
Re
act
ion
3
CP
Unipr
ot:P0
4551
Unipr
ot:P0
4551
GO:0
0056
23
Inte
rpro
:
IPR
006
670
isVersion
Of
isVersion
hasPart
is
Pub
med:
1831
270
Kegg
Path
way
sce04
111
isDescrib
edBy
is
EC-
Code:
3.1.3.
16
isVersion
Of
Doc
ume
nt
Tyso
n_19
91
C2 CP
time
envi
ron
men
t
isDescribedBy
Pubm
ed:
183127
0
time timeCPC2 CP C2
Storage
Docu
ment
SEDM
L
Model
refere
nce
Outpu
t
Simul
ation
Task
Docu
ment
SEDM
L
Model
refere
nce
Outpu
t
Datag
enera
tor
Simul
ation
Task
Varia
ble
Varia
ble
Docu
ment
SEDM
L
Model
refere
nce
Outpu
t
Datag
enera
tor
Simul
ation
Task
http://sbml.org
Thank you for your attention!
SEMS group
Martin Scharm
Martin Peters
Markus Wolfien
Rebekka Alm
Olaf Wolkenhauer
Associated member
Ron Henkel
Collaborators
Falk Schreiber (IPK Gatersleben)
Christian Rosenke (University of Rostock)
Jon Olav Vik (UMB)
Jonathan Cooper (University of Oxford)
Tommy Yu (University of Auckland)
COMBINE
SED-ML Editors
biomodels.net
http://sems.uni-rostock.de/
@SemsProject
HERMES-
Forschungsförderung
der Universität Rostock

More Related Content

PDF
Modelling sample at SEMS from a graph perspective
PDF
Management of simulation studies in computational biology
PDF
Reproducibility, dissemination, and management of modeling results
PPTX
Modified apriori algorithm for frequent pattern mining
PPT
Template kick off-meeting
PDF
Model management tools for improved reproducibility in systems biology
PDF
Reproducibility of model-based results: standards, infrastructure, and recogn...
PDF
Adding value to scientific results: COMBINE standards & guidelines for system...
Modelling sample at SEMS from a graph perspective
Management of simulation studies in computational biology
Reproducibility, dissemination, and management of modeling results
Modified apriori algorithm for frequent pattern mining
Template kick off-meeting
Model management tools for improved reproducibility in systems biology
Reproducibility of model-based results: standards, infrastructure, and recogn...
Adding value to scientific results: COMBINE standards & guidelines for system...

Similar to e:Bio Kick-Off Meeting, SEMS (20)

PDF
Meta-Information for Bio-Models
PDF
Bio-Model Meta-Information and SED-ML
PDF
Short introduction to SED-ML
PDF
Data and model management in Systems Biology
PDF
Standards and tools for model management in biomedical research
PDF
Model Management in Systems Biology: Challenges – Approaches – Solutions
PDF
FAIR data management in biomedicine
PDF
Model management for systems biology projects
PDF
Model repositories and standard formats for model reusability
PDF
A new language for a new biology: How SBML and other tools are transforming m...
PDF
Simulation experiment descriptions and management
PPTX
Session ii g2 overview chemical modeling mmc
PDF
Data and Model Management for Systems Biology
PPT
20090219 The case for another systems biology modelling environment
PDF
Keynote ICSB 2014
PDF
Sems project overview
PDF
Standards and software: practical aids for reproducibility of computational r...
PDF
Creating a new language to support open innovation
PDF
Computational Approaches to Systems Biology
PDF
Applying the Scientific Method to Simulation Experiments
Meta-Information for Bio-Models
Bio-Model Meta-Information and SED-ML
Short introduction to SED-ML
Data and model management in Systems Biology
Standards and tools for model management in biomedical research
Model Management in Systems Biology: Challenges – Approaches – Solutions
FAIR data management in biomedicine
Model management for systems biology projects
Model repositories and standard formats for model reusability
A new language for a new biology: How SBML and other tools are transforming m...
Simulation experiment descriptions and management
Session ii g2 overview chemical modeling mmc
Data and Model Management for Systems Biology
20090219 The case for another systems biology modelling environment
Keynote ICSB 2014
Sems project overview
Standards and software: practical aids for reproducibility of computational r...
Creating a new language to support open innovation
Computational Approaches to Systems Biology
Applying the Scientific Method to Simulation Experiments
Ad

More from University Medicine Greifswald (13)

PDF
A guide to the COMBINE: Navigating through specifications, mailing lists and ...
PDF
When is a model FAIR – and why should we care?
PDF
COMBINE standards & tools: Getting model management right
PDF
2019 07-04-model reuse-bonn
PDF
Mehr Medizininformatik am Meer
PDF
Implementierung Graph-basierter Ansätze für das Management systembiologischer...
PDF
Using Neo4j technologies for the management of systems biology models
PDF
Identifying pattern in reaction networks of computational models
PDF
Extended support for standard graphical notations of biological networks in s...
PDF
Coming Soon: de.NBI and SBGN-ED @ SEMS
PDF
Masymos: Finding hidden treasures in model repositories
PDF
Possibilities for integrating model-related data in computational biology (DI...
PDF
SEMS: Model search and ranked Retrieval (Ron Henkel)
A guide to the COMBINE: Navigating through specifications, mailing lists and ...
When is a model FAIR – and why should we care?
COMBINE standards & tools: Getting model management right
2019 07-04-model reuse-bonn
Mehr Medizininformatik am Meer
Implementierung Graph-basierter Ansätze für das Management systembiologischer...
Using Neo4j technologies for the management of systems biology models
Identifying pattern in reaction networks of computational models
Extended support for standard graphical notations of biological networks in s...
Coming Soon: de.NBI and SBGN-ED @ SEMS
Masymos: Finding hidden treasures in model repositories
Possibilities for integrating model-related data in computational biology (DI...
SEMS: Model search and ranked Retrieval (Ron Henkel)
Ad

Recently uploaded (20)

PDF
Machine learning based COVID-19 study performance prediction
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Getting Started with Data Integration: FME Form 101
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Mushroom cultivation and it's methods.pdf
PDF
Accuracy of neural networks in brain wave diagnosis of schizophrenia
PDF
Empathic Computing: Creating Shared Understanding
PPTX
cloud_computing_Infrastucture_as_cloud_p
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PPTX
1. Introduction to Computer Programming.pptx
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PDF
Heart disease approach using modified random forest and particle swarm optimi...
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
Machine learning based COVID-19 study performance prediction
Network Security Unit 5.pdf for BCA BBA.
Mobile App Security Testing_ A Comprehensive Guide.pdf
Getting Started with Data Integration: FME Form 101
Building Integrated photovoltaic BIPV_UPV.pdf
Reach Out and Touch Someone: Haptics and Empathic Computing
Mushroom cultivation and it's methods.pdf
Accuracy of neural networks in brain wave diagnosis of schizophrenia
Empathic Computing: Creating Shared Understanding
cloud_computing_Infrastucture_as_cloud_p
A comparative analysis of optical character recognition models for extracting...
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Univ-Connecticut-ChatGPT-Presentaion.pdf
1. Introduction to Computer Programming.pptx
Spectral efficient network and resource selection model in 5G networks
MIND Revenue Release Quarter 2 2025 Press Release
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Group 1 Presentation -Planning and Decision Making .pptx
Heart disease approach using modified random forest and particle swarm optimi...
Diabetes mellitus diagnosis method based random forest with bat algorithm

e:Bio Kick-Off Meeting, SEMS

  • 1. Tools and Methods for Improved Result Reproducibility in Systems Biology (SEMS) Department of Systems Biology and Bioinformatics University of Rostock Dagmar Waltemath, Martin Scharm, Ron Henkel, Olaf Wolkenhauer e:Bio Kick-Off Meeting, 23-25 September 2013, Mainz 24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 1
  • 2. 24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 2
  • 4. Reproduce published results. “[..] in Biomodels database the model BIOMD0000000139 and BIOMD0000000140 are two different models and they are supposed to show different results. Unfortunately simulating them [..] gives same result for both the models. [..] “ (Quote: arvin mer on sbml-discuss) (Figures produced in COPASI) 24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 4
  • 5. SEMS – Improving result reproducibility 24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 5 "Quantitative models will be only as useful as their access and reuse is easy for all scientists” (Nicolas Le Novère, 2006)
  • 6. Standard representation formats (Fig. adapted from: Courtot, Waltemath et al. Nature MSB, 2011) 24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 6
  • 7. Standard representation formats NuML SBRML 24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 7 (Fig. adapted from: Courtot, Waltemath et al. Nature MSB, 2011)
  • 8. Standard representation formats MAMO NuML SBRML 24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 8 (Fig. adapted from: Courtot, Waltemath et al. Nature MSB, 2011)
  • 9. Data links MAMO NuML SBRML 24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 9 (Fig. adapted from: Courtot, Waltemath et al. Nature MSB, 2011)
  • 10. Data links MAMO NuML SBRML (Fig. adapted from: Courtot, Waltemath et al. Nature MSB, 2011) 24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 10
  • 11. Project goals 1. Specify and establish a standard for the description of simulation experiments (SED-ML) Waltemath et al. BMC Sys Biol (2011) 2. Develop methods for simulation management with focus on model provenance Waltemath et al. Bioinformatics (2013) 3. Establish links between model-related data on storage level Henkel et al. INFORMATIK2012 (2012) 4. Promote reproducible science 24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 11
  • 12. Standard representation of simulation experiments http://sed-ml.org/ 24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 12
  • 13. Model provenance (Figure courtesy Martin Scharm) 24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 13
  • 14. Model provenance: BiVeS & BudHat http://budhat.sems.uni-rostock.de VANTED 24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 14
  • 15. ModelGraphs:Linking model-related data (Fig.: Henkel et al. INFORMATIK2012 (2012)) (Figure courtesy Ron Henkel, COMBINE2013) 24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 15 Document Tyson1991 Cell Cycle 6 var C2 pM CellReaction3 CP Uniprot:P04551 Uniprot:P04551 GO:0005623 Interpro: IPR006670 isVersionOf isVersion hasPart is asProduct asReactant isContainedIn Pubmed: 1831270 Kegg Pathway sce04111 isDescribedBy is EC-Code: 3.1.3.16 isVersionOf Document Tyson1991 Cell Cycle 6 var C2 pM CellReaction3 CP Uniprot:P04551 Uniprot:P04551 GO:0005623 Interpro: IPR006670 isVersionOf isVersion hasPart is asProduct asReactant isContainedIn Pubmed: 1831270 Kegg Pathway sce04111 isDescribedBy is EC-Code: 3.1.3.16 isVersionOf Document SEDML Modelrefere nce Output Datagenera tor Simulation Task Variable Variable Document Tyson_1991 C2 CP time environment isDescribedBy Pubmed: 1831270 time timeCPC2 CP C2 is_connected is_connected is_mapped_to is_connected SBO: Ontology SBO:0000 SBO:544 SBO:236SBO:231 isA SBO:064 SBO:545SBO:004 SBO:003 http://sems.uni-rostock.de/projects/morre/
  • 16. ModelGraphs:Linking model-related data 24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 16 Document Tyson1991 Cell Cycle 6 var C2 pM CellReaction3 CP Uniprot:P04551 Uniprot:P04551 GO:0005623 Interpro: IPR006670 isVersionOf isVersion hasPart is asProduct asReactant isContainedIn Pubmed: 1831270 Kegg Pathway sce04111 isDescribedBy is EC-Code: 3.1.3.16 isVersionOf Document SEDML Modelrefere nce Output Datagenera tor Simulation Task Variable Variable Document Tyson_1991 C2 CP time environment isDescribedBy Pubmed: 1831270 time timeCPC2 CP C2 is_connected is_connected is_mapped_to is_connected SBO: Ontology SBO:0000 SBO:544 SBO:236SBO:231 isA SBO:064 SBO:545SBO:004 SBO:003 Model Publication Annotation Person Simulation Show me models by Tyson, dealing with the Cell Cycle and simulating concentration of cdc2!
  • 17. Summary 24.09.2013 e:Bio SEMS | sems.uni-rostock.de | Dagmar Waltemath 17 track development store retrieve rank Retrieval Ranking Δ Δ Version 1 Version 2 latest Version Control Do cu me ntTys on 19 91 Cel l Cy cle 6 var C2 pM Cel l Re act ion 3 CP Unipr ot:P0 4551 Unipr ot:P0 4551 GO:0 0056 23 Inte rpro : IPR 006 670 isVersion Of isVersion hasPart is Pub med: 1831 270 Kegg Path way sce04 111 isDescrib edBy is EC- Code: 3.1.3. 16 isVersion Of Docu ment SEDM L Model refere nce Outpu t Datag enera tor Simul ation Task Varia ble Varia ble Doc ume nt Tyso n_19 91 C2 CP time envi ron men t isDescribedBy Pubm ed: 183127 0 Pubm ed: 183127 0 time timeCPC2 CP C2 Do cu me ntTys on 19 91 Cel l Cy cle 6 var C2 pM Cel l Re act ion 3 CP Unipr ot:P0 4551 Unipr ot:P0 4551 GO:0 0056 23 Inte rpro : IPR 006 670 isVersion Of isVersion hasPart is Pub med: 1831 270 Kegg Path way sce04 111 isDescrib edBy is EC- Code: 3.1.3. 16 isVersion Of Do cu me ntTys on 19 91 Cel l Cy cle 6 var C2 pM Cel l Re act ion 3 CP Unipr ot:P0 4551 Unipr ot:P0 4551 GO:0 0056 23 Inte rpro : IPR 006 670 isVersion Of isVersion hasPart is Pub med: 1831 270 Kegg Path way sce04 111 isDescrib edBy is EC- Code: 3.1.3. 16 isVersion Of Do cu me ntTys on 19 91 Cel l Cy cle 6 var C2 pM Cel l Re act ion 3 CP Unipr ot:P0 4551 Unipr ot:P0 4551 GO:0 0056 23 Inte rpro : IPR 006 670 isVersion Of isVersion hasPart is Pub med: 1831 270 Kegg Path way sce04 111 isDescrib edBy is EC- Code: 3.1.3. 16 isVersion Of Doc ume nt Tyso n_19 91 C2 CP time envi ron men t isDescribedBy Pubm ed: 183127 0 Pubm ed: 183127 0 time timeCPC2 CP C2 Do cu me ntTys on 19 91 Cel l Cy cle 6 var C2 pM Cel l Re act ion 3 CP Unipr ot:P0 4551 Unipr ot:P0 4551 GO:0 0056 23 Inte rpro : IPR 006 670 isVersion Of isVersion hasPart is Pub med: 1831 270 Kegg Path way sce04 111 isDescrib edBy is EC- Code: 3.1.3. 16 isVersion Of Do cu me ntTys on 19 91 Cel l Cy cle 6 var C2 pM Cel l Re act ion 3 CP Unipr ot:P0 4551 Unipr ot:P0 4551 GO:0 0056 23 Inte rpro : IPR 006 670 isVersion Of isVersion hasPart is Pub med: 1831 270 Kegg Path way sce04 111 isDescrib edBy is EC- Code: 3.1.3. 16 isVersion Of Doc ume nt Tyso n_19 91 C2 CP time envi ron men t isDescribedBy Pubm ed: 183127 0 time timeCPC2 CP C2 Storage Docu ment SEDM L Model refere nce Outpu t Simul ation Task Docu ment SEDM L Model refere nce Outpu t Datag enera tor Simul ation Task Varia ble Varia ble Docu ment SEDM L Model refere nce Outpu t Datag enera tor Simul ation Task http://sbml.org
  • 18. Thank you for your attention! SEMS group Martin Scharm Martin Peters Markus Wolfien Rebekka Alm Olaf Wolkenhauer Associated member Ron Henkel Collaborators Falk Schreiber (IPK Gatersleben) Christian Rosenke (University of Rostock) Jon Olav Vik (UMB) Jonathan Cooper (University of Oxford) Tommy Yu (University of Auckland) COMBINE SED-ML Editors biomodels.net http://sems.uni-rostock.de/ @SemsProject HERMES- Forschungsförderung der Universität Rostock