SlideShare a Scribd company logo
Recognition of hidden patterns in financial
datasets
The wavelet approach
Boryana Bogdanova, PhD
Department of Statistics and Econometrics,
Faculty of Economics and Business
Administration, Sofia University
bpelova@gmail.com
https://www.researchgate.net/profile/Boryana
_Bogdanova
Wavelet analysis of financial datasets
Popular filters for financial time series
Popular filters for financial time series
Financial data through the lens of the wavelet transform
6 months
…………………
2 years
1 day
…………………
Time
series
Wavelet analysis of financial datasets
Wavelet filtering
• The function 𝜓 𝑡 is a wavelet if:
• 𝜓 𝑡 is decaying sufficiently fast;
• Ψ 0 = −∞
∞
𝜓 𝑡 𝑑𝑡 = 0
Some typical wavelets
Main reference and toolbox
Aguiar-Conraria, L. & Soares, M., 2014. The continuous wavelet
transform: moving beyond uni-and bivariate analysis. Journal of
Economic Surveys, 28(2), pp. 344-75.
5 year cyclic component
2-year cyclic component
5 year cyclic component
2-year cyclic component
5 year cyclic component
2-year with a break to 3-year cyclic component
5 year cyclic component
2-year with a break to 3-year cyclic component
The Continuous Wavelet Transform
𝜓 𝑡
𝜓𝜏,𝑠 =
1
𝑠
𝜓
𝑡 − 𝜏
𝑠
, 𝑠, 𝜏 ∈ ℝ, 𝑠 ≠ 0
𝑊𝑥;𝜓 𝜏, 𝑠 =
−∞
∞
𝑥 𝑡
1
𝑠
𝜓∗
𝑡 − 𝜏
𝑠
𝑑𝑡
𝑊𝑃𝑆 𝑥 = 𝑊𝑥
2
Case I: NASDAQ structural patterns
Case II: Momentum analysis
J
K Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val
Winners 0.0323 7.1447 0.0000 0.0247 7.0244 0.0000 0.0229 7.5064 0.0000 0.0233 8.4151 0.0000 0.0226 8.8303 0.0000 0.0190 7.9918 0.0000
Losers 0.0177 4.7705 0.0000 0.0211 6.6860 0.0000 0.0223 7.8883 0.0000 0.0200 8.2088 0.0000 0.0199 8.4945 0.0000 0.0175 7.8737 0.0000
WML 0.0146 2.6522 0.0086 0.0036 0.9848 0.3259 0.0006 0.2507 0.8023 0.0033 2.0835 0.0385 0.0027 2.3467 0.0200 0.0015 1.7920 0.0751
Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val
Winners 0.0269 6.3134 0.0000 0.0236 6.7914 0.0000 0.0223 7.2336 0.0000 0.0232 8.3037 0.0000 0.0230 8.8314 0.0000 0.0192 8.0397 0.0000
Losers 0.0220 6.3427 0.0000 0.0231 7.1983 0.0000 0.0217 7.6831 0.0000 0.0194 8.2568 0.0000 0.0193 8.4815 0.0000 0.0169 7.9192 0.0000
WML 0.0049 0.9608 0.3378 0.0005 0.1331 0.8942 0.0006 0.2159 0.8293 0.0039 1.8690 0.0632 0.0037 2.3830 0.0182 0.0022 2.1851 0.0304
Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val
Winners 0.0204 5.3413 0.0000 0.0187 5.6522 0.0000 0.0212 6.5992 0.0000 0.0224 7.9281 0.0000 0.0227 8.2819 0.0000 0.0190 7.6339 0.0000
Losers 0.0228 6.5782 0.0000 0.0221 6.7299 0.0000 0.0185 6.7247 0.0000 0.0164 7.0421 0.0000 0.0173 8.0145 0.0000 0.0154 7.7591 0.0000
WML -0.0024 -0.5154 0.6068 -0.0034 -0.8658 0.3876 0.0027 0.8396 0.4021 0.0060 2.6236 0.0094 0.0054 2.7814 0.0060 0.0036 2.6212 0.0096
Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val
Winners 0.0241 6.0682 0.0000 0.0225 6.5348 0.0000 0.0225 6.8938 0.0000 0.0239 7.7602 0.0000 0.0236 8.0562 0.0000 0.0186 7.3310 0.0000
Losers 0.0181 5.6930 0.0000 0.0180 5.9843 0.0000 0.0143 5.7088 0.0000 0.0144 6.4174 0.0000 0.0153 7.0734 0.0000 0.0133 6.6971 0.0000
WML 0.0060 1.3296 0.1852 0.0045 1.1541 0.2498 0.0082 2.4471 0.0153 0.0094 3.1704 0.0018 0.0083 3.2157 0.0016 0.0054 2.8855 0.0045
Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val
Winners 0.0271 7.0184 0.0000 0.0257 7.2742 0.0000 0.0248 7.1517 0.0000 0.0239 7.2276 0.0000 0.0238 7.4947 0.0000 0.0179 6.5884 0.0000
Losers 0.0140 5.4076 0.0000 0.0145 5.7164 0.0000 0.0140 5.9406 0.0000 0.0135 6.0022 0.0000 0.0142 6.6320 0.0000 0.0116 5.7974 0.0000
WML 0.0131 3.1493 0.0019 0.0112 2.9654 0.0034 0.0108 2.9730 0.0033 0.0104 3.2030 0.0016 0.0095 3.3357 0.0010 0.0063 2.8391 0.0052
Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val
Winners 0.0237 5.9885 0.0000 0.0227 6.0682 0.0000 0.0234 6.4116 0.0000 0.0231 6.7986 0.0000 0.0217 6.7706 0.0000 0.0142 5.3461 0.0000
Losers 0.0114 4.7190 0.0000 0.0117 4.9251 0.0000 0.0109 4.7895 0.0000 0.0096 4.4271 0.0000 0.0095 4.5935 0.0000 0.0073 4.0119 0.0001
WML 0.0123 3.0589 0.0026 0.0110 3.0281 0.0028 0.0125 3.6440 0.0004 0.0134 4.2987 0.0000 0.0121 4.2779 0.0000 0.0069 2.8628 0.0049
1
2
4
8
1 2 4 8 13 26
13
26
Case II: Momentum analysis
J
K Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val
Winners 0.0039 1.4443 0.1499 -0.0022 -0.9564 0.3398 -0.0037 -1.8617 0.0638 -0.0040 -2.2884 0.0230 -0.0030 -1.8100 0.0716 -0.0024 -1.4614 0.1454
Losers -0.0017 -0.7157 0.4748 0.0029 1.2795 0.2019 0.0021 0.9777 0.3292 0.0003 0.1269 0.8991 -0.0005 -0.2589 0.7959 -0.0014 -0.7384 0.4611
WML 0.0056 1.9243 0.0554 -0.0051 -2.4068 0.0168 -0.0058 -4.9694 0.0000 -0.0042 -4.2570 0.0000 -0.0025 -2.6254 0.0092 -0.0010 -1.5703 0.1179
Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val
Winners -0.0051 -2.1201 0.0350 -0.0075 -3.8342 0.0002 -0.0063 -3.4597 0.0006 -0.0051 -2.9606 0.0034 -0.0037 -2.2322 0.0265 -0.0025 -1.5228 0.1293
Losers 0.0043 1.7003 0.0903 0.0057 2.3520 0.0194 0.0029 1.2652 0.2070 0.0012 0.5501 0.5827 0.0003 0.1352 0.8925 -0.0011 -0.5713 0.5684
WML -0.0094 -3.2411 0.0013 -0.0133 -6.3158 0.0000 -0.0092 -5.8404 0.0000 -0.0063 -4.7560 0.0000 -0.0040 -3.4845 0.0006 -0.0014 -1.9590 0.0514
Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val
Winners -0.0080 -3.1651 0.0017 -0.0089 -4.2518 0.0000 -0.0074 -3.9632 0.0001 -0.0047 -2.7821 0.0058 -0.0033 -2.0078 0.0458 -0.0021 -1.2909 0.1982
Losers 0.0068 2.6630 0.0082 0.0069 2.7406 0.0066 0.0033 1.3894 0.1660 0.0020 0.9015 0.3682 0.0002 0.1177 0.9064 -0.0011 -0.5600 0.5761
WML -0.0148 -5.1928 0.0000 -0.0159 -7.2208 0.0000 -0.0107 -5.9253 0.0000 -0.0067 -4.6062 0.0000 -0.0036 -2.9956 0.0030 -0.0010 -1.1963 0.2330
Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val
Winners -0.0090 -4.3041 0.0000 -0.0098 -4.9768 0.0000 -0.0070 -3.8889 0.0001 -0.0047 -2.8312 0.0050 -0.0032 -2.0262 0.0439 -0.0021 -1.3317 0.1845
Losers 0.0074 2.7496 0.0064 0.0065 2.4111 0.0166 0.0037 1.4941 0.1364 0.0012 0.5025 0.6158 -0.0008 -0.3786 0.7053 -0.0010 -0.5246 0.6004
WML -0.0165 -6.1991 0.0000 -0.0163 -6.7317 0.0000 -0.0107 -4.9861 0.0000 -0.0058 -3.0903 0.0022 -0.0024 -1.6427 0.1018 -0.0010 -0.9037 0.3672
Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val
Winners -0.0071 -3.7641 0.0002 -0.0074 -4.2318 0.0000 -0.0051 -3.0222 0.0028 -0.0033 -2.0159 0.0450 -0.0021 -1.3588 0.1756 -0.0013 -0.8516 0.3955
Losers 0.0051 1.9639 0.0507 0.0043 1.7052 0.0894 0.0024 1.0177 0.3098 -0.0003 -0.1345 0.8931 -0.0012 -0.5341 0.5938 -0.0006 -0.3217 0.7480
WML -0.0123 -4.7470 0.0000 -0.0118 -4.9468 0.0000 -0.0075 -3.4206 0.0007 -0.0030 -1.4182 0.1575 -0.0010 -0.5275 0.5984 -0.0007 -0.4486 0.6542
Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val
Winners -0.0030 -1.5814 0.1151 -0.0041 -2.2877 0.0231 -0.0031 -1.7892 0.0749 -0.0015 -0.9007 0.3687 -0.0004 -0.2703 0.7872 -0.0002 -0.1689 0.8661
Losers 0.0026 0.9858 0.3253 0.0025 0.9875 0.3244 0.0011 0.4463 0.6558 0.0004 0.1673 0.8673 0.0001 0.0387 0.9692 0.0011 0.5721 0.5679
WML -0.0056 -2.0451 0.0420 -0.0067 -2.5423 0.0117 -0.0042 -1.7141 0.0879 -0.0019 -0.8374 0.4033 -0.0005 -0.2455 0.8063 -0.0013 -0.7370 0.4620
1
2
4
8
1 2 4 8 13 26
13
26
Case II: Momentum analysis
Case II: Momentum analysis
Thank you for your attention!
Ivanov, I., Kabaivanov, S., Bogdanova, B., 2016. Stock market recovery from the 2008 financial
crisis: The differences across Europe. Research in International Business and Finance, 37(May
2016), pp. 360-74.
http://www.sciencedirect.com/science/article/pii/S027553191630006X
Impact metrics: 2016 SJR (Scopus): 0.694; 2016 Source normalized impact per paper: 1.819
Bogdanova, B. & Ivanov, I., 2015. A wavelet-based appraoch to the analysis and modelling of
financial time series exhibiting strong long-range dependence: the case of Southeast Europe.
Journal of Applied Statistics, 43(4), pp.655-73.
http://www.tandfonline.com/doi/full/10.1080/02664763.2015.1077370
Impact metrics: 2016 Impact factor (Thomson Reuters): 0.664
Bogdanova, B., 2015. A wavelet-based discussion on the Greek stock market integration during
the last decade. Journal of Engineering Science and Technology Review, 8(1), Special Issue on
Econophysics, pp. 8-11. http://www.jestr.org/downloads/Volume8Issue1/fulltext28115.pdf
Journal of Engineering Science and Technology Review is indexed SCOPUS, EBSCO, DOAJ, CERN, ACS.
Bogdanova, B. & Ivanov, I., 2014. Adaptive and relative efficiency of stock markets from
Southeastern Europe: a wavelet approach. Applied Financial Economics, 24(10), pp. 705-722,
http://www.tandfonline.com/doi/full/10.1080/09603107.2014.899669#.U2spB01ZrDc
Impact metrics: 2014 SJR (Scopus): 0.265
Bogdanova, B., 2014. The Crimean crisis through the lens of international stock market co-
movements. Vanguard Scientific Instruments in Management, 9(2), pp. 16-27.
http://vsim-journal.info/static_cont/vsim_e-journal_vol_09-2014-2_screen_ver2.pdf
Vanguard Scientific Instruments in Management is indexed in EBSCO and Google Scholar.
The Discrete Wavelet transform
• The following sampling rule is applied:
• 𝑠 = 2 𝑗 𝑎𝑛𝑑 𝜏 = 𝑘2 𝑗
• The father and the mother wavelet:
𝜙𝐽,𝑘 = 2−
𝐽
2 𝜙
𝑡−2 𝐽 𝑘
2 𝐽 ,
where −∞
∞
𝜙 𝑡 𝑑𝑡 = 1 , 𝐽 ∈ ℕ
𝜓𝑗,𝑘= 2−
𝑗
2 𝜓
𝑡−2 𝑗 𝑘
2 𝑗 , 𝑗 = 1,2, … , 𝐽 ,
where −∞
∞
𝜓 𝑡 𝑑𝑡 = 0 , 𝑠 = 2 𝑗
, 𝑗 = 1, … , 𝐽
The father and the mother wavelet
The DWT

More Related Content

PPTX
Natural Disasters Topic 4 (Earthquakes)
PPT
Plate tectonics
PPT
History Of The Earth
PPT
Factors that Affect Climate.ppt for climate
PPTX
Nuclear fusion, physics consept 1
DOC
Plate Boundaries Worksheet
PPTX
THE EARTH'S CRUST
PPTX
Disasters and Its Effects.pptx
Natural Disasters Topic 4 (Earthquakes)
Plate tectonics
History Of The Earth
Factors that Affect Climate.ppt for climate
Nuclear fusion, physics consept 1
Plate Boundaries Worksheet
THE EARTH'S CRUST
Disasters and Its Effects.pptx

Viewers also liked (9)

PPT
Crowdsourced hedge funds
PDF
Computer vision and image processing for dental products
PPTX
Real-time analytics with HBase
PDF
DBPedia-past-present-future
PDF
Real-time information analysis: social networks and open data
PPTX
The future of Big Data tooling
PPT
Tweeting beyond Facts – The Need for a Linguistic Perspective
PDF
Data science challenges in flight search
PPT
Big Data: Improving capacity utilization of transport companies
Crowdsourced hedge funds
Computer vision and image processing for dental products
Real-time analytics with HBase
DBPedia-past-present-future
Real-time information analysis: social networks and open data
The future of Big Data tooling
Tweeting beyond Facts – The Need for a Linguistic Perspective
Data science challenges in flight search
Big Data: Improving capacity utilization of transport companies
Ad

Similar to Wavelet analysis of financial datasets (20)

PPTX
R. De Santis, M. Fioramanti, A. Girardi, C. Pappalardo - The track record of...
PPTX
Excel Workbook for Treasury Bond Portfolio Management
PDF
Presentation on Optimal Portfolio Choice and the Valuation of Illiquid Securi...
PDF
RB 832.pdf
PDF
Basel II Risk Weighted Assets 2011
PDF
HW2_Joanne&Yeqi&Danlin
PDF
Hyundai 15P-7 Forklift Truck Service Repair Manual.pdf
PDF
Hyundai 40T-7 Forklift Truck Service Repair Manual.pdf
PDF
Financial_analysis_CTc
PDF
Equity Financing Capacity and Stock Returns: Evidence from China
PDF
07.3 credit ratings and fico scores
PDF
Indian Spectrum Auctions : Design Issues & Way Forward
PDF
Multi Objective Optimization of PMEDM Process Parameter by Topsis Method
DOC
(External ) macro economics(me 2)
PDF
Final Paper
PPTX
Aminullah assagaf mk19 ch 5
PDF
Chinaprecisionslewingbearingsspindlebearingstandembearings2
PDF
Improving the design of indian spectrum auctions
R. De Santis, M. Fioramanti, A. Girardi, C. Pappalardo - The track record of...
Excel Workbook for Treasury Bond Portfolio Management
Presentation on Optimal Portfolio Choice and the Valuation of Illiquid Securi...
RB 832.pdf
Basel II Risk Weighted Assets 2011
HW2_Joanne&Yeqi&Danlin
Hyundai 15P-7 Forklift Truck Service Repair Manual.pdf
Hyundai 40T-7 Forklift Truck Service Repair Manual.pdf
Financial_analysis_CTc
Equity Financing Capacity and Stock Returns: Evidence from China
07.3 credit ratings and fico scores
Indian Spectrum Auctions : Design Issues & Way Forward
Multi Objective Optimization of PMEDM Process Parameter by Topsis Method
(External ) macro economics(me 2)
Final Paper
Aminullah assagaf mk19 ch 5
Chinaprecisionslewingbearingsspindlebearingstandembearings2
Improving the design of indian spectrum auctions
Ad

More from Data Science Society (20)

PDF
[Data Meetup] Data Science in Finance - Factor Models in Finance
PDF
[Data Meetup] Data Science in Finance - Building a Quant ML pipeline
PPTX
[Data Meetup] Data Science in Journalism - Tanbih, QCRI and MIT
PPTX
Computer Vision in Real Estate
PPTX
ML in Proptech - Concept to Production
PPTX
Lessons Learned: Linked Open Data implemented in 2 Use Cases
PPT
AI methods for localization in noisy environment
PPTX
Object Identification and Detection Hackathon Solution
PPTX
Data Science for Open Innovation in SMEs and Large Corporations
PDF
Air Pollution in Sofia - Solution through Data Science by Kiwi team
PPTX
Machine Learning in Astrophysics
PPTX
#AcademiaDatathon Finlists' Solution of Crypto Datathon Case
PPTX
Coreference Extraction from Identric’s Documents - Solution of Datathon 2018
PDF
DNA Analytics - What does really goes into Sausages - Datathon2018 Solution
PDF
Relationships between research tasks and data structure (basic methods and a...
PDF
Data science tools - A.Marchev and K.Haralampiev
PDF
Problems of Application of Machine Learning in the CRM - panel
PDF
Disruptive as Usual: New Technologies and Data Value Professor Severino Mereg...
PDF
Intelligent Question Answering Using the Wisdom of the Crowd, Preslav Nakov
PDF
Master class Hristo Hadjitchonev - Aubg
[Data Meetup] Data Science in Finance - Factor Models in Finance
[Data Meetup] Data Science in Finance - Building a Quant ML pipeline
[Data Meetup] Data Science in Journalism - Tanbih, QCRI and MIT
Computer Vision in Real Estate
ML in Proptech - Concept to Production
Lessons Learned: Linked Open Data implemented in 2 Use Cases
AI methods for localization in noisy environment
Object Identification and Detection Hackathon Solution
Data Science for Open Innovation in SMEs and Large Corporations
Air Pollution in Sofia - Solution through Data Science by Kiwi team
Machine Learning in Astrophysics
#AcademiaDatathon Finlists' Solution of Crypto Datathon Case
Coreference Extraction from Identric’s Documents - Solution of Datathon 2018
DNA Analytics - What does really goes into Sausages - Datathon2018 Solution
Relationships between research tasks and data structure (basic methods and a...
Data science tools - A.Marchev and K.Haralampiev
Problems of Application of Machine Learning in the CRM - panel
Disruptive as Usual: New Technologies and Data Value Professor Severino Mereg...
Intelligent Question Answering Using the Wisdom of the Crowd, Preslav Nakov
Master class Hristo Hadjitchonev - Aubg

Recently uploaded (20)

PPTX
kyc aml guideline a detailed pt onthat.pptx
PPTX
FL INTRODUCTION TO AGRIBUSINESS CHAPTER 1
PPTX
Session 14-16. Capital Structure Theories.pptx
PDF
Understanding University Research Expenditures (1)_compressed.pdf
PDF
Q2 2025 :Lundin Gold Conference Call Presentation_Final.pdf
PPTX
Introduction to Customs (June 2025) v1.pptx
PDF
1a In Search of the Numbers ssrn 1488130 Oct 2009.pdf
PPTX
4.5.1 Financial Governance_Appropriation & Finance.pptx
PPTX
Session 11-13. Working Capital Management and Cash Budget.pptx
PPTX
social-studies-subject-for-high-school-globalization.pptx
PDF
Corporate Finance Fundamentals - Course Presentation.pdf
PDF
Copia de Minimal 3D Technology Consulting Presentation.pdf
PPTX
Session 3. Time Value of Money.pptx_finance
PDF
how_to_earn_50k_monthly_investment_guide.pdf
PDF
final_dropping_the_baton_-_how_america_is_failing_to_use_russia_sanctions_and...
PDF
Bladex Earnings Call Presentation 2Q2025
PPTX
The discussion on the Economic in transportation .pptx
PPT
E commerce busin and some important issues
PDF
Circular Flow of Income by Dr. S. Malini
PPTX
EABDM Slides for Indifference curve.pptx
kyc aml guideline a detailed pt onthat.pptx
FL INTRODUCTION TO AGRIBUSINESS CHAPTER 1
Session 14-16. Capital Structure Theories.pptx
Understanding University Research Expenditures (1)_compressed.pdf
Q2 2025 :Lundin Gold Conference Call Presentation_Final.pdf
Introduction to Customs (June 2025) v1.pptx
1a In Search of the Numbers ssrn 1488130 Oct 2009.pdf
4.5.1 Financial Governance_Appropriation & Finance.pptx
Session 11-13. Working Capital Management and Cash Budget.pptx
social-studies-subject-for-high-school-globalization.pptx
Corporate Finance Fundamentals - Course Presentation.pdf
Copia de Minimal 3D Technology Consulting Presentation.pdf
Session 3. Time Value of Money.pptx_finance
how_to_earn_50k_monthly_investment_guide.pdf
final_dropping_the_baton_-_how_america_is_failing_to_use_russia_sanctions_and...
Bladex Earnings Call Presentation 2Q2025
The discussion on the Economic in transportation .pptx
E commerce busin and some important issues
Circular Flow of Income by Dr. S. Malini
EABDM Slides for Indifference curve.pptx

Wavelet analysis of financial datasets

  • 1. Recognition of hidden patterns in financial datasets The wavelet approach Boryana Bogdanova, PhD Department of Statistics and Econometrics, Faculty of Economics and Business Administration, Sofia University bpelova@gmail.com https://www.researchgate.net/profile/Boryana _Bogdanova
  • 3. Popular filters for financial time series
  • 4. Popular filters for financial time series
  • 5. Financial data through the lens of the wavelet transform 6 months ………………… 2 years 1 day ………………… Time series
  • 7. Wavelet filtering • The function 𝜓 𝑡 is a wavelet if: • 𝜓 𝑡 is decaying sufficiently fast; • Ψ 0 = −∞ ∞ 𝜓 𝑡 𝑑𝑡 = 0
  • 9. Main reference and toolbox Aguiar-Conraria, L. & Soares, M., 2014. The continuous wavelet transform: moving beyond uni-and bivariate analysis. Journal of Economic Surveys, 28(2), pp. 344-75.
  • 10. 5 year cyclic component 2-year cyclic component
  • 11. 5 year cyclic component 2-year cyclic component
  • 12. 5 year cyclic component 2-year with a break to 3-year cyclic component
  • 13. 5 year cyclic component 2-year with a break to 3-year cyclic component
  • 14. The Continuous Wavelet Transform 𝜓 𝑡 𝜓𝜏,𝑠 = 1 𝑠 𝜓 𝑡 − 𝜏 𝑠 , 𝑠, 𝜏 ∈ ℝ, 𝑠 ≠ 0 𝑊𝑥;𝜓 𝜏, 𝑠 = −∞ ∞ 𝑥 𝑡 1 𝑠 𝜓∗ 𝑡 − 𝜏 𝑠 𝑑𝑡
  • 15. 𝑊𝑃𝑆 𝑥 = 𝑊𝑥 2
  • 16. Case I: NASDAQ structural patterns
  • 17. Case II: Momentum analysis J K Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Winners 0.0323 7.1447 0.0000 0.0247 7.0244 0.0000 0.0229 7.5064 0.0000 0.0233 8.4151 0.0000 0.0226 8.8303 0.0000 0.0190 7.9918 0.0000 Losers 0.0177 4.7705 0.0000 0.0211 6.6860 0.0000 0.0223 7.8883 0.0000 0.0200 8.2088 0.0000 0.0199 8.4945 0.0000 0.0175 7.8737 0.0000 WML 0.0146 2.6522 0.0086 0.0036 0.9848 0.3259 0.0006 0.2507 0.8023 0.0033 2.0835 0.0385 0.0027 2.3467 0.0200 0.0015 1.7920 0.0751 Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Winners 0.0269 6.3134 0.0000 0.0236 6.7914 0.0000 0.0223 7.2336 0.0000 0.0232 8.3037 0.0000 0.0230 8.8314 0.0000 0.0192 8.0397 0.0000 Losers 0.0220 6.3427 0.0000 0.0231 7.1983 0.0000 0.0217 7.6831 0.0000 0.0194 8.2568 0.0000 0.0193 8.4815 0.0000 0.0169 7.9192 0.0000 WML 0.0049 0.9608 0.3378 0.0005 0.1331 0.8942 0.0006 0.2159 0.8293 0.0039 1.8690 0.0632 0.0037 2.3830 0.0182 0.0022 2.1851 0.0304 Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Winners 0.0204 5.3413 0.0000 0.0187 5.6522 0.0000 0.0212 6.5992 0.0000 0.0224 7.9281 0.0000 0.0227 8.2819 0.0000 0.0190 7.6339 0.0000 Losers 0.0228 6.5782 0.0000 0.0221 6.7299 0.0000 0.0185 6.7247 0.0000 0.0164 7.0421 0.0000 0.0173 8.0145 0.0000 0.0154 7.7591 0.0000 WML -0.0024 -0.5154 0.6068 -0.0034 -0.8658 0.3876 0.0027 0.8396 0.4021 0.0060 2.6236 0.0094 0.0054 2.7814 0.0060 0.0036 2.6212 0.0096 Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Winners 0.0241 6.0682 0.0000 0.0225 6.5348 0.0000 0.0225 6.8938 0.0000 0.0239 7.7602 0.0000 0.0236 8.0562 0.0000 0.0186 7.3310 0.0000 Losers 0.0181 5.6930 0.0000 0.0180 5.9843 0.0000 0.0143 5.7088 0.0000 0.0144 6.4174 0.0000 0.0153 7.0734 0.0000 0.0133 6.6971 0.0000 WML 0.0060 1.3296 0.1852 0.0045 1.1541 0.2498 0.0082 2.4471 0.0153 0.0094 3.1704 0.0018 0.0083 3.2157 0.0016 0.0054 2.8855 0.0045 Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Winners 0.0271 7.0184 0.0000 0.0257 7.2742 0.0000 0.0248 7.1517 0.0000 0.0239 7.2276 0.0000 0.0238 7.4947 0.0000 0.0179 6.5884 0.0000 Losers 0.0140 5.4076 0.0000 0.0145 5.7164 0.0000 0.0140 5.9406 0.0000 0.0135 6.0022 0.0000 0.0142 6.6320 0.0000 0.0116 5.7974 0.0000 WML 0.0131 3.1493 0.0019 0.0112 2.9654 0.0034 0.0108 2.9730 0.0033 0.0104 3.2030 0.0016 0.0095 3.3357 0.0010 0.0063 2.8391 0.0052 Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Winners 0.0237 5.9885 0.0000 0.0227 6.0682 0.0000 0.0234 6.4116 0.0000 0.0231 6.7986 0.0000 0.0217 6.7706 0.0000 0.0142 5.3461 0.0000 Losers 0.0114 4.7190 0.0000 0.0117 4.9251 0.0000 0.0109 4.7895 0.0000 0.0096 4.4271 0.0000 0.0095 4.5935 0.0000 0.0073 4.0119 0.0001 WML 0.0123 3.0589 0.0026 0.0110 3.0281 0.0028 0.0125 3.6440 0.0004 0.0134 4.2987 0.0000 0.0121 4.2779 0.0000 0.0069 2.8628 0.0049 1 2 4 8 1 2 4 8 13 26 13 26
  • 18. Case II: Momentum analysis J K Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Winners 0.0039 1.4443 0.1499 -0.0022 -0.9564 0.3398 -0.0037 -1.8617 0.0638 -0.0040 -2.2884 0.0230 -0.0030 -1.8100 0.0716 -0.0024 -1.4614 0.1454 Losers -0.0017 -0.7157 0.4748 0.0029 1.2795 0.2019 0.0021 0.9777 0.3292 0.0003 0.1269 0.8991 -0.0005 -0.2589 0.7959 -0.0014 -0.7384 0.4611 WML 0.0056 1.9243 0.0554 -0.0051 -2.4068 0.0168 -0.0058 -4.9694 0.0000 -0.0042 -4.2570 0.0000 -0.0025 -2.6254 0.0092 -0.0010 -1.5703 0.1179 Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Winners -0.0051 -2.1201 0.0350 -0.0075 -3.8342 0.0002 -0.0063 -3.4597 0.0006 -0.0051 -2.9606 0.0034 -0.0037 -2.2322 0.0265 -0.0025 -1.5228 0.1293 Losers 0.0043 1.7003 0.0903 0.0057 2.3520 0.0194 0.0029 1.2652 0.2070 0.0012 0.5501 0.5827 0.0003 0.1352 0.8925 -0.0011 -0.5713 0.5684 WML -0.0094 -3.2411 0.0013 -0.0133 -6.3158 0.0000 -0.0092 -5.8404 0.0000 -0.0063 -4.7560 0.0000 -0.0040 -3.4845 0.0006 -0.0014 -1.9590 0.0514 Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Winners -0.0080 -3.1651 0.0017 -0.0089 -4.2518 0.0000 -0.0074 -3.9632 0.0001 -0.0047 -2.7821 0.0058 -0.0033 -2.0078 0.0458 -0.0021 -1.2909 0.1982 Losers 0.0068 2.6630 0.0082 0.0069 2.7406 0.0066 0.0033 1.3894 0.1660 0.0020 0.9015 0.3682 0.0002 0.1177 0.9064 -0.0011 -0.5600 0.5761 WML -0.0148 -5.1928 0.0000 -0.0159 -7.2208 0.0000 -0.0107 -5.9253 0.0000 -0.0067 -4.6062 0.0000 -0.0036 -2.9956 0.0030 -0.0010 -1.1963 0.2330 Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Winners -0.0090 -4.3041 0.0000 -0.0098 -4.9768 0.0000 -0.0070 -3.8889 0.0001 -0.0047 -2.8312 0.0050 -0.0032 -2.0262 0.0439 -0.0021 -1.3317 0.1845 Losers 0.0074 2.7496 0.0064 0.0065 2.4111 0.0166 0.0037 1.4941 0.1364 0.0012 0.5025 0.6158 -0.0008 -0.3786 0.7053 -0.0010 -0.5246 0.6004 WML -0.0165 -6.1991 0.0000 -0.0163 -6.7317 0.0000 -0.0107 -4.9861 0.0000 -0.0058 -3.0903 0.0022 -0.0024 -1.6427 0.1018 -0.0010 -0.9037 0.3672 Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Winners -0.0071 -3.7641 0.0002 -0.0074 -4.2318 0.0000 -0.0051 -3.0222 0.0028 -0.0033 -2.0159 0.0450 -0.0021 -1.3588 0.1756 -0.0013 -0.8516 0.3955 Losers 0.0051 1.9639 0.0507 0.0043 1.7052 0.0894 0.0024 1.0177 0.3098 -0.0003 -0.1345 0.8931 -0.0012 -0.5341 0.5938 -0.0006 -0.3217 0.7480 WML -0.0123 -4.7470 0.0000 -0.0118 -4.9468 0.0000 -0.0075 -3.4206 0.0007 -0.0030 -1.4182 0.1575 -0.0010 -0.5275 0.5984 -0.0007 -0.4486 0.6542 Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Return t-stat p-val Winners -0.0030 -1.5814 0.1151 -0.0041 -2.2877 0.0231 -0.0031 -1.7892 0.0749 -0.0015 -0.9007 0.3687 -0.0004 -0.2703 0.7872 -0.0002 -0.1689 0.8661 Losers 0.0026 0.9858 0.3253 0.0025 0.9875 0.3244 0.0011 0.4463 0.6558 0.0004 0.1673 0.8673 0.0001 0.0387 0.9692 0.0011 0.5721 0.5679 WML -0.0056 -2.0451 0.0420 -0.0067 -2.5423 0.0117 -0.0042 -1.7141 0.0879 -0.0019 -0.8374 0.4033 -0.0005 -0.2455 0.8063 -0.0013 -0.7370 0.4620 1 2 4 8 1 2 4 8 13 26 13 26
  • 19. Case II: Momentum analysis
  • 20. Case II: Momentum analysis
  • 21. Thank you for your attention! Ivanov, I., Kabaivanov, S., Bogdanova, B., 2016. Stock market recovery from the 2008 financial crisis: The differences across Europe. Research in International Business and Finance, 37(May 2016), pp. 360-74. http://www.sciencedirect.com/science/article/pii/S027553191630006X Impact metrics: 2016 SJR (Scopus): 0.694; 2016 Source normalized impact per paper: 1.819 Bogdanova, B. & Ivanov, I., 2015. A wavelet-based appraoch to the analysis and modelling of financial time series exhibiting strong long-range dependence: the case of Southeast Europe. Journal of Applied Statistics, 43(4), pp.655-73. http://www.tandfonline.com/doi/full/10.1080/02664763.2015.1077370 Impact metrics: 2016 Impact factor (Thomson Reuters): 0.664 Bogdanova, B., 2015. A wavelet-based discussion on the Greek stock market integration during the last decade. Journal of Engineering Science and Technology Review, 8(1), Special Issue on Econophysics, pp. 8-11. http://www.jestr.org/downloads/Volume8Issue1/fulltext28115.pdf Journal of Engineering Science and Technology Review is indexed SCOPUS, EBSCO, DOAJ, CERN, ACS. Bogdanova, B. & Ivanov, I., 2014. Adaptive and relative efficiency of stock markets from Southeastern Europe: a wavelet approach. Applied Financial Economics, 24(10), pp. 705-722, http://www.tandfonline.com/doi/full/10.1080/09603107.2014.899669#.U2spB01ZrDc Impact metrics: 2014 SJR (Scopus): 0.265 Bogdanova, B., 2014. The Crimean crisis through the lens of international stock market co- movements. Vanguard Scientific Instruments in Management, 9(2), pp. 16-27. http://vsim-journal.info/static_cont/vsim_e-journal_vol_09-2014-2_screen_ver2.pdf Vanguard Scientific Instruments in Management is indexed in EBSCO and Google Scholar.
  • 22. The Discrete Wavelet transform • The following sampling rule is applied: • 𝑠 = 2 𝑗 𝑎𝑛𝑑 𝜏 = 𝑘2 𝑗 • The father and the mother wavelet: 𝜙𝐽,𝑘 = 2− 𝐽 2 𝜙 𝑡−2 𝐽 𝑘 2 𝐽 , where −∞ ∞ 𝜙 𝑡 𝑑𝑡 = 1 , 𝐽 ∈ ℕ 𝜓𝑗,𝑘= 2− 𝑗 2 𝜓 𝑡−2 𝑗 𝑘 2 𝑗 , 𝑗 = 1,2, … , 𝐽 , where −∞ ∞ 𝜓 𝑡 𝑑𝑡 = 0 , 𝑠 = 2 𝑗 , 𝑗 = 1, … , 𝐽
  • 23. The father and the mother wavelet