SlideShare a Scribd company logo
7.1
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Mobile Communications
Chapter 7: Wireless LANs
• Characteristics
• IEEE 802.11 (PHY, MAC, Roaming, .11a, b, g, h, i, n … z)
• Bluetooth / IEEE 802.15.x
• IEEE 802.16/.20/.21/.22
• RFID
• Comparison
7.2
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Mobile Communication Technology
according to IEEE (examples)
Local wireless networks
WLAN 802.11
802.11a
802.11b
802.11i/e/…/n/…/z/aa
802.11g
WiFi
802.11h
Personal wireless nw
WPAN 802.15
802.15.4
802.15.1
802.15.2
Bluetooth
802.15.4a/b/c/d/e/f/g
ZigBee
802.15.3
Wireless distribution networks
WMAN 802.16 (Broadband Wireless Access)
[802.20 (Mobile Broadband Wireless Access)]
802.16e (addition to .16 for mobile devices)
+ Mobility
WiMAX
802.15.3b/c
802.15.5, .6 (WBAN)
7.3
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Characteristics of wireless LANs
• Advantages
• very flexible within the reception area
• Ad-hoc networks without previous planning possible
• (almost) no wiring difficulties (e.g. historic buildings,
firewalls)
• more robust against disasters like, e.g., earthquakes, fire -
or users pulling a plug...
• Disadvantages
• typically very low bandwidth compared to wired networks
(1-10 Mbit/s) due to shared medium
• many proprietary solutions, especially for higher bit-rates,
standards take their time (e.g. IEEE 802.11n)
• products have to follow many national restrictions if working
wireless, it takes a vary long time to establish global
solutions like, e.g., IMT-2000
7.4
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Design goals for wireless LANs
• global, seamless operation
• low power for battery use
• no special permissions or licenses needed to use the LAN
• robust transmission technology
• simplified spontaneous cooperation at meetings
• easy to use for everyone, simple management
• protection of investment in wired networks
• security (no one should be able to read my data), privacy
(no one should be able to collect user profiles), safety
(low radiation)
• transparency concerning applications and higher layer
protocols, but also location awareness if necessary
• …
7.5
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Comparison: infrared vs. radio
transmission
• Infrared
• uses IR diodes, diffuse light,
multiple reflections (walls,
furniture etc.)
• Advantages
• simple, cheap, available in many
mobile devices
• no licenses needed
• simple shielding possible
• Disadvantages
• interference by sunlight, heat
sources etc.
• many things shield or absorb IR
light
• low bandwidth
• Example
• IrDA (Infrared Data Association)
interface available everywhere
• Radio
• typically using the license
free ISM band at 2.4 GHz
• Advantages
• experience from wireless
WAN and mobile phones can
be used
• coverage of larger areas
possible (radio can penetrate
walls, furniture etc.)
• Disadvantages
• very limited license free
frequency bands
• shielding more difficult,
interference with other
electrical devices
• Example
• Many different products
7.6
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Comparison: infrastructure vs. ad-
hoc networks
infrastructure
network
ad-hoc network
AP
AP
AP
wired network
AP: Access Point
7.7
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
802.11 - Architecture of an
infrastructure network
• Station (STA)
• terminal with access
mechanisms to the wireless
medium and radio contact to the
access point
• Basic Service Set (BSS)
• group of stations using the same
radio frequency
• Access Point
• station integrated into the
wireless LAN and the distribution
system
• Portal
• bridge to other (wired) networks
• Distribution System
• interconnection network to form
one logical network (EES:
Extended Service Set) based
on several BSS
Distribution System
Portal
802.x LAN
Access
Point
802.11 LAN
BSS2
802.11 LAN
BSS1
Access
Point
STA1
STA2 STA3
ESS
7.8
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
802.11 - Architecture of an ad-hoc
network
• Direct communication within
a limited range
• Station (STA):
terminal with access
mechanisms to the wireless
medium
• Independent Basic Service
Set (IBSS):
group of stations using the
same radio frequency
802.11 LAN
IBSS2
802.11 LAN
IBSS1
STA1
STA4
STA5
STA2
STA3
7.9
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
IEEE standard 802.11
mobile terminal
access point
fixed
terminal
application
TCP
802.11 PHY
802.11 MAC
IP
802.3 MAC
802.3 PHY
application
TCP
802.3 PHY
802.3 MAC
IP
802.11 MAC
802.11 PHY
LLC
infrastructure
network
LLC LLC
7.10
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
802.11 - Layers and functions
• PLCP Physical Layer Convergence
Protocol
• clear channel assessment
signal (carrier sense)
• PMD Physical Medium Dependent
• modulation, coding
• PHY Management
• channel selection, MIB
• Station Management
• coordination of all
management functions
PMD
PLCP
MAC
LLC
MAC Management
PHY Management
• MAC
• access mechanisms,
fragmentation, encryption
• MAC Management
• synchronization, roaming,
MIB, power management
PHY
DLC
Station
Management
7.11
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
802.11 - Physical layer (legacy)
• 3 versions: 2 radio (typ. 2.4 GHz), 1 IR
• data rates 1 or 2 Mbit/s
• FHSS (Frequency Hopping Spread Spectrum)
• spreading, despreading, signal strength, typ. 1 Mbit/s
• min. 2.5 frequency hops/s (USA), two-level GFSK modulation
• DSSS (Direct Sequence Spread Spectrum)
• DBPSK modulation for 1 Mbit/s (Differential Binary Phase Shift
Keying), DQPSK for 2 Mbit/s (Differential Quadrature PSK)
• preamble and header of a frame is always transmitted with 1
Mbit/s, rest of transmission 1 or 2 Mbit/s
• chipping sequence: +1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1
(Barker code)
• max. radiated power 1 W (USA), 100 mW (EU), min. 1mW
• Infrared
• 850-950 nm, diffuse light, typ. 10 m range
• carrier detection, energy detection, synchronization
7.12
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
FHSS PHY packet format (legacy)
• Synchronization
• synch with 010101... pattern
• SFD (Start Frame Delimiter)
• 0000110010111101 start pattern
• PLW (PLCP_PDU Length Word)
• length of payload incl. 32 bit CRC of payload, PLW < 4096
• PSF (PLCP Signaling Field)
• data of payload (1 or 2 Mbit/s)
• HEC (Header Error Check)
• CRC with x16+x12+x5+1
synchronization SFD PLW PSF HEC payload
PLCP preamble PLCP header
80 16 12 4 16 variable bits
7.13
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
DSSS PHY packet format (legacy)
• Synchronization
• synch., gain setting, energy detection, frequency offset compensation
• SFD (Start Frame Delimiter)
• 1111001110100000
• Signal
• data rate of the payload (0A: 1 Mbit/s DBPSK; 14: 2 Mbit/s DQPSK)
• Service
• future use, 00: 802.11 compliant
• Length
• length of the payload
• HEC (Header Error Check)
• protection of signal, service and length, x16+x12+x5+1
synchronization SFD signal service HEC payload
PLCP preamble PLCP header
128 16 8 8 16 variable bits
length
16
7.14
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
802.11 - MAC layer I - DFWMAC
• Traffic services
• Asynchronous Data Service (mandatory)
• exchange of data packets based on “best-effort”
• support of broadcast and multicast
• Time-Bounded Service (optional)
• implemented using PCF (Point Coordination Function)
• Access methods
• DFWMAC-DCF CSMA/CA (mandatory)
• collision avoidance via randomized „back-off“ mechanism
• minimum distance between consecutive packets
• ACK packet for acknowledgements (not for broadcasts)
• DFWMAC-DCF w/ RTS/CTS (optional)
• Distributed Foundation Wireless MAC
• avoids hidden terminal problem
• DFWMAC- PCF (optional)
• access point polls terminals according to a list
7.15
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
802.11 - MAC layer II
• Priorities
• defined through different inter frame spaces
• no guaranteed, hard priorities
• SIFS (Short Inter Frame Spacing)
• highest priority, for ACK, CTS, polling response
• PIFS (PCF IFS)
• medium priority, for time-bounded service using PCF
• DIFS (DCF, Distributed Coordination Function IFS)
• lowest priority, for asynchronous data service
t
medium busy
SIFS
PIFS
DIFS
DIFS
next frame
contention
direct access if
medium is free  DIFS
7.16
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
t
medium busy
DIFS
DIFS
next frame
contention window
(randomized back-off
mechanism)
802.11 - CSMA/CA access method I
• station ready to send starts sensing the medium (Carrier
Sense based on CCA, Clear Channel Assessment)
• if the medium is free for the duration of an Inter-Frame
Space (IFS), the station can start sending (IFS depends
on service type)
• if the medium is busy, the station has to wait for a free
IFS, then the station must additionally wait a random
back-off time (collision avoidance, multiple of slot-time)
• if another station occupies the medium during the back-
off time of the station, the back-off timer stops (fairness)
slot time (20µs)
direct access if
medium is free  DIFS
7.17
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
802.11 - competing stations - simple
version
t
busy
boe
station1
station2
station3
station4
station5
packet arrival at MAC
DIFS
boe
boe
boe
busy
elapsed backoff time
bor
residual backoff time
busy medium not idle (frame, ack etc.)
bor
bor
DIFS
boe
boe
boe bor
DIFS
busy
busy
DIFS
boe busy
boe
boe
bor
bor
7.18
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
802.11 - CSMA/CA access method II
• Sending unicast packets
• station has to wait for DIFS before sending data
• receivers acknowledge at once (after waiting for SIFS) if the
packet was received correctly (CRC)
• automatic retransmission of data packets in case of
transmission errors
t
SIFS
DIFS
data
ACK
waiting time
other
stations
receiver
sender
data
DIFS
contention
7.19
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
802.11 - DFWMAC
• Sending unicast packets
• station can send RTS with reservation parameter after waiting for
DIFS (reservation determines amount of time the data packet
needs the medium)
• acknowledgement via CTS after SIFS by receiver (if ready to
receive)
• sender can now send data at once, acknowledgement via ACK
• other stations store medium reservations distributed via RTS and
CTS
t
SIFS
DIFS
data
ACK
defer access
other
stations
receiver
sender
data
DIFS
contention
RTS
CTS
SIFS SIFS
NAV (RTS)
NAV (CTS)
7.20
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Fragmentation
t
SIFS
DIFS
data
ACK1
other
stations
receiver
sender
frag1
DIFS
contention
RTS
CTS
SIFS SIFS
NAV (RTS)
NAV (CTS)
NAV (frag1)
NAV (ACK1)
SIFS
ACK2
frag2
SIFS
7.21
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
DFWMAC-PCF I (almost never used)
PIFS
stations‘
NAV
wireless
stations
point
coordinator
D1
U1
SIFS
NAV
SIFS
D2
U2
SIFS
SIFS
SuperFrame
t0
medium busy
t1
7.22
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
DFWMAC-PCF II
t
stations‘
NAV
wireless
stations
point
coordinator
D3
NAV
PIFS
D4
U4
SIFS
SIFS
CFend
contention
period
contention free period
t2 t3 t4
7.23
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
802.11 - Frame format
• Types
• control frames, management frames, data frames
• Sequence numbers
• important against duplicated frames due to lost ACKs
• Addresses
• receiver, transmitter (physical), BSS identifier, sender
(logical)
• Miscellaneous
• sending time, checksum, frame control, data
Frame
Control
Duration/
ID
Address
1
Address
2
Address
3
Sequence
Control
Address
4
Data CRC
2 2 6 6 6 6
2 4
0-2312
bytes
Protocol
version
Type Subtype
To
DS
More
Frag
Retry
Power
Mgmt
More
Data
WEP
2 2 4 1
From
DS
1
Order
bits 1 1 1 1 1 1
7.24
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
MAC address format
scenario to DS from
DS
address 1 address 2 address 3 address 4
ad-hoc network 0 0 DA SA BSSID -
infrastructure
network, from AP
0 1 DA BSSID SA -
infrastructure
network, to AP
1 0 BSSID SA DA -
infrastructure
network, within DS
1 1 RA TA DA SA
DS: Distribution System
AP: Access Point
DA: Destination Address
SA: Source Address
BSSID: Basic Service Set Identifier
RA: Receiver Address
TA: Transmitter Address
7.25
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Special Frames: ACK, RTS, CTS
• Acknowledgement
• Request To Send
• Clear To Send
Frame
Control
Duration
Receiver
Address
Transmitter
Address
CRC
2 2 6 6 4
bytes
Frame
Control
Duration
Receiver
Address
CRC
2 2 6 4
bytes
Frame
Control
Duration
Receiver
Address
CRC
2 2 6 4
bytes
ACK
RTS
CTS
7.26
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
802.11 - MAC management
• Synchronization
• try to find a LAN, try to stay within a LAN
• timer etc.
• Power management
• sleep-mode without missing a message
• periodic sleep, frame buffering, traffic measurements
• Association/Reassociation
• integration into a LAN
• roaming, i.e. change networks by changing access points
• scanning, i.e. active search for a network
• MIB - Management Information Base
• managing, read, write
7.27
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Synchronization using a Beacon
(infrastructure)
beacon interval
(20ms – 1s)
t
medium
access
point
busy
B
busy busy busy
B B B
value of the timestamp B beacon frame
7.28
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Synchronization using a Beacon (ad-
hoc)
t
medium
station1
busy
B1
beacon interval
busy busy busy
B1
value of the timestamp B beacon frame
station2
B2 B2
random delay
7.29
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Power management
• Idea: switch the transceiver off if not needed
• States of a station: sleep and awake
• Timing Synchronization Function (TSF)
• stations wake up at the same time
• Infrastructure
• Traffic Indication Map (TIM)
• list of unicast receivers transmitted by AP
• Delivery Traffic Indication Map (DTIM)
• list of broadcast/multicast receivers transmitted by AP
• Ad-hoc
• Ad-hoc Traffic Indication Map (ATIM)
• announcement of receivers by stations buffering frames
• more complicated - no central AP
• collision of ATIMs possible (scalability?)
• APSD (Automatic Power Save Delivery)
• new method in 802.11e replacing above schemes
7.30
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Power saving with wake-up patterns
(infrastructure)
TIM interval
t
medium
access
point
busy
D
busy busy busy
T T D
T TIM D DTIM
DTIM interval
B
B
B broadcast/multicast
station
awake
p PS poll
p
d
d
d data transmission
to/from the station
7.31
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Power saving with wake-up patterns
(ad-hoc)
awake
A transmit ATIM D transmit data
t
station1
B1 B1
B beacon frame
station2
B2 B2
random delay
A
a
D
d
ATIM
window beacon interval
a acknowledge ATIM d acknowledge data
7.32
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
802.11 - Roaming
• No or bad connection? Then perform:
• Scanning
• scan the environment, i.e., listen into the medium for beacon
signals or send probes into the medium and wait for an answer
• Reassociation Request
• station sends a request to one or several AP(s)
• Reassociation Response
• success: AP has answered, station can now participate
• failure: continue scanning
• AP accepts Reassociation Request
• signal the new station to the distribution system
• the distribution system updates its data base (i.e., location
information)
• typically, the distribution system now informs the old AP so it can
release resources
• Fast roaming – 802.11r
• e.g. for vehicle-to-roadside networks
7.33
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
WLAN: IEEE 802.11b
• Data rate
• 1, 2, 5.5, 11 Mbit/s,
depending on SNR
• User data rate max. approx.
6 Mbit/s
• Transmission range
• 300m outdoor, 30m indoor
• Max. data rate ~10m indoor
• Frequency
• DSSS, 2.4 GHz ISM-band
• Security
• Limited, WEP insecure, SSID
• Availability
• Many products, many
vendors
• Connection set-up time
• Connectionless/always on
• Quality of Service
• Typ. Best effort, no guarantees
(unless polling is used, limited
support in products)
• Manageability
• Limited (no automated key
distribution, sym. Encryption)
• Special
Advantages/Disadvantages
• Advantage: many installed
systems, lot of experience,
available worldwide, free ISM-
band, many vendors, integrated
in laptops, simple system
• Disadvantage: heavy
interference on ISM-band, no
service guarantees, slow relative
speed only
7.34
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
IEEE 802.11b – PHY frame formats
synchronization SFD signal service HEC payload
PLCP preamble PLCP header
128 16 8 8 16 variable bits
length
16
192 µs at 1 Mbit/s DBPSK 1, 2, 5.5 or 11 Mbit/s
short synch. SFD signal service HEC payload
PLCP preamble
(1 Mbit/s, DBPSK)
PLCP header
(2 Mbit/s, DQPSK)
56 16 8 8 16 variable bits
length
16
96 µs 2, 5.5 or 11 Mbit/s
Long PLCP PPDU format
Short PLCP PPDU format (optional)
7.35
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Channel selection (non-overlapping)
2400
[MHz]
2412 2483.5
2442 2472
channel 1 channel 7 channel 13
Europe (ETSI)
US (FCC)/Canada (IC)
2400
[MHz]
2412 2483.5
2437 2462
channel 1 channel 6 channel 11
22 MHz
22 MHz
7.36
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
WLAN: IEEE 802.11a
• Data rate
• 6, 9, 12, 18, 24, 36, 48, 54
Mbit/s, depending on SNR
• User throughput (1500 byte
packets): 5.3 (6), 18 (24), 24
(36), 32 (54)
• 6, 12, 24 Mbit/s mandatory
• Transmission range
• 100m outdoor, 10m indoor
• E.g., 54 Mbit/s up to 5 m, 48 up
to 12 m, 36 up to 25 m, 24 up to
30m, 18 up to 40 m, 12 up to 60
m
• Frequency
• Free 5.15-5.25, 5.25-5.35,
5.725-5.825 GHz ISM-band
• Security
• Limited, WEP insecure, SSID
• Availability
• Some products, some vendors
• Connection set-up time
• Connectionless/always on
• Quality of Service
• Typ. best effort, no guarantees
(same as all 802.11 products)
• Manageability
• Limited (no automated key
distribution, sym. Encryption)
• Special
Advantages/Disadvantages
• Advantage: fits into 802.x
standards, free ISM-band,
available, simple system, uses
less crowded 5 GHz band
• Disadvantage: stronger shading
due to higher frequency, no QoS
7.37
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
IEEE 802.11a – PHY frame format
rate service payload
variable bits
6 Mbit/s
PLCP preamble signal data
symbols
12 1 variable
reserved length tail
parity tail pad
6
16
6
1
12
1
4 variable
6, 9, 12, 18, 24, 36, 48, 54 Mbit/s
PLCP header
7.38
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Operating channels of 802.11a in
Europe
5150 [MHz]
5180 5350
5200
36 44
16.6 MHz
center frequency =
5000 + 5*channel number [MHz]
channel
40 48 52 56 60 64
5220 5240 5260 5280 5300 5320
5470
[MHz]
5500 5725
5520
100 108
16.6 MHz
channel
104 112 116 120 124 128
5540 5560 5580 5600 5620 5640
132 136 140
5660 5680 5700
7.39
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Operating channels for 802.11a / US
U-NII
5150 [MHz]
5180 5350
5200
36 44
16.6 MHz
center frequency =
5000 + 5*channel number [MHz]
channel
40 48 52 56 60 64
149 153 157 161
5220 5240 5260 5280 5300 5320
5725 [MHz]
5745 5825
5765
16.6 MHz
channel
5785 5805
7.40
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
OFDM in IEEE 802.11a
• OFDM with 52 used subcarriers (64 in total)
• 48 data + 4 pilot
• (plus 12 virtual subcarriers)
• 312.5 kHz spacing
subcarrier
number
1 7 21 26
-26 -21 -7 -1
channel center frequency
312.5 kHz
pilot
7.41
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
WLAN: IEEE 802.11 – current
developments (06/2009)
• 802.11c: Bridge Support
• Definition of MAC procedures to support bridges as extension to 802.1D
• 802.11d: Regulatory Domain Update
• Support of additional regulations related to channel selection, hopping sequences
• 802.11e: MAC Enhancements – QoS
• Enhance the current 802.11 MAC to expand support for applications with Quality of
Service requirements, and in the capabilities and efficiency of the protocol
• Definition of a data flow (“connection”) with parameters like rate, burst, period…
supported by HCCA (HCF (Hybrid Coordinator Function) Controlled Channel Access,
optional)
• Additional energy saving mechanisms and more efficient retransmission
• EDCA (Enhanced Distributed Channel Access): high priority traffic waits less for
channel access
• 802.11F: Inter-Access Point Protocol (withdrawn)
• Establish an Inter-Access Point Protocol for data exchange via the distribution system
• 802.11g: Data Rates > 20 Mbit/s at 2.4 GHz; 54 Mbit/s, OFDM
• Successful successor of 802.11b, performance loss during mixed operation with .11b
• 802.11h: Spectrum Managed 802.11a
• Extension for operation of 802.11a in Europe by mechanisms like channel
measurement for dynamic channel selection (DFS, Dynamic Frequency Selection) and
power control (TPC, Transmit Power Control)
• 802.11i: Enhanced Security Mechanisms
• Enhance the current 802.11 MAC to provide improvements in security.
• TKIP enhances the insecure WEP, but remains compatible to older WEP systems
• AES provides a secure encryption method and is based on new hardware
7.42
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
WLAN: IEEE 802.11– current
developments (06/2009)
• 802.11j: Extensions for operations in Japan
• Changes of 802.11a for operation at 5GHz in Japan using only half the channel width at
larger range
• 802.11-2007: Current “complete” standard
• Comprises amendments a, b, d, e, g, h, i, j
• 802.11k: Methods for channel measurements
• Devices and access points should be able to estimate channel quality in order to be
able to choose a better access point of channel
• 802.11m: Updates of the 802.11-2007 standard
• 802.11n: Higher data rates above 100Mbit/s
• Changes of PHY and MAC with the goal of 100Mbit/s at MAC SAP
• MIMO antennas (Multiple Input Multiple Output), up to 600Mbit/s are currently feasible
• However, still a large overhead due to protocol headers and inefficient mechanisms
• 802.11p: Inter car communications
• Communication between cars/road side and cars/cars
• Planned for relative speeds of min. 200km/h and ranges over 1000m
• Usage of 5.850-5.925GHz band in North America
• 802.11r: Faster Handover between BSS
• Secure, fast handover of a station from one AP to another within an ESS
• Current mechanisms (even newer standards like 802.11i) plus incompatible devices
from different vendors are massive problems for the use of, e.g., VoIP in WLANs
• Handover should be feasible within 50ms in order to support multimedia applications
efficiently
7.43
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
WLAN: IEEE 802.11– current
developments (06/2009)
• 802.11s: Mesh Networking
• Design of a self-configuring Wireless Distribution System (WDS) based on
802.11
• Support of point-to-point and broadcast communication across several hops
• 802.11T: Performance evaluation of 802.11 networks
• Standardization of performance measurement schemes
• 802.11u: Interworking with additional external networks
• 802.11v: Network management
• Extensions of current management functions, channel measurements
• Definition of a unified interface
• 802.11w: Securing of network control
• Classical standards like 802.11, but also 802.11i protect only data frames, not
the control frames. Thus, this standard should extend 802.11i in a way that, e.g.,
no control frames can be forged.
• 802.11y: Extensions for the 3650-3700 MHz band in the USA
• 802.11z: Extension to direct link setup
• 802.11aa: Robust audio/video stream transport
• 802.11ac: Very High Throughput <6Ghz
• 802.11ad: Very High Throughput in 60 GHz
• Note: Not all “standards” will end in products, many ideas get stuck at
working group level
• Info: www.ieee802.org/11/, 802wirelessworld.com,
standards.ieee.org/getieee802/
7.44
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Bluetooth
• Basic idea
• Universal radio interface for ad-hoc wireless connectivity
• Interconnecting computer and peripherals, handheld devices,
PDAs, cell phones – replacement of IrDA
• Embedded in other devices, goal: 5€/device (already < 1€)
• Short range (10 m), low power consumption, license-free
2.45 GHz ISM
• Voice and data transmission, approx. 1 Mbit/s gross data
rate
One of the first modules (Ericsson).
7.45
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Bluetooth
• History
• 1994: Ericsson (Mattison/Haartsen), “MC-link” project
• Renaming of the project: Bluetooth according to Harald “Blåtand”
Gormsen [son of Gorm], King of Denmark in the 10th century
• 1998: foundation of Bluetooth SIG, www.bluetooth.org
• 1999: erection of a rune stone at Ercisson/Lund ;-)
• 2001: first consumer products for mass market, spec. version 1.1
released
• 2005: 5 million chips/week
• Special Interest Group
• Original founding members: Ericsson, Intel, IBM, Nokia, Toshiba
• Added promoters: 3Com, Agere (was: Lucent), Microsoft, Motorola
• > 10000 members
• Common specification and certification of products
(was: )
7.46
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
History and hi-tech…
1999:
Ericsson mobile
communications AB
reste denna sten till
minne av Harald
Blåtand, som fick ge
sitt namn åt en ny
teknologi för trådlös,
mobil kommunikation.
7.47
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
…and the real rune stone
Located in Jelling, Denmark,
erected by King Harald “Blåtand”
in memory of his parents.
The stone has three sides – one side
showing a picture of Christ.
This could be the “original” colors
of the stone.
Inscription:
“auk tani karthi kristna” (and
made the Danes Christians)
Inscription:
"Harald king executes these sepulchral
monuments after Gorm, his father and
Thyra, his mother. The Harald who won the
whole of Denmark and Norway and turned
the Danes to Christianity."
Btw: Blåtand means “of dark complexion”
(not having a blue tooth…)
7.48
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Characteristics
• 2.4 GHz ISM band, 79 (23) RF channels, 1 MHz carrier spacing
• Channel 0: 2402 MHz … channel 78: 2480 MHz
• G-FSK modulation, 1-100 mW transmit power
• FHSS and TDD
• Frequency hopping with 1600 hops/s
• Hopping sequence in a pseudo random fashion, determined by a
master
• Time division duplex for send/receive separation
• Voice link – SCO (Synchronous Connection Oriented)
• FEC (forward error correction), no retransmission, 64 kbit/s duplex,
point-to-point, circuit switched
• Data link – ACL (Asynchronous ConnectionLess)
• Asynchronous, fast acknowledge, point-to-multipoint, up to 433.9
kbit/s symmetric or 723.2/57.6 kbit/s asymmetric, packet switched
• Topology
• Overlapping piconets (stars) forming a scatternet
7.49
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Piconet
• Collection of devices connected in an ad
hoc fashion
• One unit acts as master and the others
as slaves for the lifetime of the piconet
• Master determines hopping pattern,
slaves have to synchronize
• Each piconet has a unique hopping
pattern
• Participation in a piconet =
synchronization to hopping sequence
• Each piconet has one master and up to 7
simultaneous slaves (> 200 could be
parked)
M=Master
S=Slave
P=Parked
SB=Standby
M
S
P
SB
S
S
P
P
SB
7.50
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Forming a piconet
• All devices in a piconet hop together
• Master gives slaves its clock and device ID
• Hopping pattern: determined by device ID (48 bit, unique
worldwide)
• Phase in hopping pattern determined by clock
• Addressing
• Active Member Address (AMA, 3 bit)
• Parked Member Address (PMA, 8 bit)
SB
SB
SB
SB
SB
SB
SB
SB
SB
M
S
P
SB
S
S
P
P
SB


















7.51
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Scatternet
• Linking of multiple co-located piconets through the
sharing of common master or slave devices
• Devices can be slave in one piconet and master of another
• Communication between piconets
• Devices jumping back and forth between the piconets
M=Master
S=Slave
P=Parked
SB=Standby
M
S
P
SB
S
S
P
P
SB
M
S
S
P
SB
Piconets
(each with a
capacity of
720 kbit/s)
7.52
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Bluetooth protocol stack
Radio
Baseband
Link Manager
Control
Host
Controller
Interface
Logical Link Control and Adaptation Protocol (L2CAP)
Audio
TCS BIN SDP
OBEX
vCal/vCard
IP
NW apps.
TCP/UDP
BNEP
RFCOMM (serial line interface)
AT modem
commands
telephony apps.
audio apps. mgmnt. apps.
AT: attention sequence
OBEX: object exchange
TCS BIN: telephony control protocol specification – binary
BNEP: Bluetooth network encapsulation protocol
SDP: service discovery protocol
RFCOMM: radio frequency comm.
PPP
7.53
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
S
Frequency selection during data
transmission
fk
625 µs
fk+1 fk+2 fk+3 fk+4
fk+3 fk+4
fk
fk
fk+5
fk+5
fk+1 fk+6
fk+6
fk+6
M
M M M
M
M M
M M
t
t
t
S S
S S
S
7.54
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Baseband
• Piconet/channel definition
• Low-level packet definition
• Access code
• Channel, device access, e.g., derived from master
• Packet header
• 1/3-FEC, active member address (broadcast + 7 slaves), link
type, alternating bit ARQ/SEQ, checksum
access code packet header payload
68(72) 54 0-2745 bits
AM address type flow ARQN SEQN HEC
3 4 1 1 1 8 bits
preamble sync. (trailer)
4 64 (4)
7.55
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
SCO payload types
payload (30)
audio (30)
audio (10)
audio (10)
HV3
HV2
HV1
DV
FEC (20)
audio (20) FEC (10)
header (1) payload (0-9) 2/3 FEC CRC (2)
(bytes)
7.56
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
ACL Payload types
payload (0-343)
header (1/2) payload (0-339) CRC (2)
header (1) payload (0-17) 2/3 FEC
header (1) payload (0-27)
header (2) payload (0-121) 2/3 FEC
header (2) payload (0-183)
header (2) payload (0-224) 2/3 FEC
header (2) payload (0-339)
DH5
DM5
DH3
DM3
DH1
DM1
header (1) payload (0-29)
AUX1
CRC (2)
CRC (2)
CRC (2)
CRC (2)
CRC (2)
CRC (2)
(bytes)
7.57
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Baseband data rates
Payload User Symmetric Asymmetric
Header Payload max. Rate max. Rate [kbit/s]
Type [byte] [byte] FEC CRC [kbit/s] Forward Reverse
DM1 1 0-17 2/3 yes 108.8 108.8 108.8
DH1 1 0-27 no yes 172.8 172.8 172.8
DM3 2 0-121 2/3 yes 258.1 387.2 54.4
DH3 2 0-183 no yes 390.4 585.6 86.4
DM5 2 0-224 2/3 yes 286.7 477.8 36.3
DH5 2 0-339 no yes 433.9 723.2 57.6
AUX1 1 0-29 no no 185.6 185.6 185.6
HV1 na 10 1/3 no 64.0
HV2 na 20 2/3 no 64.0
HV3 na 30 no no 64.0
DV 1 D 10+(0-9) D 2/3 D yes D 64.0+57.6 D
ACL
1 slot
3 slot
5 slot
SCO
Data Medium/High rate, High-quality Voice, Data and Voice
7.58
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Baseband link types
• Polling-based TDD packet transmission
• 625µs slots, master polls slaves
• SCO (Synchronous Connection Oriented) – Voice
• Periodic single slot packet assignment, 64 kbit/s full-duplex, point-
to-point
• ACL (Asynchronous ConnectionLess) – Data
• Variable packet size (1, 3, 5 slots), asymmetric bandwidth, point-
to-multipoint
MASTER
SLAVE 1
SLAVE 2
f6
f0
f1 f7
f12
f13 f19
f18
SCO SCO SCO SCO
ACL
f5 f21
f4 f20
ACL
ACL
f8
f9
f17
f14
ACL
7.59
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Robustness
• Slow frequency hopping with hopping patterns determined by a
master
• Protection from interference on certain frequencies
• Separation from other piconets (FH-CDMA)
• Retransmission
• ACL only, very fast
• Forward Error Correction
• SCO and ACL
MASTER
SLAVE 1
SLAVE 2
A C C H
F
G G
B D E
NAK ACK
Error in payload
(not header!)
7.60
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Baseband states of a Bluetooth
device
standby
inquiry page
connected
AMA
transmit
AMA
park
PMA
hold
AMA
sniff
AMA
unconnected
connecting
active
low power
Standby: do nothing
Inquire: search for other devices
Page: connect to a specific device
Connected: participate in a piconet
detach
Park: release AMA, get PMA
Sniff: listen periodically, not each slot
Hold: stop ACL, SCO still possible, possibly
participate in another piconet
7.61
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Example: Power consumption/CSR
BlueCore2
• Typical Average Current Consumption1
• VDD=1.8V Temperature = 20°C
• Mode
• SCO connection HV3 (1s interval Sniff Mode) (Slave) 26.0 mA
• SCO connection HV3 (1s interval Sniff Mode) (Master) 26.0 mA
• SCO connection HV1 (Slave) 53.0 mA
• SCO connection HV1 (Master) 53.0 mA
• ACL data transfer 115.2kbps UART (Master) 15.5 mA
• ACL data transfer 720kbps USB (Slave) 53.0 mA
• ACL data transfer 720kbps USB (Master) 53.0 mA
• ACL connection, Sniff Mode 40ms interval, 38.4kbps UART 4.0 mA
• ACL connection, Sniff Mode 1.28s interval, 38.4kbps UART 0.5 mA
• Parked Slave, 1.28s beacon interval, 38.4kbps UART 0.6 mA
• Standby Mode (Connected to host, no RF activity) 47.0 µA
• Deep Sleep Mode2 20.0 µA
• Notes:
• 1 Current consumption is the sum of both BC212015A and the
flash.
• 2 Current consumption is for the BC212015A device only.
7.62
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Example: Bluetooth/USB adapter (2002:
50€, today: some cents if integrated)
7.63
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
L2CAP - Logical Link Control and
Adaptation Protocol
• Simple data link protocol on top of baseband
• Connection oriented, connectionless, and signaling channels
• Protocol multiplexing
• RFCOMM, SDP, telephony control
• Segmentation & reassembly
• Up to 64kbyte user data, 16 bit CRC used from baseband
• QoS flow specification per channel
• Follows RFC 1363, specifies delay, jitter, bursts, bandwidth
• Group abstraction
• Create/close group, add/remove member
7.64
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
L2CAP logical channels
baseband
L2CAP
baseband
L2CAP
baseband
L2CAP
Slave Slave
Master
ACL
2 d 1 d d 1 1 d 2
1
signalling connectionless connection-oriented
d d d
7.65
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
L2CAP packet formats
length
2 bytes
CID=2
2
PSM
2
payload
0-65533
length
2 bytes
CID
2
payload
0-65535
length
2 bytes
CID=1
2
One or more commands
Connectionless PDU
Connection-oriented PDU
Signalling command PDU
code ID length data
1 1 2 0
7.66
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Security
E3
E2
link key (128 bit)
encryption key (128 bit)
payload key
Keystream generator
Data Data
Cipher data
Authentication key generation
(possibly permanent storage)
Encryption key generation
(temporary storage)
PIN (1-16 byte)
User input (initialization)
Pairing
Authentication
Encryption
Ciphering
E3
E2
link key (128 bit)
encryption key (128 bit)
payload key
Keystream generator
PIN (1-16 byte)
7.67
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
SDP – Service Discovery Protocol
• Inquiry/response protocol for discovering services
• Searching for and browsing services in radio proximity
• Adapted to the highly dynamic environment
• Can be complemented by others like SLP, Jini, Salutation, …
• Defines discovery only, not the usage of services
• Caching of discovered services
• Gradual discovery
• Service record format
• Information about services provided by attributes
• Attributes are composed of an 16 bit ID (name) and a value
• values may be derived from 128 bit Universally Unique
Identifiers (UUID)
7.68
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Additional protocols to support legacy
protocols/apps.
• RFCOMM
• Emulation of a serial port (supports a large base of legacy
applications)
• Allows multiple ports over a single physical channel
• Telephony Control Protocol Specification (TCS)
• Call control (setup, release)
• Group management
• OBEX
• Exchange of objects, IrDA replacement
• WAP
• Interacting with applications on cellular phones
7.69
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Profiles
• Represent default solutions for a certain usage model
• Vertical slice through the protocol stack
• Basis for interoperability
• Generic Access Profile
• Service Discovery Application Profile
• Cordless Telephony Profile
• Intercom Profile
• Serial Port Profile
• Headset Profile
• Dial-up Networking Profile
• Fax Profile
• LAN Access Profile
• Generic Object Exchange Profile
• Object Push Profile
• File Transfer Profile
• Synchronization Profile
Additional Profiles
Advanced Audio Distribution
PAN
Audio Video Remote Control
Basic Printing
Basic Imaging
Extended Service Discovery
Generic Audio Video Distribution
Hands Free
Hardcopy Cable Replacement
Profiles
Protocols
Applications
7.70
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Bluetooth versions
• Bluetooth 1.1
• also IEEE Standard 802.15.1-2002
• initial stable commercial standard
• Bluetooth 1.2
• also IEEE Standard 802.15.1-2005
• eSCO (extended SCO): higher, variable bitrates, retransmission
for SCO
• AFH (adaptive frequency hopping) to avoid interference
• Bluetooth 2.0 + EDR (2004, no more IEEE)
• EDR (enhanced date rate) of 3.0 Mbit/s for ACL and eSCO
• lower power consumption due to shorter duty cycle
• Bluetooth 2.1 + EDR (2007)
• better pairing support, e.g. using NFC
• improved security
• Bluetooth 3.0 + HS (2009)
• Bluetooth 2.1 + EDR + IEEE 802.11a/g = 54 Mbit/s
7.71
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
WPAN: IEEE 802.15.1 – Bluetooth
• Data rate
• Synchronous, connection-
oriented: 64 kbit/s
• Asynchronous, connectionless
• 433.9 kbit/s symmetric
• 723.2 / 57.6 kbit/s asymmetric
• Transmission range
• POS (Personal Operating Space)
up to 10 m
• with special transceivers up to
100 m
• Frequency
• Free 2.4 GHz ISM-band
• Security
• Challenge/response (SAFER+),
hopping sequence
• Availability
• Integrated into many products,
several vendors
• Connection set-up time
• Depends on power-mode
• Max. 2.56s, avg. 0.64s
• Quality of Service
• Guarantees, ARQ/FEC
• Manageability
• Public/private keys needed, key
management not specified,
simple system integration
• Special
Advantages/Disadvantages
• Advantage: already integrated
into several products, available
worldwide, free ISM-band,
several vendors, simple system,
simple ad-hoc networking, peer
to peer, scatternets
• Disadvantage: interference on
ISM-band, limited range, max. 8
active devices/network, high
set-up latency
7.72
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
WPAN: IEEE 802.15 – future
developments 1
• 802.15.2: Coexistance
• Coexistence of Wireless Personal Area Networks (802.15)
and Wireless Local Area Networks (802.11), quantify the
mutual interference
• 802.15.3: High-Rate
• Standard for high-rate (20Mbit/s or greater) WPANs, while
still low-power/low-cost
• Data Rates: 11, 22, 33, 44, 55 Mbit/s
• Quality of Service isochronous protocol
• Ad hoc peer-to-peer networking
• Security
• Low power consumption
• Low cost
• Designed to meet the demanding requirements of portable
consumer imaging and multimedia applications
7.73
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
WPAN: IEEE 802.15 – future
developments 2
• Several working groups extend the 802.15.3 standard
• 802.15.3a: - withdrawn -
• Alternative PHY with higher data rate as extension to 802.15.3
• Applications: multimedia, picture transmission
• 802.15.3b:
• Enhanced interoperability of MAC
• Correction of errors and ambiguities in the standard
• 802.15.3c:
• Alternative PHY at 57-64 GHz
• Goal: data rates above 2 Gbit/s
• Not all these working groups really create a standard, not all
standards will be found in products later …
7.74
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
WPAN: IEEE 802.15 – future
developments 3
• 802.15.4: Low-Rate, Very Low-Power
• Low data rate solution with multi-month to multi-year battery life
and very low complexity
• Potential applications are sensors, interactive toys, smart badges,
remote controls, and home automation
• Data rates of 20-250 kbit/s, latency down to 15 ms
• Master-Slave or Peer-to-Peer operation
• Up to 254 devices or 64516 simpler nodes
• Support for critical latency devices, such as joysticks
• CSMA/CA channel access (data centric), slotted (beacon) or
unslotted
• Automatic network establishment by the PAN coordinator
• Dynamic device addressing, flexible addressing format
• Fully handshaked protocol for transfer reliability
• Power management to ensure low power consumption
• 16 channels in the 2.4 GHz ISM band, 10 channels in the 915 MHz
US ISM band and one channel in the European 868 MHz band
• Basis of the ZigBee technology – www.zigbee.org
7.75
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
ZigBee
• Relation to 802.15.4 similar to Bluetooth / 802.15.1
• Pushed by Chipcon (now TI), ember, freescale (Motorola),
Honeywell, Mitsubishi, Motorola, Philips, Samsung…
• More than 260 members
• about 15 promoters, 133 participants, 111 adopters
• must be member to commercially use ZigBee spec
• ZigBee platforms comprise
• IEEE 802.15.4 for layers 1 and 2
• ZigBee protocol stack up to the applications
7.76
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
WPAN: IEEE 802.15 – future
developments 4
• 802.15.4a:
• Alternative PHY with lower data rate as extension to 802.15.4
• Properties: precise localization (< 1m precision), extremely low power
consumption, longer range
• Two PHY alternatives
• UWB (Ultra Wideband): ultra short pulses, communication and localization
• CSS (Chirp Spread Spectrum): communication only
• 802.15.4b, c, d, e, f, g:
• Extensions, corrections, and clarifications regarding 802.15.4
• Usage of new bands, more flexible security mechanisms
• RFID, smart utility neighborhood (high scalability)
• 802.15.5: Mesh Networking
• Partial meshes, full meshes
• Range extension, more robustness, longer battery live
• 802.15.6: Body Area Networks
• Low power networks e.g. for medical or entertainment use
• 802.15.7: Visible Light Communication
• Not all these working groups really create a standard, not all standards will
be found in products later …
7.77
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
Some more IEEE standards for mobile
communications
• IEEE 802.16: Broadband Wireless Access / WirelessMAN /
WiMax
• Wireless distribution system, e.g., for the last mile, alternative to
DSL
• 75 Mbit/s up to 50 km LOS, up to 10 km NLOS; 2-66 GHz band
• Initial standards without roaming or mobility support
• 802.16e adds mobility support, allows for roaming at 150 km/h
• IEEE 802.20: Mobile Broadband Wireless Access (MBWA)
• Licensed bands < 3.5 GHz, optimized for IP traffic
• Peak rate > 1 Mbit/s per user
• Different mobility classes up to 250 km/h and ranges up to 15 km
• Relation to 802.16e unclear
• IEEE 802.21: Media Independent Handover Interoperability
• Standardize handover between different 802.x and/or non 802
networks
• IEEE 802.22: Wireless Regional Area Networks (WRAN)
• Radio-based PHY/MAC for use by license-exempt devices on a non-
interfering basis in spectrum that is allocated to the TV Broadcast
Service
7.78
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
RF Controllers – ISM bands
• Data rate
• Typ. up to 115 kbit/s (serial
interface)
• Transmission range
• 5-100 m, depending on power
(typ. 10-500 mW)
• Frequency
• Typ. 27 (EU, US), 315 (US), 418
(EU), 426 (Japan), 433 (EU),
868 (EU), 915 (US) MHz
(depending on regulations)
• Security
• Some products with added
processors
• Cost
• Cheap: 10€-50€
• Availability
• Many products, many vendors
• Connection set-up time
• N/A
• Quality of Service
• none
• Manageability
• Very simple, same as serial
interface
• Special
Advantages/Disadvantages
• Advantage: very low cost, large
experience, high volume
available
• Disadvantage: no QoS, crowded
ISM bands (particularly 27 and
433 MHz), typ. no Medium
Access Control, 418 MHz
experiences interference with
TETRA
7.79
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
RFID – Radio Frequency Identification
(1)
• Data rate
• Transmission of ID only (e.g., 48
bit, 64kbit, 1 Mbit)
• 9.6 – 115 kbit/s
• Transmission range
• Passive: up to 3 m
• Active: up to 30-100 m
• Simultaneous detection of up to,
e.g., 256 tags, scanning of, e.g.,
40 tags/s
• Frequency
• 125 kHz, 13.56 MHz, 433 MHz,
2.4 GHz, 5.8 GHz and many
others
• Security
• Application dependent, typ. no
crypt. on RFID device
• Cost
• Very cheap tags, down to 1€
(passive)
• Availability
• Many products, many vendors
• Connection set-up time
• Depends on product/medium
access scheme (typ. 2 ms per
device)
• Quality of Service
• none
• Manageability
• Very simple, same as serial
interface
• Special
Advantages/Disadvantages
• Advantage: extremely low cost,
large experience, high volume
available, no power for passive
RFIDs needed, large variety of
products, relative speeds up to
300 km/h, broad temp. range
• Disadvantage: no QoS, simple
denial of service, crowded ISM
bands, typ. one-way (activation/
transmission of ID)
7.80
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
RFID – Radio Frequency Identification
(2)
• Function
• Standard: In response to a radio interrogation signal from a
reader (base station) the RFID tags transmit their ID
• Enhanced: additionally data can be sent to the tags, different
media access schemes (collision avoidance)
• Features
• No line-of sight required (compared to, e.g., laser scanners)
• RFID tags withstand difficult environmental conditions
(sunlight, cold, frost, dirt etc.)
• Products available with read/write memory, smart-card
capabilities
• Categories
• Passive RFID: operating power comes from the reader over
the air which is feasible up to distances of 3 m, low price
(1€)
• Active RFID: battery powered, distances up to 100 m
7.81
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
RFID – Radio Frequency Identification
(3)
• Applications
• Total asset visibility: tracking of goods during
manufacturing, localization of pallets, goods etc.
• Loyalty cards: customers use RFID tags for payment at, e.g.,
gas stations, collection of buying patterns
• Automated toll collection: RFIDs mounted in windshields
allow commuters to drive through toll plazas without
stopping
• Others: access control, animal identification, tracking of
hazardous material, inventory control, warehouse
management, ...
• Local Positioning Systems
• GPS useless indoors or underground, problematic in cities
with high buildings
• RFID tags transmit signals, receivers estimate the tag
location by measuring the signal‘s time of flight
7.82
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
RFID – Radio Frequency Identification
(4)
• Security
• Denial-of-Service attacks are always possible
• Interference of the wireless transmission, shielding of
transceivers
• IDs via manufacturing or one time programming
• Key exchange via, e.g., RSA possible, encryption via, e.g.,
AES
• Future Trends
• RTLS: Real-Time Locating System – big efforts to make total
asset visibility come true
• Integration of RFID technology into the manufacturing,
distribution and logistics chain
• Creation of „electronic manifests“ at item or package level
(embedded inexpensive passive RFID tags)
• 3D tracking of children, patients
7.83
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
RFID – Radio Frequency Identification
(5)
• Relevant Standards
• American National Standards Institute
• ANSI, www.ansi.org, www.aimglobal.org/standards/rfidstds/ANSIT6.html
• Automatic Identification and Data Capture Techniques
• JTC 1/SC 31, www.uc-council.com/sc31/home.htm,
www.aimglobal.org/standards/rfidstds/sc31.htm
• European Radiocommunications Office
• ERO, www.ero.dk, www.aimglobal.org/standards/rfidstds/ERO.htm
• European Telecommunications Standards Institute
• ETSI, www.etsi.org, www.aimglobal.org/standards/rfidstds/ETSI.htm
• Identification Cards and related devices
• JTC 1/SC 17, www.sc17.com, www.aimglobal.org/standards/rfidstds/sc17.htm,
• Identification and communication
• ISO TC 104 / SC 4, www.autoid.org/tc104_sc4_wg2.htm,
www.aimglobal.org/standards/rfidstds/TC104.htm
• Road Transport and Traffic Telematics
• CEN TC 278, www.nni.nl, www.aimglobal.org/standards/rfidstds/CENTC278.htm
• Transport Information and Control Systems
• ISO/TC204, www.sae.org/technicalcommittees/gits.htm,
www.aimglobal.org/standards/rfidstds/ISOTC204.htm
7.84
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
RFID – Radio Frequency Identification
(6)
• ISO Standards
• ISO 15418
• MH10.8.2 Data Identifiers
• EAN.UCC Application Identifiers
• ISO 15434 - Syntax for High Capacity ADC Media
• ISO 15962 - Transfer Syntax
• ISO 18000
• Part 2, 125-135 kHz
• Part 3, 13.56 MHz
• Part 4, 2.45 GHz
• Part 5, 5.8 GHz
• Part 6, UHF (860-930 MHz, 433 MHz)
• ISO 18047 - RFID Device Conformance Test Methods
• ISO 18046 - RF Tag and Interrogator Performance Test
Methods
7.85
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
ISM band interference
• Many sources of interference
• Microwave ovens, microwave lighting
• 802.11, 802.11b, 802.11g, 802.15, …
• Even analog TV transmission, surveillance
• Unlicensed metropolitan area networks
• …
• Levels of interference
• Physical layer: interference acts like noise
• Spread spectrum tries to minimize this
• FEC/interleaving tries to correct
• MAC layer: algorithms not harmonized
• E.g., Bluetooth might confuse 802.11
OLD
© Fusion Lighting, Inc.,
now used by LG as
Plasma Lighting System
NEW
7.86
Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009
• Bluetooth may act like a rogue member of the 802.11 network
• Does not know anything about gaps, inter frame spacing etc.
• IEEE 802.15-2 discusses these problems
• Proposal: Adaptive Frequency Hopping
• a non-collaborative Coexistence Mechanism
• Real effects? Many different opinions, publications, tests,
formulae, …
• Results from complete breakdown to almost no effect
• Bluetooth (FHSS) seems more robust than 802.11b (DSSS)
802.11 vs.(?) 802.15/Bluetooth
t
f [MHz]
2402
2480 802.11b
3 channels
(separated by
installation)
ACK
DIFS
DIFS
SIFS
1000 byte
SIFS
DIFS
500 byte ACK
DIFS
500 byte
SIFS
ACK
DIFS
500 byte
DIFS
100
byte
SIFS
ACK
DIFS
100
byte SIFS
ACK
DIFS
100
byte
SIFS
ACK
DIFS
100
byte
SIFS
ACK
DIFS
100
byte
SIFS
ACK
802.15.1
79 channels
(separated by
hopping pattern)

More Related Content

PPT
Concepts of Mobile Communication Wireless LANs, Bluetooth , HiperLAN
PPTX
Wlan 1 intro
PPT
Wireless local area network IEEE802.11WLAN.ppt
PPTX
Unit 1-converted.pptx
PPT
3. Introduction Wireless Local Area Networks.ppt
PPT
3. Wireless Local Area Networks WLAN.ppt
PDF
IT8602 Mobile Communication - Unit III
PPT
Wireless presentation-1
Concepts of Mobile Communication Wireless LANs, Bluetooth , HiperLAN
Wlan 1 intro
Wireless local area network IEEE802.11WLAN.ppt
Unit 1-converted.pptx
3. Introduction Wireless Local Area Networks.ppt
3. Wireless Local Area Networks WLAN.ppt
IT8602 Mobile Communication - Unit III
Wireless presentation-1

Similar to Wireless Local area network issues all perfect wireless engineering (20)

PDF
WiFi - IEEE 802.11
PPT
awsn module 1.ppt
PDF
6. WLAN annd 7__________. Mobile IP.pdf
PPTX
MobileComputingWLAN MobileComputingWLAN.pptx
PPTX
MobileComputingWLAN MobileComputingMANET2023.pptx
PDF
IEEE 802.11 Architecture and Services
PDF
Computer networks wireless lan,ieee-802.11,bluetooth
PPT
Wireless LANs PPT.ppt
PPTX
Wireless-4.pptx
PDF
ieee.pdf
PDF
Wlan systems
PDF
Mobile Communication
PPTX
Wireless LANs(IEEE802.11) Architecture
PDF
EC8004-Wireless Networks-unitwise notes.pdf
PDF
WiFi Networks.pdf
PPT
Presentation on Wireless Local Area Netw
PPT
WLAN Foundation, Basic Architecture & Fundamentals
PPT
CS553_ST7_Chapter 17- Wireless LANs.ppt
WiFi - IEEE 802.11
awsn module 1.ppt
6. WLAN annd 7__________. Mobile IP.pdf
MobileComputingWLAN MobileComputingWLAN.pptx
MobileComputingWLAN MobileComputingMANET2023.pptx
IEEE 802.11 Architecture and Services
Computer networks wireless lan,ieee-802.11,bluetooth
Wireless LANs PPT.ppt
Wireless-4.pptx
ieee.pdf
Wlan systems
Mobile Communication
Wireless LANs(IEEE802.11) Architecture
EC8004-Wireless Networks-unitwise notes.pdf
WiFi Networks.pdf
Presentation on Wireless Local Area Netw
WLAN Foundation, Basic Architecture & Fundamentals
CS553_ST7_Chapter 17- Wireless LANs.ppt
Ad

Recently uploaded (20)

PPT
introduction to datamining and warehousing
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
Construction Project Organization Group 2.pptx
PPTX
web development for engineering and engineering
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Artificial Intelligence
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
PPT on Performance Review to get promotions
PDF
composite construction of structures.pdf
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Well-logging-methods_new................
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
introduction to datamining and warehousing
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Construction Project Organization Group 2.pptx
web development for engineering and engineering
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
CYBER-CRIMES AND SECURITY A guide to understanding
Artificial Intelligence
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPT on Performance Review to get promotions
composite construction of structures.pdf
Automation-in-Manufacturing-Chapter-Introduction.pdf
Well-logging-methods_new................
Embodied AI: Ushering in the Next Era of Intelligent Systems
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Model Code of Practice - Construction Work - 21102022 .pdf
R24 SURVEYING LAB MANUAL for civil enggi
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Ad

Wireless Local area network issues all perfect wireless engineering

  • 1. 7.1 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Mobile Communications Chapter 7: Wireless LANs • Characteristics • IEEE 802.11 (PHY, MAC, Roaming, .11a, b, g, h, i, n … z) • Bluetooth / IEEE 802.15.x • IEEE 802.16/.20/.21/.22 • RFID • Comparison
  • 2. 7.2 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Mobile Communication Technology according to IEEE (examples) Local wireless networks WLAN 802.11 802.11a 802.11b 802.11i/e/…/n/…/z/aa 802.11g WiFi 802.11h Personal wireless nw WPAN 802.15 802.15.4 802.15.1 802.15.2 Bluetooth 802.15.4a/b/c/d/e/f/g ZigBee 802.15.3 Wireless distribution networks WMAN 802.16 (Broadband Wireless Access) [802.20 (Mobile Broadband Wireless Access)] 802.16e (addition to .16 for mobile devices) + Mobility WiMAX 802.15.3b/c 802.15.5, .6 (WBAN)
  • 3. 7.3 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Characteristics of wireless LANs • Advantages • very flexible within the reception area • Ad-hoc networks without previous planning possible • (almost) no wiring difficulties (e.g. historic buildings, firewalls) • more robust against disasters like, e.g., earthquakes, fire - or users pulling a plug... • Disadvantages • typically very low bandwidth compared to wired networks (1-10 Mbit/s) due to shared medium • many proprietary solutions, especially for higher bit-rates, standards take their time (e.g. IEEE 802.11n) • products have to follow many national restrictions if working wireless, it takes a vary long time to establish global solutions like, e.g., IMT-2000
  • 4. 7.4 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Design goals for wireless LANs • global, seamless operation • low power for battery use • no special permissions or licenses needed to use the LAN • robust transmission technology • simplified spontaneous cooperation at meetings • easy to use for everyone, simple management • protection of investment in wired networks • security (no one should be able to read my data), privacy (no one should be able to collect user profiles), safety (low radiation) • transparency concerning applications and higher layer protocols, but also location awareness if necessary • …
  • 5. 7.5 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Comparison: infrared vs. radio transmission • Infrared • uses IR diodes, diffuse light, multiple reflections (walls, furniture etc.) • Advantages • simple, cheap, available in many mobile devices • no licenses needed • simple shielding possible • Disadvantages • interference by sunlight, heat sources etc. • many things shield or absorb IR light • low bandwidth • Example • IrDA (Infrared Data Association) interface available everywhere • Radio • typically using the license free ISM band at 2.4 GHz • Advantages • experience from wireless WAN and mobile phones can be used • coverage of larger areas possible (radio can penetrate walls, furniture etc.) • Disadvantages • very limited license free frequency bands • shielding more difficult, interference with other electrical devices • Example • Many different products
  • 6. 7.6 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Comparison: infrastructure vs. ad- hoc networks infrastructure network ad-hoc network AP AP AP wired network AP: Access Point
  • 7. 7.7 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 802.11 - Architecture of an infrastructure network • Station (STA) • terminal with access mechanisms to the wireless medium and radio contact to the access point • Basic Service Set (BSS) • group of stations using the same radio frequency • Access Point • station integrated into the wireless LAN and the distribution system • Portal • bridge to other (wired) networks • Distribution System • interconnection network to form one logical network (EES: Extended Service Set) based on several BSS Distribution System Portal 802.x LAN Access Point 802.11 LAN BSS2 802.11 LAN BSS1 Access Point STA1 STA2 STA3 ESS
  • 8. 7.8 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 802.11 - Architecture of an ad-hoc network • Direct communication within a limited range • Station (STA): terminal with access mechanisms to the wireless medium • Independent Basic Service Set (IBSS): group of stations using the same radio frequency 802.11 LAN IBSS2 802.11 LAN IBSS1 STA1 STA4 STA5 STA2 STA3
  • 9. 7.9 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 IEEE standard 802.11 mobile terminal access point fixed terminal application TCP 802.11 PHY 802.11 MAC IP 802.3 MAC 802.3 PHY application TCP 802.3 PHY 802.3 MAC IP 802.11 MAC 802.11 PHY LLC infrastructure network LLC LLC
  • 10. 7.10 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 802.11 - Layers and functions • PLCP Physical Layer Convergence Protocol • clear channel assessment signal (carrier sense) • PMD Physical Medium Dependent • modulation, coding • PHY Management • channel selection, MIB • Station Management • coordination of all management functions PMD PLCP MAC LLC MAC Management PHY Management • MAC • access mechanisms, fragmentation, encryption • MAC Management • synchronization, roaming, MIB, power management PHY DLC Station Management
  • 11. 7.11 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 802.11 - Physical layer (legacy) • 3 versions: 2 radio (typ. 2.4 GHz), 1 IR • data rates 1 or 2 Mbit/s • FHSS (Frequency Hopping Spread Spectrum) • spreading, despreading, signal strength, typ. 1 Mbit/s • min. 2.5 frequency hops/s (USA), two-level GFSK modulation • DSSS (Direct Sequence Spread Spectrum) • DBPSK modulation for 1 Mbit/s (Differential Binary Phase Shift Keying), DQPSK for 2 Mbit/s (Differential Quadrature PSK) • preamble and header of a frame is always transmitted with 1 Mbit/s, rest of transmission 1 or 2 Mbit/s • chipping sequence: +1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1 (Barker code) • max. radiated power 1 W (USA), 100 mW (EU), min. 1mW • Infrared • 850-950 nm, diffuse light, typ. 10 m range • carrier detection, energy detection, synchronization
  • 12. 7.12 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 FHSS PHY packet format (legacy) • Synchronization • synch with 010101... pattern • SFD (Start Frame Delimiter) • 0000110010111101 start pattern • PLW (PLCP_PDU Length Word) • length of payload incl. 32 bit CRC of payload, PLW < 4096 • PSF (PLCP Signaling Field) • data of payload (1 or 2 Mbit/s) • HEC (Header Error Check) • CRC with x16+x12+x5+1 synchronization SFD PLW PSF HEC payload PLCP preamble PLCP header 80 16 12 4 16 variable bits
  • 13. 7.13 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 DSSS PHY packet format (legacy) • Synchronization • synch., gain setting, energy detection, frequency offset compensation • SFD (Start Frame Delimiter) • 1111001110100000 • Signal • data rate of the payload (0A: 1 Mbit/s DBPSK; 14: 2 Mbit/s DQPSK) • Service • future use, 00: 802.11 compliant • Length • length of the payload • HEC (Header Error Check) • protection of signal, service and length, x16+x12+x5+1 synchronization SFD signal service HEC payload PLCP preamble PLCP header 128 16 8 8 16 variable bits length 16
  • 14. 7.14 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 802.11 - MAC layer I - DFWMAC • Traffic services • Asynchronous Data Service (mandatory) • exchange of data packets based on “best-effort” • support of broadcast and multicast • Time-Bounded Service (optional) • implemented using PCF (Point Coordination Function) • Access methods • DFWMAC-DCF CSMA/CA (mandatory) • collision avoidance via randomized „back-off“ mechanism • minimum distance between consecutive packets • ACK packet for acknowledgements (not for broadcasts) • DFWMAC-DCF w/ RTS/CTS (optional) • Distributed Foundation Wireless MAC • avoids hidden terminal problem • DFWMAC- PCF (optional) • access point polls terminals according to a list
  • 15. 7.15 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 802.11 - MAC layer II • Priorities • defined through different inter frame spaces • no guaranteed, hard priorities • SIFS (Short Inter Frame Spacing) • highest priority, for ACK, CTS, polling response • PIFS (PCF IFS) • medium priority, for time-bounded service using PCF • DIFS (DCF, Distributed Coordination Function IFS) • lowest priority, for asynchronous data service t medium busy SIFS PIFS DIFS DIFS next frame contention direct access if medium is free  DIFS
  • 16. 7.16 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 t medium busy DIFS DIFS next frame contention window (randomized back-off mechanism) 802.11 - CSMA/CA access method I • station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment) • if the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type) • if the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time) • if another station occupies the medium during the back- off time of the station, the back-off timer stops (fairness) slot time (20µs) direct access if medium is free  DIFS
  • 17. 7.17 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 802.11 - competing stations - simple version t busy boe station1 station2 station3 station4 station5 packet arrival at MAC DIFS boe boe boe busy elapsed backoff time bor residual backoff time busy medium not idle (frame, ack etc.) bor bor DIFS boe boe boe bor DIFS busy busy DIFS boe busy boe boe bor bor
  • 18. 7.18 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 802.11 - CSMA/CA access method II • Sending unicast packets • station has to wait for DIFS before sending data • receivers acknowledge at once (after waiting for SIFS) if the packet was received correctly (CRC) • automatic retransmission of data packets in case of transmission errors t SIFS DIFS data ACK waiting time other stations receiver sender data DIFS contention
  • 19. 7.19 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 802.11 - DFWMAC • Sending unicast packets • station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium) • acknowledgement via CTS after SIFS by receiver (if ready to receive) • sender can now send data at once, acknowledgement via ACK • other stations store medium reservations distributed via RTS and CTS t SIFS DIFS data ACK defer access other stations receiver sender data DIFS contention RTS CTS SIFS SIFS NAV (RTS) NAV (CTS)
  • 20. 7.20 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Fragmentation t SIFS DIFS data ACK1 other stations receiver sender frag1 DIFS contention RTS CTS SIFS SIFS NAV (RTS) NAV (CTS) NAV (frag1) NAV (ACK1) SIFS ACK2 frag2 SIFS
  • 21. 7.21 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 DFWMAC-PCF I (almost never used) PIFS stations‘ NAV wireless stations point coordinator D1 U1 SIFS NAV SIFS D2 U2 SIFS SIFS SuperFrame t0 medium busy t1
  • 22. 7.22 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 DFWMAC-PCF II t stations‘ NAV wireless stations point coordinator D3 NAV PIFS D4 U4 SIFS SIFS CFend contention period contention free period t2 t3 t4
  • 23. 7.23 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 802.11 - Frame format • Types • control frames, management frames, data frames • Sequence numbers • important against duplicated frames due to lost ACKs • Addresses • receiver, transmitter (physical), BSS identifier, sender (logical) • Miscellaneous • sending time, checksum, frame control, data Frame Control Duration/ ID Address 1 Address 2 Address 3 Sequence Control Address 4 Data CRC 2 2 6 6 6 6 2 4 0-2312 bytes Protocol version Type Subtype To DS More Frag Retry Power Mgmt More Data WEP 2 2 4 1 From DS 1 Order bits 1 1 1 1 1 1
  • 24. 7.24 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 MAC address format scenario to DS from DS address 1 address 2 address 3 address 4 ad-hoc network 0 0 DA SA BSSID - infrastructure network, from AP 0 1 DA BSSID SA - infrastructure network, to AP 1 0 BSSID SA DA - infrastructure network, within DS 1 1 RA TA DA SA DS: Distribution System AP: Access Point DA: Destination Address SA: Source Address BSSID: Basic Service Set Identifier RA: Receiver Address TA: Transmitter Address
  • 25. 7.25 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Special Frames: ACK, RTS, CTS • Acknowledgement • Request To Send • Clear To Send Frame Control Duration Receiver Address Transmitter Address CRC 2 2 6 6 4 bytes Frame Control Duration Receiver Address CRC 2 2 6 4 bytes Frame Control Duration Receiver Address CRC 2 2 6 4 bytes ACK RTS CTS
  • 26. 7.26 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 802.11 - MAC management • Synchronization • try to find a LAN, try to stay within a LAN • timer etc. • Power management • sleep-mode without missing a message • periodic sleep, frame buffering, traffic measurements • Association/Reassociation • integration into a LAN • roaming, i.e. change networks by changing access points • scanning, i.e. active search for a network • MIB - Management Information Base • managing, read, write
  • 27. 7.27 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Synchronization using a Beacon (infrastructure) beacon interval (20ms – 1s) t medium access point busy B busy busy busy B B B value of the timestamp B beacon frame
  • 28. 7.28 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Synchronization using a Beacon (ad- hoc) t medium station1 busy B1 beacon interval busy busy busy B1 value of the timestamp B beacon frame station2 B2 B2 random delay
  • 29. 7.29 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Power management • Idea: switch the transceiver off if not needed • States of a station: sleep and awake • Timing Synchronization Function (TSF) • stations wake up at the same time • Infrastructure • Traffic Indication Map (TIM) • list of unicast receivers transmitted by AP • Delivery Traffic Indication Map (DTIM) • list of broadcast/multicast receivers transmitted by AP • Ad-hoc • Ad-hoc Traffic Indication Map (ATIM) • announcement of receivers by stations buffering frames • more complicated - no central AP • collision of ATIMs possible (scalability?) • APSD (Automatic Power Save Delivery) • new method in 802.11e replacing above schemes
  • 30. 7.30 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Power saving with wake-up patterns (infrastructure) TIM interval t medium access point busy D busy busy busy T T D T TIM D DTIM DTIM interval B B B broadcast/multicast station awake p PS poll p d d d data transmission to/from the station
  • 31. 7.31 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Power saving with wake-up patterns (ad-hoc) awake A transmit ATIM D transmit data t station1 B1 B1 B beacon frame station2 B2 B2 random delay A a D d ATIM window beacon interval a acknowledge ATIM d acknowledge data
  • 32. 7.32 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 802.11 - Roaming • No or bad connection? Then perform: • Scanning • scan the environment, i.e., listen into the medium for beacon signals or send probes into the medium and wait for an answer • Reassociation Request • station sends a request to one or several AP(s) • Reassociation Response • success: AP has answered, station can now participate • failure: continue scanning • AP accepts Reassociation Request • signal the new station to the distribution system • the distribution system updates its data base (i.e., location information) • typically, the distribution system now informs the old AP so it can release resources • Fast roaming – 802.11r • e.g. for vehicle-to-roadside networks
  • 33. 7.33 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 WLAN: IEEE 802.11b • Data rate • 1, 2, 5.5, 11 Mbit/s, depending on SNR • User data rate max. approx. 6 Mbit/s • Transmission range • 300m outdoor, 30m indoor • Max. data rate ~10m indoor • Frequency • DSSS, 2.4 GHz ISM-band • Security • Limited, WEP insecure, SSID • Availability • Many products, many vendors • Connection set-up time • Connectionless/always on • Quality of Service • Typ. Best effort, no guarantees (unless polling is used, limited support in products) • Manageability • Limited (no automated key distribution, sym. Encryption) • Special Advantages/Disadvantages • Advantage: many installed systems, lot of experience, available worldwide, free ISM- band, many vendors, integrated in laptops, simple system • Disadvantage: heavy interference on ISM-band, no service guarantees, slow relative speed only
  • 34. 7.34 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 IEEE 802.11b – PHY frame formats synchronization SFD signal service HEC payload PLCP preamble PLCP header 128 16 8 8 16 variable bits length 16 192 µs at 1 Mbit/s DBPSK 1, 2, 5.5 or 11 Mbit/s short synch. SFD signal service HEC payload PLCP preamble (1 Mbit/s, DBPSK) PLCP header (2 Mbit/s, DQPSK) 56 16 8 8 16 variable bits length 16 96 µs 2, 5.5 or 11 Mbit/s Long PLCP PPDU format Short PLCP PPDU format (optional)
  • 35. 7.35 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Channel selection (non-overlapping) 2400 [MHz] 2412 2483.5 2442 2472 channel 1 channel 7 channel 13 Europe (ETSI) US (FCC)/Canada (IC) 2400 [MHz] 2412 2483.5 2437 2462 channel 1 channel 6 channel 11 22 MHz 22 MHz
  • 36. 7.36 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 WLAN: IEEE 802.11a • Data rate • 6, 9, 12, 18, 24, 36, 48, 54 Mbit/s, depending on SNR • User throughput (1500 byte packets): 5.3 (6), 18 (24), 24 (36), 32 (54) • 6, 12, 24 Mbit/s mandatory • Transmission range • 100m outdoor, 10m indoor • E.g., 54 Mbit/s up to 5 m, 48 up to 12 m, 36 up to 25 m, 24 up to 30m, 18 up to 40 m, 12 up to 60 m • Frequency • Free 5.15-5.25, 5.25-5.35, 5.725-5.825 GHz ISM-band • Security • Limited, WEP insecure, SSID • Availability • Some products, some vendors • Connection set-up time • Connectionless/always on • Quality of Service • Typ. best effort, no guarantees (same as all 802.11 products) • Manageability • Limited (no automated key distribution, sym. Encryption) • Special Advantages/Disadvantages • Advantage: fits into 802.x standards, free ISM-band, available, simple system, uses less crowded 5 GHz band • Disadvantage: stronger shading due to higher frequency, no QoS
  • 37. 7.37 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 IEEE 802.11a – PHY frame format rate service payload variable bits 6 Mbit/s PLCP preamble signal data symbols 12 1 variable reserved length tail parity tail pad 6 16 6 1 12 1 4 variable 6, 9, 12, 18, 24, 36, 48, 54 Mbit/s PLCP header
  • 38. 7.38 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Operating channels of 802.11a in Europe 5150 [MHz] 5180 5350 5200 36 44 16.6 MHz center frequency = 5000 + 5*channel number [MHz] channel 40 48 52 56 60 64 5220 5240 5260 5280 5300 5320 5470 [MHz] 5500 5725 5520 100 108 16.6 MHz channel 104 112 116 120 124 128 5540 5560 5580 5600 5620 5640 132 136 140 5660 5680 5700
  • 39. 7.39 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Operating channels for 802.11a / US U-NII 5150 [MHz] 5180 5350 5200 36 44 16.6 MHz center frequency = 5000 + 5*channel number [MHz] channel 40 48 52 56 60 64 149 153 157 161 5220 5240 5260 5280 5300 5320 5725 [MHz] 5745 5825 5765 16.6 MHz channel 5785 5805
  • 40. 7.40 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 OFDM in IEEE 802.11a • OFDM with 52 used subcarriers (64 in total) • 48 data + 4 pilot • (plus 12 virtual subcarriers) • 312.5 kHz spacing subcarrier number 1 7 21 26 -26 -21 -7 -1 channel center frequency 312.5 kHz pilot
  • 41. 7.41 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 WLAN: IEEE 802.11 – current developments (06/2009) • 802.11c: Bridge Support • Definition of MAC procedures to support bridges as extension to 802.1D • 802.11d: Regulatory Domain Update • Support of additional regulations related to channel selection, hopping sequences • 802.11e: MAC Enhancements – QoS • Enhance the current 802.11 MAC to expand support for applications with Quality of Service requirements, and in the capabilities and efficiency of the protocol • Definition of a data flow (“connection”) with parameters like rate, burst, period… supported by HCCA (HCF (Hybrid Coordinator Function) Controlled Channel Access, optional) • Additional energy saving mechanisms and more efficient retransmission • EDCA (Enhanced Distributed Channel Access): high priority traffic waits less for channel access • 802.11F: Inter-Access Point Protocol (withdrawn) • Establish an Inter-Access Point Protocol for data exchange via the distribution system • 802.11g: Data Rates > 20 Mbit/s at 2.4 GHz; 54 Mbit/s, OFDM • Successful successor of 802.11b, performance loss during mixed operation with .11b • 802.11h: Spectrum Managed 802.11a • Extension for operation of 802.11a in Europe by mechanisms like channel measurement for dynamic channel selection (DFS, Dynamic Frequency Selection) and power control (TPC, Transmit Power Control) • 802.11i: Enhanced Security Mechanisms • Enhance the current 802.11 MAC to provide improvements in security. • TKIP enhances the insecure WEP, but remains compatible to older WEP systems • AES provides a secure encryption method and is based on new hardware
  • 42. 7.42 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 WLAN: IEEE 802.11– current developments (06/2009) • 802.11j: Extensions for operations in Japan • Changes of 802.11a for operation at 5GHz in Japan using only half the channel width at larger range • 802.11-2007: Current “complete” standard • Comprises amendments a, b, d, e, g, h, i, j • 802.11k: Methods for channel measurements • Devices and access points should be able to estimate channel quality in order to be able to choose a better access point of channel • 802.11m: Updates of the 802.11-2007 standard • 802.11n: Higher data rates above 100Mbit/s • Changes of PHY and MAC with the goal of 100Mbit/s at MAC SAP • MIMO antennas (Multiple Input Multiple Output), up to 600Mbit/s are currently feasible • However, still a large overhead due to protocol headers and inefficient mechanisms • 802.11p: Inter car communications • Communication between cars/road side and cars/cars • Planned for relative speeds of min. 200km/h and ranges over 1000m • Usage of 5.850-5.925GHz band in North America • 802.11r: Faster Handover between BSS • Secure, fast handover of a station from one AP to another within an ESS • Current mechanisms (even newer standards like 802.11i) plus incompatible devices from different vendors are massive problems for the use of, e.g., VoIP in WLANs • Handover should be feasible within 50ms in order to support multimedia applications efficiently
  • 43. 7.43 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 WLAN: IEEE 802.11– current developments (06/2009) • 802.11s: Mesh Networking • Design of a self-configuring Wireless Distribution System (WDS) based on 802.11 • Support of point-to-point and broadcast communication across several hops • 802.11T: Performance evaluation of 802.11 networks • Standardization of performance measurement schemes • 802.11u: Interworking with additional external networks • 802.11v: Network management • Extensions of current management functions, channel measurements • Definition of a unified interface • 802.11w: Securing of network control • Classical standards like 802.11, but also 802.11i protect only data frames, not the control frames. Thus, this standard should extend 802.11i in a way that, e.g., no control frames can be forged. • 802.11y: Extensions for the 3650-3700 MHz band in the USA • 802.11z: Extension to direct link setup • 802.11aa: Robust audio/video stream transport • 802.11ac: Very High Throughput <6Ghz • 802.11ad: Very High Throughput in 60 GHz • Note: Not all “standards” will end in products, many ideas get stuck at working group level • Info: www.ieee802.org/11/, 802wirelessworld.com, standards.ieee.org/getieee802/
  • 44. 7.44 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Bluetooth • Basic idea • Universal radio interface for ad-hoc wireless connectivity • Interconnecting computer and peripherals, handheld devices, PDAs, cell phones – replacement of IrDA • Embedded in other devices, goal: 5€/device (already < 1€) • Short range (10 m), low power consumption, license-free 2.45 GHz ISM • Voice and data transmission, approx. 1 Mbit/s gross data rate One of the first modules (Ericsson).
  • 45. 7.45 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Bluetooth • History • 1994: Ericsson (Mattison/Haartsen), “MC-link” project • Renaming of the project: Bluetooth according to Harald “Blåtand” Gormsen [son of Gorm], King of Denmark in the 10th century • 1998: foundation of Bluetooth SIG, www.bluetooth.org • 1999: erection of a rune stone at Ercisson/Lund ;-) • 2001: first consumer products for mass market, spec. version 1.1 released • 2005: 5 million chips/week • Special Interest Group • Original founding members: Ericsson, Intel, IBM, Nokia, Toshiba • Added promoters: 3Com, Agere (was: Lucent), Microsoft, Motorola • > 10000 members • Common specification and certification of products (was: )
  • 46. 7.46 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 History and hi-tech… 1999: Ericsson mobile communications AB reste denna sten till minne av Harald Blåtand, som fick ge sitt namn åt en ny teknologi för trådlös, mobil kommunikation.
  • 47. 7.47 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 …and the real rune stone Located in Jelling, Denmark, erected by King Harald “Blåtand” in memory of his parents. The stone has three sides – one side showing a picture of Christ. This could be the “original” colors of the stone. Inscription: “auk tani karthi kristna” (and made the Danes Christians) Inscription: "Harald king executes these sepulchral monuments after Gorm, his father and Thyra, his mother. The Harald who won the whole of Denmark and Norway and turned the Danes to Christianity." Btw: Blåtand means “of dark complexion” (not having a blue tooth…)
  • 48. 7.48 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Characteristics • 2.4 GHz ISM band, 79 (23) RF channels, 1 MHz carrier spacing • Channel 0: 2402 MHz … channel 78: 2480 MHz • G-FSK modulation, 1-100 mW transmit power • FHSS and TDD • Frequency hopping with 1600 hops/s • Hopping sequence in a pseudo random fashion, determined by a master • Time division duplex for send/receive separation • Voice link – SCO (Synchronous Connection Oriented) • FEC (forward error correction), no retransmission, 64 kbit/s duplex, point-to-point, circuit switched • Data link – ACL (Asynchronous ConnectionLess) • Asynchronous, fast acknowledge, point-to-multipoint, up to 433.9 kbit/s symmetric or 723.2/57.6 kbit/s asymmetric, packet switched • Topology • Overlapping piconets (stars) forming a scatternet
  • 49. 7.49 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Piconet • Collection of devices connected in an ad hoc fashion • One unit acts as master and the others as slaves for the lifetime of the piconet • Master determines hopping pattern, slaves have to synchronize • Each piconet has a unique hopping pattern • Participation in a piconet = synchronization to hopping sequence • Each piconet has one master and up to 7 simultaneous slaves (> 200 could be parked) M=Master S=Slave P=Parked SB=Standby M S P SB S S P P SB
  • 50. 7.50 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Forming a piconet • All devices in a piconet hop together • Master gives slaves its clock and device ID • Hopping pattern: determined by device ID (48 bit, unique worldwide) • Phase in hopping pattern determined by clock • Addressing • Active Member Address (AMA, 3 bit) • Parked Member Address (PMA, 8 bit) SB SB SB SB SB SB SB SB SB M S P SB S S P P SB                  
  • 51. 7.51 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Scatternet • Linking of multiple co-located piconets through the sharing of common master or slave devices • Devices can be slave in one piconet and master of another • Communication between piconets • Devices jumping back and forth between the piconets M=Master S=Slave P=Parked SB=Standby M S P SB S S P P SB M S S P SB Piconets (each with a capacity of 720 kbit/s)
  • 52. 7.52 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Bluetooth protocol stack Radio Baseband Link Manager Control Host Controller Interface Logical Link Control and Adaptation Protocol (L2CAP) Audio TCS BIN SDP OBEX vCal/vCard IP NW apps. TCP/UDP BNEP RFCOMM (serial line interface) AT modem commands telephony apps. audio apps. mgmnt. apps. AT: attention sequence OBEX: object exchange TCS BIN: telephony control protocol specification – binary BNEP: Bluetooth network encapsulation protocol SDP: service discovery protocol RFCOMM: radio frequency comm. PPP
  • 53. 7.53 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 S Frequency selection during data transmission fk 625 µs fk+1 fk+2 fk+3 fk+4 fk+3 fk+4 fk fk fk+5 fk+5 fk+1 fk+6 fk+6 fk+6 M M M M M M M M M t t t S S S S S
  • 54. 7.54 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Baseband • Piconet/channel definition • Low-level packet definition • Access code • Channel, device access, e.g., derived from master • Packet header • 1/3-FEC, active member address (broadcast + 7 slaves), link type, alternating bit ARQ/SEQ, checksum access code packet header payload 68(72) 54 0-2745 bits AM address type flow ARQN SEQN HEC 3 4 1 1 1 8 bits preamble sync. (trailer) 4 64 (4)
  • 55. 7.55 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 SCO payload types payload (30) audio (30) audio (10) audio (10) HV3 HV2 HV1 DV FEC (20) audio (20) FEC (10) header (1) payload (0-9) 2/3 FEC CRC (2) (bytes)
  • 56. 7.56 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 ACL Payload types payload (0-343) header (1/2) payload (0-339) CRC (2) header (1) payload (0-17) 2/3 FEC header (1) payload (0-27) header (2) payload (0-121) 2/3 FEC header (2) payload (0-183) header (2) payload (0-224) 2/3 FEC header (2) payload (0-339) DH5 DM5 DH3 DM3 DH1 DM1 header (1) payload (0-29) AUX1 CRC (2) CRC (2) CRC (2) CRC (2) CRC (2) CRC (2) (bytes)
  • 57. 7.57 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Baseband data rates Payload User Symmetric Asymmetric Header Payload max. Rate max. Rate [kbit/s] Type [byte] [byte] FEC CRC [kbit/s] Forward Reverse DM1 1 0-17 2/3 yes 108.8 108.8 108.8 DH1 1 0-27 no yes 172.8 172.8 172.8 DM3 2 0-121 2/3 yes 258.1 387.2 54.4 DH3 2 0-183 no yes 390.4 585.6 86.4 DM5 2 0-224 2/3 yes 286.7 477.8 36.3 DH5 2 0-339 no yes 433.9 723.2 57.6 AUX1 1 0-29 no no 185.6 185.6 185.6 HV1 na 10 1/3 no 64.0 HV2 na 20 2/3 no 64.0 HV3 na 30 no no 64.0 DV 1 D 10+(0-9) D 2/3 D yes D 64.0+57.6 D ACL 1 slot 3 slot 5 slot SCO Data Medium/High rate, High-quality Voice, Data and Voice
  • 58. 7.58 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Baseband link types • Polling-based TDD packet transmission • 625µs slots, master polls slaves • SCO (Synchronous Connection Oriented) – Voice • Periodic single slot packet assignment, 64 kbit/s full-duplex, point- to-point • ACL (Asynchronous ConnectionLess) – Data • Variable packet size (1, 3, 5 slots), asymmetric bandwidth, point- to-multipoint MASTER SLAVE 1 SLAVE 2 f6 f0 f1 f7 f12 f13 f19 f18 SCO SCO SCO SCO ACL f5 f21 f4 f20 ACL ACL f8 f9 f17 f14 ACL
  • 59. 7.59 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Robustness • Slow frequency hopping with hopping patterns determined by a master • Protection from interference on certain frequencies • Separation from other piconets (FH-CDMA) • Retransmission • ACL only, very fast • Forward Error Correction • SCO and ACL MASTER SLAVE 1 SLAVE 2 A C C H F G G B D E NAK ACK Error in payload (not header!)
  • 60. 7.60 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Baseband states of a Bluetooth device standby inquiry page connected AMA transmit AMA park PMA hold AMA sniff AMA unconnected connecting active low power Standby: do nothing Inquire: search for other devices Page: connect to a specific device Connected: participate in a piconet detach Park: release AMA, get PMA Sniff: listen periodically, not each slot Hold: stop ACL, SCO still possible, possibly participate in another piconet
  • 61. 7.61 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Example: Power consumption/CSR BlueCore2 • Typical Average Current Consumption1 • VDD=1.8V Temperature = 20°C • Mode • SCO connection HV3 (1s interval Sniff Mode) (Slave) 26.0 mA • SCO connection HV3 (1s interval Sniff Mode) (Master) 26.0 mA • SCO connection HV1 (Slave) 53.0 mA • SCO connection HV1 (Master) 53.0 mA • ACL data transfer 115.2kbps UART (Master) 15.5 mA • ACL data transfer 720kbps USB (Slave) 53.0 mA • ACL data transfer 720kbps USB (Master) 53.0 mA • ACL connection, Sniff Mode 40ms interval, 38.4kbps UART 4.0 mA • ACL connection, Sniff Mode 1.28s interval, 38.4kbps UART 0.5 mA • Parked Slave, 1.28s beacon interval, 38.4kbps UART 0.6 mA • Standby Mode (Connected to host, no RF activity) 47.0 µA • Deep Sleep Mode2 20.0 µA • Notes: • 1 Current consumption is the sum of both BC212015A and the flash. • 2 Current consumption is for the BC212015A device only.
  • 62. 7.62 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Example: Bluetooth/USB adapter (2002: 50€, today: some cents if integrated)
  • 63. 7.63 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 L2CAP - Logical Link Control and Adaptation Protocol • Simple data link protocol on top of baseband • Connection oriented, connectionless, and signaling channels • Protocol multiplexing • RFCOMM, SDP, telephony control • Segmentation & reassembly • Up to 64kbyte user data, 16 bit CRC used from baseband • QoS flow specification per channel • Follows RFC 1363, specifies delay, jitter, bursts, bandwidth • Group abstraction • Create/close group, add/remove member
  • 64. 7.64 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 L2CAP logical channels baseband L2CAP baseband L2CAP baseband L2CAP Slave Slave Master ACL 2 d 1 d d 1 1 d 2 1 signalling connectionless connection-oriented d d d
  • 65. 7.65 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 L2CAP packet formats length 2 bytes CID=2 2 PSM 2 payload 0-65533 length 2 bytes CID 2 payload 0-65535 length 2 bytes CID=1 2 One or more commands Connectionless PDU Connection-oriented PDU Signalling command PDU code ID length data 1 1 2 0
  • 66. 7.66 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Security E3 E2 link key (128 bit) encryption key (128 bit) payload key Keystream generator Data Data Cipher data Authentication key generation (possibly permanent storage) Encryption key generation (temporary storage) PIN (1-16 byte) User input (initialization) Pairing Authentication Encryption Ciphering E3 E2 link key (128 bit) encryption key (128 bit) payload key Keystream generator PIN (1-16 byte)
  • 67. 7.67 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 SDP – Service Discovery Protocol • Inquiry/response protocol for discovering services • Searching for and browsing services in radio proximity • Adapted to the highly dynamic environment • Can be complemented by others like SLP, Jini, Salutation, … • Defines discovery only, not the usage of services • Caching of discovered services • Gradual discovery • Service record format • Information about services provided by attributes • Attributes are composed of an 16 bit ID (name) and a value • values may be derived from 128 bit Universally Unique Identifiers (UUID)
  • 68. 7.68 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Additional protocols to support legacy protocols/apps. • RFCOMM • Emulation of a serial port (supports a large base of legacy applications) • Allows multiple ports over a single physical channel • Telephony Control Protocol Specification (TCS) • Call control (setup, release) • Group management • OBEX • Exchange of objects, IrDA replacement • WAP • Interacting with applications on cellular phones
  • 69. 7.69 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Profiles • Represent default solutions for a certain usage model • Vertical slice through the protocol stack • Basis for interoperability • Generic Access Profile • Service Discovery Application Profile • Cordless Telephony Profile • Intercom Profile • Serial Port Profile • Headset Profile • Dial-up Networking Profile • Fax Profile • LAN Access Profile • Generic Object Exchange Profile • Object Push Profile • File Transfer Profile • Synchronization Profile Additional Profiles Advanced Audio Distribution PAN Audio Video Remote Control Basic Printing Basic Imaging Extended Service Discovery Generic Audio Video Distribution Hands Free Hardcopy Cable Replacement Profiles Protocols Applications
  • 70. 7.70 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Bluetooth versions • Bluetooth 1.1 • also IEEE Standard 802.15.1-2002 • initial stable commercial standard • Bluetooth 1.2 • also IEEE Standard 802.15.1-2005 • eSCO (extended SCO): higher, variable bitrates, retransmission for SCO • AFH (adaptive frequency hopping) to avoid interference • Bluetooth 2.0 + EDR (2004, no more IEEE) • EDR (enhanced date rate) of 3.0 Mbit/s for ACL and eSCO • lower power consumption due to shorter duty cycle • Bluetooth 2.1 + EDR (2007) • better pairing support, e.g. using NFC • improved security • Bluetooth 3.0 + HS (2009) • Bluetooth 2.1 + EDR + IEEE 802.11a/g = 54 Mbit/s
  • 71. 7.71 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 WPAN: IEEE 802.15.1 – Bluetooth • Data rate • Synchronous, connection- oriented: 64 kbit/s • Asynchronous, connectionless • 433.9 kbit/s symmetric • 723.2 / 57.6 kbit/s asymmetric • Transmission range • POS (Personal Operating Space) up to 10 m • with special transceivers up to 100 m • Frequency • Free 2.4 GHz ISM-band • Security • Challenge/response (SAFER+), hopping sequence • Availability • Integrated into many products, several vendors • Connection set-up time • Depends on power-mode • Max. 2.56s, avg. 0.64s • Quality of Service • Guarantees, ARQ/FEC • Manageability • Public/private keys needed, key management not specified, simple system integration • Special Advantages/Disadvantages • Advantage: already integrated into several products, available worldwide, free ISM-band, several vendors, simple system, simple ad-hoc networking, peer to peer, scatternets • Disadvantage: interference on ISM-band, limited range, max. 8 active devices/network, high set-up latency
  • 72. 7.72 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 WPAN: IEEE 802.15 – future developments 1 • 802.15.2: Coexistance • Coexistence of Wireless Personal Area Networks (802.15) and Wireless Local Area Networks (802.11), quantify the mutual interference • 802.15.3: High-Rate • Standard for high-rate (20Mbit/s or greater) WPANs, while still low-power/low-cost • Data Rates: 11, 22, 33, 44, 55 Mbit/s • Quality of Service isochronous protocol • Ad hoc peer-to-peer networking • Security • Low power consumption • Low cost • Designed to meet the demanding requirements of portable consumer imaging and multimedia applications
  • 73. 7.73 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 WPAN: IEEE 802.15 – future developments 2 • Several working groups extend the 802.15.3 standard • 802.15.3a: - withdrawn - • Alternative PHY with higher data rate as extension to 802.15.3 • Applications: multimedia, picture transmission • 802.15.3b: • Enhanced interoperability of MAC • Correction of errors and ambiguities in the standard • 802.15.3c: • Alternative PHY at 57-64 GHz • Goal: data rates above 2 Gbit/s • Not all these working groups really create a standard, not all standards will be found in products later …
  • 74. 7.74 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 WPAN: IEEE 802.15 – future developments 3 • 802.15.4: Low-Rate, Very Low-Power • Low data rate solution with multi-month to multi-year battery life and very low complexity • Potential applications are sensors, interactive toys, smart badges, remote controls, and home automation • Data rates of 20-250 kbit/s, latency down to 15 ms • Master-Slave or Peer-to-Peer operation • Up to 254 devices or 64516 simpler nodes • Support for critical latency devices, such as joysticks • CSMA/CA channel access (data centric), slotted (beacon) or unslotted • Automatic network establishment by the PAN coordinator • Dynamic device addressing, flexible addressing format • Fully handshaked protocol for transfer reliability • Power management to ensure low power consumption • 16 channels in the 2.4 GHz ISM band, 10 channels in the 915 MHz US ISM band and one channel in the European 868 MHz band • Basis of the ZigBee technology – www.zigbee.org
  • 75. 7.75 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 ZigBee • Relation to 802.15.4 similar to Bluetooth / 802.15.1 • Pushed by Chipcon (now TI), ember, freescale (Motorola), Honeywell, Mitsubishi, Motorola, Philips, Samsung… • More than 260 members • about 15 promoters, 133 participants, 111 adopters • must be member to commercially use ZigBee spec • ZigBee platforms comprise • IEEE 802.15.4 for layers 1 and 2 • ZigBee protocol stack up to the applications
  • 76. 7.76 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 WPAN: IEEE 802.15 – future developments 4 • 802.15.4a: • Alternative PHY with lower data rate as extension to 802.15.4 • Properties: precise localization (< 1m precision), extremely low power consumption, longer range • Two PHY alternatives • UWB (Ultra Wideband): ultra short pulses, communication and localization • CSS (Chirp Spread Spectrum): communication only • 802.15.4b, c, d, e, f, g: • Extensions, corrections, and clarifications regarding 802.15.4 • Usage of new bands, more flexible security mechanisms • RFID, smart utility neighborhood (high scalability) • 802.15.5: Mesh Networking • Partial meshes, full meshes • Range extension, more robustness, longer battery live • 802.15.6: Body Area Networks • Low power networks e.g. for medical or entertainment use • 802.15.7: Visible Light Communication • Not all these working groups really create a standard, not all standards will be found in products later …
  • 77. 7.77 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 Some more IEEE standards for mobile communications • IEEE 802.16: Broadband Wireless Access / WirelessMAN / WiMax • Wireless distribution system, e.g., for the last mile, alternative to DSL • 75 Mbit/s up to 50 km LOS, up to 10 km NLOS; 2-66 GHz band • Initial standards without roaming or mobility support • 802.16e adds mobility support, allows for roaming at 150 km/h • IEEE 802.20: Mobile Broadband Wireless Access (MBWA) • Licensed bands < 3.5 GHz, optimized for IP traffic • Peak rate > 1 Mbit/s per user • Different mobility classes up to 250 km/h and ranges up to 15 km • Relation to 802.16e unclear • IEEE 802.21: Media Independent Handover Interoperability • Standardize handover between different 802.x and/or non 802 networks • IEEE 802.22: Wireless Regional Area Networks (WRAN) • Radio-based PHY/MAC for use by license-exempt devices on a non- interfering basis in spectrum that is allocated to the TV Broadcast Service
  • 78. 7.78 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 RF Controllers – ISM bands • Data rate • Typ. up to 115 kbit/s (serial interface) • Transmission range • 5-100 m, depending on power (typ. 10-500 mW) • Frequency • Typ. 27 (EU, US), 315 (US), 418 (EU), 426 (Japan), 433 (EU), 868 (EU), 915 (US) MHz (depending on regulations) • Security • Some products with added processors • Cost • Cheap: 10€-50€ • Availability • Many products, many vendors • Connection set-up time • N/A • Quality of Service • none • Manageability • Very simple, same as serial interface • Special Advantages/Disadvantages • Advantage: very low cost, large experience, high volume available • Disadvantage: no QoS, crowded ISM bands (particularly 27 and 433 MHz), typ. no Medium Access Control, 418 MHz experiences interference with TETRA
  • 79. 7.79 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 RFID – Radio Frequency Identification (1) • Data rate • Transmission of ID only (e.g., 48 bit, 64kbit, 1 Mbit) • 9.6 – 115 kbit/s • Transmission range • Passive: up to 3 m • Active: up to 30-100 m • Simultaneous detection of up to, e.g., 256 tags, scanning of, e.g., 40 tags/s • Frequency • 125 kHz, 13.56 MHz, 433 MHz, 2.4 GHz, 5.8 GHz and many others • Security • Application dependent, typ. no crypt. on RFID device • Cost • Very cheap tags, down to 1€ (passive) • Availability • Many products, many vendors • Connection set-up time • Depends on product/medium access scheme (typ. 2 ms per device) • Quality of Service • none • Manageability • Very simple, same as serial interface • Special Advantages/Disadvantages • Advantage: extremely low cost, large experience, high volume available, no power for passive RFIDs needed, large variety of products, relative speeds up to 300 km/h, broad temp. range • Disadvantage: no QoS, simple denial of service, crowded ISM bands, typ. one-way (activation/ transmission of ID)
  • 80. 7.80 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 RFID – Radio Frequency Identification (2) • Function • Standard: In response to a radio interrogation signal from a reader (base station) the RFID tags transmit their ID • Enhanced: additionally data can be sent to the tags, different media access schemes (collision avoidance) • Features • No line-of sight required (compared to, e.g., laser scanners) • RFID tags withstand difficult environmental conditions (sunlight, cold, frost, dirt etc.) • Products available with read/write memory, smart-card capabilities • Categories • Passive RFID: operating power comes from the reader over the air which is feasible up to distances of 3 m, low price (1€) • Active RFID: battery powered, distances up to 100 m
  • 81. 7.81 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 RFID – Radio Frequency Identification (3) • Applications • Total asset visibility: tracking of goods during manufacturing, localization of pallets, goods etc. • Loyalty cards: customers use RFID tags for payment at, e.g., gas stations, collection of buying patterns • Automated toll collection: RFIDs mounted in windshields allow commuters to drive through toll plazas without stopping • Others: access control, animal identification, tracking of hazardous material, inventory control, warehouse management, ... • Local Positioning Systems • GPS useless indoors or underground, problematic in cities with high buildings • RFID tags transmit signals, receivers estimate the tag location by measuring the signal‘s time of flight
  • 82. 7.82 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 RFID – Radio Frequency Identification (4) • Security • Denial-of-Service attacks are always possible • Interference of the wireless transmission, shielding of transceivers • IDs via manufacturing or one time programming • Key exchange via, e.g., RSA possible, encryption via, e.g., AES • Future Trends • RTLS: Real-Time Locating System – big efforts to make total asset visibility come true • Integration of RFID technology into the manufacturing, distribution and logistics chain • Creation of „electronic manifests“ at item or package level (embedded inexpensive passive RFID tags) • 3D tracking of children, patients
  • 83. 7.83 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 RFID – Radio Frequency Identification (5) • Relevant Standards • American National Standards Institute • ANSI, www.ansi.org, www.aimglobal.org/standards/rfidstds/ANSIT6.html • Automatic Identification and Data Capture Techniques • JTC 1/SC 31, www.uc-council.com/sc31/home.htm, www.aimglobal.org/standards/rfidstds/sc31.htm • European Radiocommunications Office • ERO, www.ero.dk, www.aimglobal.org/standards/rfidstds/ERO.htm • European Telecommunications Standards Institute • ETSI, www.etsi.org, www.aimglobal.org/standards/rfidstds/ETSI.htm • Identification Cards and related devices • JTC 1/SC 17, www.sc17.com, www.aimglobal.org/standards/rfidstds/sc17.htm, • Identification and communication • ISO TC 104 / SC 4, www.autoid.org/tc104_sc4_wg2.htm, www.aimglobal.org/standards/rfidstds/TC104.htm • Road Transport and Traffic Telematics • CEN TC 278, www.nni.nl, www.aimglobal.org/standards/rfidstds/CENTC278.htm • Transport Information and Control Systems • ISO/TC204, www.sae.org/technicalcommittees/gits.htm, www.aimglobal.org/standards/rfidstds/ISOTC204.htm
  • 84. 7.84 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 RFID – Radio Frequency Identification (6) • ISO Standards • ISO 15418 • MH10.8.2 Data Identifiers • EAN.UCC Application Identifiers • ISO 15434 - Syntax for High Capacity ADC Media • ISO 15962 - Transfer Syntax • ISO 18000 • Part 2, 125-135 kHz • Part 3, 13.56 MHz • Part 4, 2.45 GHz • Part 5, 5.8 GHz • Part 6, UHF (860-930 MHz, 433 MHz) • ISO 18047 - RFID Device Conformance Test Methods • ISO 18046 - RF Tag and Interrogator Performance Test Methods
  • 85. 7.85 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 ISM band interference • Many sources of interference • Microwave ovens, microwave lighting • 802.11, 802.11b, 802.11g, 802.15, … • Even analog TV transmission, surveillance • Unlicensed metropolitan area networks • … • Levels of interference • Physical layer: interference acts like noise • Spread spectrum tries to minimize this • FEC/interleaving tries to correct • MAC layer: algorithms not harmonized • E.g., Bluetooth might confuse 802.11 OLD © Fusion Lighting, Inc., now used by LG as Plasma Lighting System NEW
  • 86. 7.86 Prof. Dr.-Ing. Jochen H. Schiller www.jochenschiller.de MC - 2009 • Bluetooth may act like a rogue member of the 802.11 network • Does not know anything about gaps, inter frame spacing etc. • IEEE 802.15-2 discusses these problems • Proposal: Adaptive Frequency Hopping • a non-collaborative Coexistence Mechanism • Real effects? Many different opinions, publications, tests, formulae, … • Results from complete breakdown to almost no effect • Bluetooth (FHSS) seems more robust than 802.11b (DSSS) 802.11 vs.(?) 802.15/Bluetooth t f [MHz] 2402 2480 802.11b 3 channels (separated by installation) ACK DIFS DIFS SIFS 1000 byte SIFS DIFS 500 byte ACK DIFS 500 byte SIFS ACK DIFS 500 byte DIFS 100 byte SIFS ACK DIFS 100 byte SIFS ACK DIFS 100 byte SIFS ACK DIFS 100 byte SIFS ACK DIFS 100 byte SIFS ACK 802.15.1 79 channels (separated by hopping pattern)

Editor's Notes

  • #2: Mobile Communications 2002
  • #3: Mobile Communications 2002
  • #4: Mobile Communications 2002
  • #5: Mobile Communications 2002
  • #6: Mobile Communications 2002
  • #7: Mobile Communications 2002
  • #8: Mobile Communications 2002
  • #9: Mobile Communications 2002
  • #10: Mobile Communications 2002
  • #11: Mobile Communications 2002
  • #12: Mobile Communications 2002
  • #13: Mobile Communications 2002
  • #14: Mobile Communications 2002
  • #15: Mobile Communications 2002
  • #16: Mobile Communications 2002
  • #17: Mobile Communications 2002
  • #18: Mobile Communications 2002
  • #19: Mobile Communications 2002
  • #20: Mobile Communications 2002
  • #21: Mobile Communications 2002
  • #22: Mobile Communications 2002
  • #23: Mobile Communications 2002
  • #24: Mobile Communications 2002
  • #25: Mobile Communications 2002
  • #26: Mobile Communications 2002
  • #27: Mobile Communications 2002
  • #28: Mobile Communications 2002
  • #29: Mobile Communications 2002
  • #30: Mobile Communications 2002
  • #31: Mobile Communications 2002
  • #32: Mobile Communications 2002
  • #33: Mobile Communications 2002
  • #34: Mobile Communications 2002
  • #35: Mobile Communications 2002
  • #36: Mobile Communications 2002
  • #37: Mobile Communications 2002
  • #38: Mobile Communications 2002
  • #39: Mobile Communications 2002
  • #40: Mobile Communications 2002
  • #41: Mobile Communications 2002
  • #42: Mobile Communications 2002
  • #43: Mobile Communications 2002
  • #44: Mobile Communications 2002
  • #45: Mobile Communications 2002
  • #46: Mobile Communications 2002
  • #47: Mobile Communications 2002
  • #48: Mobile Communications 2002
  • #49: Mobile Communications 2002
  • #50: Mobile Communications 2002
  • #51: Mobile Communications 2002
  • #52: Mobile Communications 2002
  • #53: Mobile Communications 2002
  • #54: Mobile Communications 2002
  • #55: Mobile Communications 2002
  • #56: Mobile Communications 2002
  • #57: Mobile Communications 2002
  • #58: Mobile Communications 2002
  • #59: Mobile Communications 2002
  • #60: Mobile Communications 2002
  • #61: Mobile Communications 2002
  • #62: Mobile Communications 2002
  • #63: Mobile Communications 2002
  • #64: Mobile Communications 2002
  • #65: Mobile Communications 2002
  • #66: Mobile Communications 2002
  • #67: Mobile Communications 2002
  • #68: Mobile Communications 2002
  • #69: Mobile Communications 2002
  • #70: Mobile Communications 2002
  • #72: Mobile Communications 2002
  • #73: Mobile Communications 2002
  • #74: Mobile Communications 2002
  • #75: Mobile Communications 2002
  • #76: Mobile Communications 2002
  • #77: Mobile Communications 2002
  • #78: Mobile Communications 2002
  • #79: Mobile Communications 2002
  • #80: Mobile Communications 2002
  • #81: Mobile Communications 2002
  • #82: Mobile Communications 2002
  • #83: Mobile Communications 2002
  • #84: Mobile Communications 2002
  • #85: Mobile Communications 2002
  • #86: Mobile Communications 2002
  • #87: Mobile Communications 2002