2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications 1
Laboratoire de Physique des Interfaces et
des Couches Minces
Polarized and polarimetric Raman
spectroscopy and applications
A. Frigout, M. Richert, M. Lamy de la Chapelle &
R. Ossikovski
LPICM, Ecole Polytechnique, CNRS
alexandre.frigout@polytechnique.edu
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications2
Outline
• Motivation
• Experimental setup
• Polarized Raman
– Theory
– Application: stress characterization in semiconductors
• Polarimetric Raman
– Motivation
– Setup calibration
– Application example: Rayleigh-Stokes measurement
• Conclusion
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications3
Motivation
• Objective : Fully exploit the capabilities of « classic »
characterization techniques (Raman and Rayleigh
scattering, fluorescence)
• Means: Combine Raman spectroscopy and related
techniques (Rayleigh scattering, fluorescence) with full
polarized light control (generation and analysis)
• Expected results : Stokes vector and Mueller matrix
measurements within « classic » characterization
techniques resulting in advanced characterization methods
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications4
Experimental setup
• High Resolution Raman
spectroscopy
• Scanning probe
microscope
Oblique backscattering configuration
Piezo X,Y
Piezo Z
Microscope
Laser
grating
Notch filter
Detector
PSIA XE100 HORIBA JY Labram 800
X
Y
Z
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications5
Polarization control:
1. half-wave plate
2. analyzer
(photos à ajouter)
Generation and analysis of linear polarization states (incident and bacscattered light)
Polarized Raman setup
spectrometer
Laser
objectives
Removable
mirror
Half wave
plate
Analyzer
Edge
filter
spectrometer
Laser
objectives
Removable
mirror
Half wave
plate
Analyzer
Edge
filter
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications6
• Raman intensity : I ~ ∑|eS
T
Rjei|2
Rj : Raman tensor of the j phonon (3 for c-Si at 521 cm-1
)
eS : scattered polarization state (Analyzer A)
ei : incident polarization state (half wave plate P)
n

θ
ie

se

analyseur
A
Half wave plate
P










=










=










=
000
00
00
00
000
00
00
00
000
321 d
d
R
d
d
R
d
dR
azimuth
sample S
In the normal backscattering, the third phonon (LO) is the only
one wich can be observed !
Raman intensity depends on the polarization states eS and ei as well as
the sample azimuth !
Thoery of polarized Raman on crystals
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications7
Principle : Shift of the optical Si-Si phonon (at 521 cm-1
)
caused by internal mechanical strain : Δw = f(σ)
Observations + model + corrections => stress
1. Model for Δω
(analytical ou FE )
2. Corrections pour
profil du faisceau,
pénétration (l) ???
3. Result:
s = g (Δω)0 200 400 600
0
10
20
30
40
50
60
70
Ramanintensity(a.u.)
Raman shift (cm
-1
)
Si-Si phonon
(3 degenerated modes:
TO1, TO2 et LO)
Rayleigh diffusion
Raman spectrum of c-Si
Stress analysis in Si by
Raman spectroscopy
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications8
• In oblique configuration:
– Vary the azimuth sample or the incident polarization
– Fitting the intensity, frequency shift and the FWMH of the Si-Si line with a strain
model
80 nmsSi
SiGe
Si / SiGe structure:
MPa σ11
σ12
σ22
σ33
sSi 980 0 980 0
SiGe -650 0 -650 0
-20 0 20 40 60 80 100 120 140 160 180 200
509
515
516
517
Frequency(cm
-1
)
Sample azimuth (°)
FSiGe
FsSi
-20 0 20 40 60 80 100 120 140 160 180 200
2,8
3,0
3,2
3,4
3,6
3,8
4,0
4,2
4,4
4,6
4,8
FWHM(cm
-1
)
Sample azimuth (°)
strained-SiGe
strained-Si
Phonon position FWMHintensity
R. Ossikovski, Q. Nguyen, G. Picardi, J. Schreiber, J. Appl. Phys. 103, 093525 (2008)
R. Ossikovski, Q. Nguyen, G. Picardi, J. Schreiber, P. Morin, J. Raman Spectrosc. 39, 661 (2008)
bisotropic strain:
Strain measurement in
μRaman : strained Si/SiGe
Incident polarizationIncident polarization Incident polarization
σ11= σ22
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications9
• Same experimental configuration but fitted with a biaxial
stress tensor: σ11 ≠ σ22
sSi
SiO2
substrat Si
Strained Si stripes (200nm width, 10nm thick): for CMOS transistor
channel
-20 0 20 40 60 80 100 120 140 160 180 200
3.2
3.3
3.4
3.5
3.6
3.7
3.8
FWMH
Polarization
-20 0 20 40 60 80 100 120 140 160 180 200
516.54
516.55
516.56
516.57
516.58
516.59
516.60
516.61
516.62
516.63
516.64
Shift
Polarization
sSipeakFWMH
sSipeakposition
Incident polarization
Biaxial strain : 1300 / 400 MPa (confirmed by XRays !)
Stress measurement in μRaman:
Si stripes on strained SiO2
Biaxial strain results in asymmetric polarization curves
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications10
• Same experimental configuration.
-20 0 20 40 60 80 100 120 140 160 180 200
518.1
518.2
518.3
518.4
518.5
518.6
Experiment
Simulation
SipeakFWMH
Sipeakposition
Incident polarization
-20 0 20 40 60 80 100 120 140 160 180 200
5.20
5.25
5.30
Experiment
Simulation
Incident polarization
• SiNW optical image, 100x objective, 400nm diameter.
Fitted with an isotropic biaxial strain tensor with σ11 = σ22 = 450Mpa
and a (111) cristalline orientation
Stress measurement in
μRaman : SiNWs
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications11
• Integration of a polarimeter in the HR-800
Raman spectrometer (from Horiba Jobin Yvon):
– Polarimetric calibration of the spectrometer
– Measurements of Stokes vector and Mueller matrix:
• in Rayleigh scattering regime (coherent illumination)
• of Raman bands (inelastic scattering)
• of fluorescence bands
Motivation for
polarimetric Raman
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications12












−
−
−
=












=
−+
DG
yx
II
II
II
I
S
S
S
S
S
4545
0
3
2
1
0
• Description of polarized light (tottaly or not)
• Stokes vector:
• S0 : total intensity
• S1 : ligth polarized parallel
• S2 : light polarized perpendicular
• S3 : light circulary polarized
• DOP : fraction of polarized light
S / S0
Bijective
relationship
0
2
3
2
2
2
1
S
SSS
DOP
++
=
DOP < 1 : light partially polarized
DOP = 1 : light totally polarized
Polarimetry: Stokes
formalism
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications13
Polarization control:
1. liquid crystals
2. motorized rotating plates
Complete control of the « input / output » polarization
Polarimetric Raman setup
spectrometer
Laser
objectives
Removable
mirror
PSG
PSA
Edge
filter
spectrometer
Laser
objectives
Removable
mirror
PSG
PSA
Edge
filter
λ/4 rotating
plate
Analyzer
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications14
• Determination of the physical charectiristics of the scattered light path
• Measurements of stokes vectors with differents inputs polarizations:
– A rotating linear polarizer
– A rotating quarter wave plate
• Stokes vectors obtained by Fast Fourier Transform
Laser source
Microscope Spectrometer
rotating
polarirzer
λ/2 rotating
plate
45° mirror
Laser source
Microscope Spectrometer
λ/4 rotating
plate
rotating
polarizer
λ/2 rotating
plate
45° mirror
Linear polarized light input circular polarized light input
Polarimetric Raman:
calibration approach
PSAPSA
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications15
Stokes vector components vs input linear polarization
DOP
S1
S2
S3
Uncalibrated Raman spectrometer
response
Incident polarization Incident polarization
Incident polarizationIncident polarization
• Experimentals results:
– DOP varies between 0.8 and 1.1
– S1 and S2 have sinusoïdal trends but
do not fit with cosine and sine
– S3 varies between -0.5 and 0.4
• In theory:
– DOP = 1
– S1, S2 exhibit a sinusoïdal trend
– S3 = 0
The system is not passive with
respect to the polarization!
Simulated stokes vector
measured stokes vector
Laser source
Microscope Spectrometer
rotating
polarirzer
λ/2 rotating
plate
45° mirror
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications16
Poincaré sphere representation
of the uncalibrated response
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications17
IRaw
FFT {α, θ, Δ, D, R}
S = MΔ
-1
MD
-1
MR
-1
SRaw
Depolarizer
Diattenuator
Retarder
DOP ~ 1
S3 ~ 0
• Reasons of this modelisation:
– Depolarizer : DOP close to 1
– Diattenuator : uniform distribution of the polarization state on the ecuador
– Retarder : cancel the S3, bring the plane of the polarization states on the ecuador
• Recursive function with α, θ and Δ as initial conditions
– Calculation of R and D
• R, D and Δ have the sames axes (our reference frame), in that case their matrices
commute
Scattered light path
modeling
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications18
• Input parameters [α a θ] = [0 1 0]
• Adjusted parameters:
– λ/4 first angle α: -1.7133°
– Analyzer orientation θ: 0.8817°
– Depolarizer a: 0.9279
– diattenuator D: 0.5154
– Retardance R: 28.6639°
Stokes vector components vs input linear polarization
Laser source
Microscope Spectrometer
P
45°
mirror
Calibration with linear
polarization input
σS = < | Sexp- Stheo | >
= 10-2
[ 4.83 5.38 1.65 ]
Incident polarization
Incident polarizationIncident polarization
Incident polarization
PSA
Simulated stokes vector
measured stokes vector
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications19
Poincaré sphere representation of
the calibrated system response
• Polarization states close to the
ecuador and uniformly distributed
• Missmatch between first and
second loop of the polarization
states:
– misalignement of the retarder with
respect to the laser beam
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications20
Stokes vector components vs input elliptical polarization
Laser source
Microscope Spectrometer
λ/4
P
45°
mirror
Response to an elliptical
polarization input
σS = < | Sexp- Stheo | >
= 10-2
[ 2.39 3.12 5.71 ]
Incident polarization Incident polarization
Incident polarizationIncident polarization
PSA
Simulated stokes vector of a
retarder plates (adjustment :
R = 74.03° theta Sin = ???)
measured stokes vector
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications21
Poincaré sphere system
response
• Polarization states close to
the simulated curve
• Mismatch between first and
second loop of the
polarization states:
– misalignement of the retarder
with respect to the laser beam
measured stokes vector
Simulation with R = 74.03°
Measurement MM16:
R = 74.3°
=> Good agreement
Input : retarder plate at different azimuths
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications22
DOP
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
P S P S P S
514 nm 458nm
633 nm
S1
-1
-0.5
0
0.5
1
P S P S P S
514 nm 458nm633 nm
S2
-1
-0.5
0
0.5
1
P S P S P S
514 nm 458nm633 nm
S3
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
P S P S P S
514 nm 458nm633 nm
Stokes-Rayleigh measurement
of STM gold tips
• DOP : competition
between Rayleigh
regime scattering
(458nm) & plasmonic
excitation (633nm)
• A « strong » S3
component at 633 nm :
resulting from
plasmonic excitation (?)
Stokes vector components vs wavelength
Characterization of near field probes through their polairzation response
tiptip
2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications23
Conclusion & outlook
• Polarization control is an important « degree of freedom » that
can be advantageously exploited in scattering and spectroscopic
techniques (Rayleigh, Raman, fluorescence…)
• Polarization control is applied with success to industrial
applications of Raman such as stress characterization in
semiconductors
• Extension from polarized to polarimetric Rayleigh and Raman
scattering opens up the way to novel measurement opportunities
(Mueller-Rayleigh, Mueller-Raman matrices) and applications
(plasmonics)
WE ARE ONLY IN THE BEGINNING,
THE MOST EXCITING IS TO COME!

More Related Content

PPTX
Raman spectroscopy
PPTX
Uv vis and raman spectroscopy
PPTX
raman spectroscopy
PPTX
Raman spectroscopy
PDF
30120140504010 2
PPT
Raman Spectroscopy Poster
PPTX
Raman Analysis of Carbon Nanostructures draft3
PDF
Introduction to raman spectroscopy
Raman spectroscopy
Uv vis and raman spectroscopy
raman spectroscopy
Raman spectroscopy
30120140504010 2
Raman Spectroscopy Poster
Raman Analysis of Carbon Nanostructures draft3
Introduction to raman spectroscopy

What's hot (20)

PPTX
Raman spectroscopy (1)
PPTX
LASER RAMAN SPECTROSCOPY WITH DIFFERENT EXCITATION SOURCES
PPTX
Raman spectroscpy presentation by zakia afzal
PPTX
Applications of raman spectroscopy
PPTX
Raman spectroscopy by dr mahesh kumar
PPTX
Laboratory Raman spectroscopy ISP NASU
PPT
Raman spectroscopy- General Talak
PPTX
RAMAN SPECTROSCOPY AND ITS APPLICATIONS
PPTX
Raman spectroscopy jivan_pund
PPTX
Raman spectroscopy
PPTX
Raman spectroscopy
PPTX
Raman spectroscopy
PPT
intensity of raman band
PPT
Intro to Raman Scattering
PDF
Raman Spectroscopy
PPT
Raman spectroscopy
PPTX
Advantages of raman over infrared spectroscopy
PPTX
Raman Effect
PPTX
Rasonance raman specroscopy
PPTX
raman spectroscopy
Raman spectroscopy (1)
LASER RAMAN SPECTROSCOPY WITH DIFFERENT EXCITATION SOURCES
Raman spectroscpy presentation by zakia afzal
Applications of raman spectroscopy
Raman spectroscopy by dr mahesh kumar
Laboratory Raman spectroscopy ISP NASU
Raman spectroscopy- General Talak
RAMAN SPECTROSCOPY AND ITS APPLICATIONS
Raman spectroscopy jivan_pund
Raman spectroscopy
Raman spectroscopy
Raman spectroscopy
intensity of raman band
Intro to Raman Scattering
Raman Spectroscopy
Raman spectroscopy
Advantages of raman over infrared spectroscopy
Raman Effect
Rasonance raman specroscopy
raman spectroscopy
Ad

Viewers also liked (15)

PPTX
Microscopy
PPTX
Tapping into the Agri-Tourism Industry - Suggestions for Craft Distillers
PPTX
Trans presentation
PDF
Endgame2 backwards mapping
PDF
Technology Use for Developing a Writing Plan
PDF
Real Estate Sole selling proposal for residential & commercial properties in ...
PDF
Virtual Holland Codes for Kids Career Test
PPTX
Polarized microscopy seminar/prosthodontic courses
PPTX
Matematika diskrit
PDF
ECONOMIC PROBLEMS OF INFORMAL (UNORGANIZED) SECTOR PROFESSIONALS IN NAGPUR DI...
PPTX
Different types of microscopes
PDF
Skalere frontendbygg
PDF
GRT16_IndiaStaffing_100415
Microscopy
Tapping into the Agri-Tourism Industry - Suggestions for Craft Distillers
Trans presentation
Endgame2 backwards mapping
Technology Use for Developing a Writing Plan
Real Estate Sole selling proposal for residential & commercial properties in ...
Virtual Holland Codes for Kids Career Test
Polarized microscopy seminar/prosthodontic courses
Matematika diskrit
ECONOMIC PROBLEMS OF INFORMAL (UNORGANIZED) SECTOR PROFESSIONALS IN NAGPUR DI...
Different types of microscopes
Skalere frontendbygg
GRT16_IndiaStaffing_100415
Ad

Similar to workshop_X_dec_2009_AF (20)

PPT
lectures-genova2006-lecture3.ppt
PPTX
JASCO-CD-Webinar-Part-1-FINAL.pptx
PPT
chfggsfgsgafgasgsdgSGLJSDKSGLSKJDGKLKKJGDd.ppt
PPTX
Raman Spectroscopy.pptx
PPTX
Raman spectroscopy by nitish kumar
PPTX
Raman Spectrum.pptx
PPT
RAMAN-Chapter-18-part-2-useful for us.ppt
PDF
Raman spectroscopy.pdf
PPTX
Spectroscopic Techniques
PPT
Polarization Spectroscopy
PPT
Api009
PPTX
Raman spectroscopy
PPTX
polarization-1.pptx
PPTX
CLASSICAL THEORY OF RAMAN EFFECT.pptx
PPTX
Fraunhofer IIS @ Scilab Conference 2018
PPT
spectroscopy , raman and organic chemistry
PPTX
RAMAN SPECTROSCOPY - ANALYTICAL CHEMISTRY
PPT
9873erwefeasfasfafawfwessfcefwsfwefwef7.ppt
PDF
Chapter 4 - Raman Spectroscopy.pdf
PPT
Circular dichroism in Biochemistryppt.ppt
lectures-genova2006-lecture3.ppt
JASCO-CD-Webinar-Part-1-FINAL.pptx
chfggsfgsgafgasgsdgSGLJSDKSGLSKJDGKLKKJGDd.ppt
Raman Spectroscopy.pptx
Raman spectroscopy by nitish kumar
Raman Spectrum.pptx
RAMAN-Chapter-18-part-2-useful for us.ppt
Raman spectroscopy.pdf
Spectroscopic Techniques
Polarization Spectroscopy
Api009
Raman spectroscopy
polarization-1.pptx
CLASSICAL THEORY OF RAMAN EFFECT.pptx
Fraunhofer IIS @ Scilab Conference 2018
spectroscopy , raman and organic chemistry
RAMAN SPECTROSCOPY - ANALYTICAL CHEMISTRY
9873erwefeasfasfafawfwessfcefwsfwefwef7.ppt
Chapter 4 - Raman Spectroscopy.pdf
Circular dichroism in Biochemistryppt.ppt

workshop_X_dec_2009_AF

  • 1. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications 1 Laboratoire de Physique des Interfaces et des Couches Minces Polarized and polarimetric Raman spectroscopy and applications A. Frigout, M. Richert, M. Lamy de la Chapelle & R. Ossikovski LPICM, Ecole Polytechnique, CNRS alexandre.frigout@polytechnique.edu
  • 2. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications2 Outline • Motivation • Experimental setup • Polarized Raman – Theory – Application: stress characterization in semiconductors • Polarimetric Raman – Motivation – Setup calibration – Application example: Rayleigh-Stokes measurement • Conclusion
  • 3. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications3 Motivation • Objective : Fully exploit the capabilities of « classic » characterization techniques (Raman and Rayleigh scattering, fluorescence) • Means: Combine Raman spectroscopy and related techniques (Rayleigh scattering, fluorescence) with full polarized light control (generation and analysis) • Expected results : Stokes vector and Mueller matrix measurements within « classic » characterization techniques resulting in advanced characterization methods
  • 4. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications4 Experimental setup • High Resolution Raman spectroscopy • Scanning probe microscope Oblique backscattering configuration Piezo X,Y Piezo Z Microscope Laser grating Notch filter Detector PSIA XE100 HORIBA JY Labram 800 X Y Z
  • 5. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications5 Polarization control: 1. half-wave plate 2. analyzer (photos à ajouter) Generation and analysis of linear polarization states (incident and bacscattered light) Polarized Raman setup spectrometer Laser objectives Removable mirror Half wave plate Analyzer Edge filter spectrometer Laser objectives Removable mirror Half wave plate Analyzer Edge filter
  • 6. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications6 • Raman intensity : I ~ ∑|eS T Rjei|2 Rj : Raman tensor of the j phonon (3 for c-Si at 521 cm-1 ) eS : scattered polarization state (Analyzer A) ei : incident polarization state (half wave plate P) n  θ ie  se  analyseur A Half wave plate P           =           =           = 000 00 00 00 000 00 00 00 000 321 d d R d d R d dR azimuth sample S In the normal backscattering, the third phonon (LO) is the only one wich can be observed ! Raman intensity depends on the polarization states eS and ei as well as the sample azimuth ! Thoery of polarized Raman on crystals
  • 7. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications7 Principle : Shift of the optical Si-Si phonon (at 521 cm-1 ) caused by internal mechanical strain : Δw = f(σ) Observations + model + corrections => stress 1. Model for Δω (analytical ou FE ) 2. Corrections pour profil du faisceau, pénétration (l) ??? 3. Result: s = g (Δω)0 200 400 600 0 10 20 30 40 50 60 70 Ramanintensity(a.u.) Raman shift (cm -1 ) Si-Si phonon (3 degenerated modes: TO1, TO2 et LO) Rayleigh diffusion Raman spectrum of c-Si Stress analysis in Si by Raman spectroscopy
  • 8. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications8 • In oblique configuration: – Vary the azimuth sample or the incident polarization – Fitting the intensity, frequency shift and the FWMH of the Si-Si line with a strain model 80 nmsSi SiGe Si / SiGe structure: MPa σ11 σ12 σ22 σ33 sSi 980 0 980 0 SiGe -650 0 -650 0 -20 0 20 40 60 80 100 120 140 160 180 200 509 515 516 517 Frequency(cm -1 ) Sample azimuth (°) FSiGe FsSi -20 0 20 40 60 80 100 120 140 160 180 200 2,8 3,0 3,2 3,4 3,6 3,8 4,0 4,2 4,4 4,6 4,8 FWHM(cm -1 ) Sample azimuth (°) strained-SiGe strained-Si Phonon position FWMHintensity R. Ossikovski, Q. Nguyen, G. Picardi, J. Schreiber, J. Appl. Phys. 103, 093525 (2008) R. Ossikovski, Q. Nguyen, G. Picardi, J. Schreiber, P. Morin, J. Raman Spectrosc. 39, 661 (2008) bisotropic strain: Strain measurement in μRaman : strained Si/SiGe Incident polarizationIncident polarization Incident polarization σ11= σ22
  • 9. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications9 • Same experimental configuration but fitted with a biaxial stress tensor: σ11 ≠ σ22 sSi SiO2 substrat Si Strained Si stripes (200nm width, 10nm thick): for CMOS transistor channel -20 0 20 40 60 80 100 120 140 160 180 200 3.2 3.3 3.4 3.5 3.6 3.7 3.8 FWMH Polarization -20 0 20 40 60 80 100 120 140 160 180 200 516.54 516.55 516.56 516.57 516.58 516.59 516.60 516.61 516.62 516.63 516.64 Shift Polarization sSipeakFWMH sSipeakposition Incident polarization Biaxial strain : 1300 / 400 MPa (confirmed by XRays !) Stress measurement in μRaman: Si stripes on strained SiO2 Biaxial strain results in asymmetric polarization curves
  • 10. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications10 • Same experimental configuration. -20 0 20 40 60 80 100 120 140 160 180 200 518.1 518.2 518.3 518.4 518.5 518.6 Experiment Simulation SipeakFWMH Sipeakposition Incident polarization -20 0 20 40 60 80 100 120 140 160 180 200 5.20 5.25 5.30 Experiment Simulation Incident polarization • SiNW optical image, 100x objective, 400nm diameter. Fitted with an isotropic biaxial strain tensor with σ11 = σ22 = 450Mpa and a (111) cristalline orientation Stress measurement in μRaman : SiNWs
  • 11. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications11 • Integration of a polarimeter in the HR-800 Raman spectrometer (from Horiba Jobin Yvon): – Polarimetric calibration of the spectrometer – Measurements of Stokes vector and Mueller matrix: • in Rayleigh scattering regime (coherent illumination) • of Raman bands (inelastic scattering) • of fluorescence bands Motivation for polarimetric Raman
  • 12. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications12             − − − =             = −+ DG yx II II II I S S S S S 4545 0 3 2 1 0 • Description of polarized light (tottaly or not) • Stokes vector: • S0 : total intensity • S1 : ligth polarized parallel • S2 : light polarized perpendicular • S3 : light circulary polarized • DOP : fraction of polarized light S / S0 Bijective relationship 0 2 3 2 2 2 1 S SSS DOP ++ = DOP < 1 : light partially polarized DOP = 1 : light totally polarized Polarimetry: Stokes formalism
  • 13. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications13 Polarization control: 1. liquid crystals 2. motorized rotating plates Complete control of the « input / output » polarization Polarimetric Raman setup spectrometer Laser objectives Removable mirror PSG PSA Edge filter spectrometer Laser objectives Removable mirror PSG PSA Edge filter λ/4 rotating plate Analyzer
  • 14. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications14 • Determination of the physical charectiristics of the scattered light path • Measurements of stokes vectors with differents inputs polarizations: – A rotating linear polarizer – A rotating quarter wave plate • Stokes vectors obtained by Fast Fourier Transform Laser source Microscope Spectrometer rotating polarirzer λ/2 rotating plate 45° mirror Laser source Microscope Spectrometer λ/4 rotating plate rotating polarizer λ/2 rotating plate 45° mirror Linear polarized light input circular polarized light input Polarimetric Raman: calibration approach PSAPSA
  • 15. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications15 Stokes vector components vs input linear polarization DOP S1 S2 S3 Uncalibrated Raman spectrometer response Incident polarization Incident polarization Incident polarizationIncident polarization • Experimentals results: – DOP varies between 0.8 and 1.1 – S1 and S2 have sinusoïdal trends but do not fit with cosine and sine – S3 varies between -0.5 and 0.4 • In theory: – DOP = 1 – S1, S2 exhibit a sinusoïdal trend – S3 = 0 The system is not passive with respect to the polarization! Simulated stokes vector measured stokes vector Laser source Microscope Spectrometer rotating polarirzer λ/2 rotating plate 45° mirror
  • 16. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications16 Poincaré sphere representation of the uncalibrated response
  • 17. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications17 IRaw FFT {α, θ, Δ, D, R} S = MΔ -1 MD -1 MR -1 SRaw Depolarizer Diattenuator Retarder DOP ~ 1 S3 ~ 0 • Reasons of this modelisation: – Depolarizer : DOP close to 1 – Diattenuator : uniform distribution of the polarization state on the ecuador – Retarder : cancel the S3, bring the plane of the polarization states on the ecuador • Recursive function with α, θ and Δ as initial conditions – Calculation of R and D • R, D and Δ have the sames axes (our reference frame), in that case their matrices commute Scattered light path modeling
  • 18. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications18 • Input parameters [α a θ] = [0 1 0] • Adjusted parameters: – λ/4 first angle α: -1.7133° – Analyzer orientation θ: 0.8817° – Depolarizer a: 0.9279 – diattenuator D: 0.5154 – Retardance R: 28.6639° Stokes vector components vs input linear polarization Laser source Microscope Spectrometer P 45° mirror Calibration with linear polarization input σS = < | Sexp- Stheo | > = 10-2 [ 4.83 5.38 1.65 ] Incident polarization Incident polarizationIncident polarization Incident polarization PSA Simulated stokes vector measured stokes vector
  • 19. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications19 Poincaré sphere representation of the calibrated system response • Polarization states close to the ecuador and uniformly distributed • Missmatch between first and second loop of the polarization states: – misalignement of the retarder with respect to the laser beam
  • 20. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications20 Stokes vector components vs input elliptical polarization Laser source Microscope Spectrometer λ/4 P 45° mirror Response to an elliptical polarization input σS = < | Sexp- Stheo | > = 10-2 [ 2.39 3.12 5.71 ] Incident polarization Incident polarization Incident polarizationIncident polarization PSA Simulated stokes vector of a retarder plates (adjustment : R = 74.03° theta Sin = ???) measured stokes vector
  • 21. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications21 Poincaré sphere system response • Polarization states close to the simulated curve • Mismatch between first and second loop of the polarization states: – misalignement of the retarder with respect to the laser beam measured stokes vector Simulation with R = 74.03° Measurement MM16: R = 74.3° => Good agreement Input : retarder plate at different azimuths
  • 22. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications22 DOP 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 P S P S P S 514 nm 458nm 633 nm S1 -1 -0.5 0 0.5 1 P S P S P S 514 nm 458nm633 nm S2 -1 -0.5 0 0.5 1 P S P S P S 514 nm 458nm633 nm S3 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 P S P S P S 514 nm 458nm633 nm Stokes-Rayleigh measurement of STM gold tips • DOP : competition between Rayleigh regime scattering (458nm) & plasmonic excitation (633nm) • A « strong » S3 component at 633 nm : resulting from plasmonic excitation (?) Stokes vector components vs wavelength Characterization of near field probes through their polairzation response tiptip
  • 23. 2009/12/07 Polarized and Polarimetric Raman spectroscopy and applications23 Conclusion & outlook • Polarization control is an important « degree of freedom » that can be advantageously exploited in scattering and spectroscopic techniques (Rayleigh, Raman, fluorescence…) • Polarization control is applied with success to industrial applications of Raman such as stress characterization in semiconductors • Extension from polarized to polarimetric Rayleigh and Raman scattering opens up the way to novel measurement opportunities (Mueller-Rayleigh, Mueller-Raman matrices) and applications (plasmonics) WE ARE ONLY IN THE BEGINNING, THE MOST EXCITING IS TO COME!