SlideShare a Scribd company logo
Locus and Complex Numbers
Locus and Complex Numbers
Lines
Locus and Complex Numbers
Lines   y




            x
Locus and Complex Numbers
Lines   y
        c



            x
Locus and Complex Numbers
Lines           y
                c



                    x

  Im z   c
Locus and Complex Numbers
Lines           y       y
                c



                    x       x

  Im z   c
Locus and Complex Numbers
Lines           y           y
                c



                    x   k       x

  Im z   c
Locus and Complex Numbers
Lines           y           y
                c



                    x   k                 x

  Im z   c                   Re z   k
Locus and Complex Numbers
Lines           y                   y
                c



                        x       k                 x

  Im z   c                           Re z   k
                    y




                            x
Locus and Complex Numbers
Lines           y                   y
                c



                        x       k                 x

  Im z   c                           Re z   k
                    y




                            x
Locus and Complex Numbers
Lines           y                             y
                c



                             x            k                 x

  Im z   c                                     Re z   k
                         y
                    1


                                      x
                                 2
Locus and Complex Numbers
Lines           y                                 y
                c



                             x               k                        x

  Im z   c                                               Re z   k
                         y
                    1

                                          z  1  z  2
                                      x
                                 2
e.g . z  1  i  z  2  i
e.g . z  1  i  z  2  i
 x  12   y  12   x  22   y  12
e.g . z  1  i  z  2  i
 x  12   y  12   x  22   y  12
 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1
e.g . z  1  i  z  2  i
 x  12   y  12   x  22   y  12
 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1
       6x  4 y  3  0
e.g . z  1  i  z  2  i
 x  12   y  12   x  22   y  12
 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1
       6x  4 y  3  0
 OR  bisector of 1,1 and  2,1
e.g . z  1  i  z  2  i
 x  12   y  12   x  22   y  12
 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1
       6x  4 y  3  0
OR  bisector of 1,1 and  2,1
M 1  2 ,1  1
                 
      2      2 
     1 
    ,0 
     2 
e.g . z  1  i  z  2  i
 x  12   y  12   x  22   y  12
 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1
       6x  4 y  3  0
OR  bisector of 1,1 and  2,1
M 1  2 ,1  1               11
                           m
      2      2                 1 2
     1                      
                                 2
    ,0 
     2                         3
e.g . z  1  i  z  2  i
 x  12   y  12   x  22   y  12
 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1
       6x  4 y  3  0
OR  bisector of 1,1 and  2,1
M 1  2 ,1  1               11
                           m
      2      2                 1 2
     1                      
                                 2                                      3
    ,0                                        required slope is 
     2                         3                                      2
e.g . z  1  i  z  2  i
 x  12   y  12   x  22   y  12
 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1
       6x  4 y  3  0
OR  bisector of 1,1 and  2,1
M 1  2 ,1  1               11
                           m
      2      2                 1 2
     1                      
                                 2                                      3
    ,0                                        required slope is 
     2                         3                                      2
                        3  1
                 y0   x 
                        2  2
e.g . z  1  i  z  2  i
 x  12   y  12   x  22   y  12
 x2  2x 1  y2  2 y 1  x2  4x  4  y 2  2 y 1
       6x  4 y  3  0
OR  bisector of 1,1 and  2,1
M 1  2 ,1  1               11
                           m
      2      2                 1 2
     1                      
                                 2                                      3
    ,0                                        required slope is 
     2                         3                                      2
                          3     1
               y0   x 
                          2     2
                               3
                  2 y  3 x 
                               2
         6x  4 y  3  0
ii  Sketch z  2i  z  4i
ii  Sketch z  2i  z  4i   y




                                   x
ii  Sketch z  2i  z  4i    y
                               4


                                    x
                               -2
ii  Sketch z  2i  z  4i    y
                               4
                                1
                                    x
                               -2
ii  Sketch z  2i  z  4i    y
                               4
                                1
                                    x
                               -2
ii  Sketch z  2i  z  4i    y
                               4
                                1
                                    x
                               -2

 Rays
ii  Sketch z  2i  z  4i        y
                                   4
                                    1
                                        x
                                   -2

 Rays

                y




                               x
ii  Sketch z  2i  z  4i        y
                                   4
                                    1
                                        x
                                   -2

 Rays

                y



                     
                               x
ii  Sketch z  2i  z  4i        y
                                   4
                                    1
                                        x
                                   -2

 Rays

                y



                     
                               x
    arg z  
ii  Sketch z  2i  z  4i        y
                                   4
                                    1
                                            x
                                   -2

 Rays

                y                       y



                     
                               x                x
    arg z  
ii  Sketch z  2i  z  4i        y
                                   4
                                    1
                                                x
                                   -2

 Rays

                y                       y
                                                
                                            
                     
                               x                    x
    arg z  
ii  Sketch z  2i  z  4i        y
                                   4
                                    1
                                                 x
                                   -2

 Rays

                y                       y
                                                  
                                            
                     
                               x                        x
    arg z                                 arg z     

e.g. z  1 and 0  arg z 
                             4

e.g. z  1 and 0  arg z 
                             4
             y




                                 x

e.g. z  1 and 0  arg z 
                             4
             y
             1
   z 1


   -1                    1       x


             -1

e.g. z  1 and 0  arg z 
                             4
             y                         
             1               arg z 
   z 1                                4
                    
                     4
   -1                    1 x


             -1

e.g. z  1 and 0  arg z 
                             4
             y                         
             1               arg z 
   z 1                                4
                    
                     4
   -1                    1       x     arg z  0


             -1

e.g. z  1 and 0  arg z 
                             4
             y                         
             1               arg z 
   z 1                                4
                    
                     4
   -1                    1       x     arg z  0


             -1

e.g. z  1 and 0  arg z 
                             4
             y                         
             1               arg z 
   z 1                                4
                    
                     4
   -1                    1       x     arg z  0


             -1

e.g. z  1 and 0  arg z 
                             4
             y                         
             1               arg z 
   z 1                                4
                    
                     4
   -1                    1        x    arg z  0


             -1


                                 Exercise 4N; 1a to j, 2ace, 3ace etc, 4ace

More Related Content

PDF
X2 T01 10 locus & complex numbers 1
PDF
X2 t01 07 locus & complex nos 1 (2013)
PDF
X2 t01 02 solving quadratics (2013)
PPT
Nchuong3
PDF
X2 t01 08 locus & complex nos 2 (2013)
PPSX
وحدة الجبر العاشر
PDF
Operacije sa racionalnim_algebarskim_izrazima
PDF
Sistemi kvadratmih jednacina_sa%20dve%20nepoynate
X2 T01 10 locus & complex numbers 1
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 02 solving quadratics (2013)
Nchuong3
X2 t01 08 locus & complex nos 2 (2013)
وحدة الجبر العاشر
Operacije sa racionalnim_algebarskim_izrazima
Sistemi kvadratmih jednacina_sa%20dve%20nepoynate

What's hot (10)

DOCX
Examen on line
PDF
X2 T01 06 conjugate properties (2010)
PDF
X2 T05 02 trig integrals (2010)
PDF
11 X1 T01 07 quadratic equations (2010)
PDF
X2 T01 06 complex conjugates
DOCX
Ankom klmpk
PDF
đáP án toán 11 học kỳ i
PDF
Bảng công thức tích phân + mũ lôga
PDF
Pertemuan 8 metode integrasi
PDF
Logaritamske jednacine i_nejednacine
Examen on line
X2 T01 06 conjugate properties (2010)
X2 T05 02 trig integrals (2010)
11 X1 T01 07 quadratic equations (2010)
X2 T01 06 complex conjugates
Ankom klmpk
đáP án toán 11 học kỳ i
Bảng công thức tích phân + mũ lôga
Pertemuan 8 metode integrasi
Logaritamske jednacine i_nejednacine
Ad

Viewers also liked (10)

PDF
X2 t01 11 locus & complex nos 2 (2012)
PDF
X2 t01 08 factorising complex expressions (2012)
PDF
X2 T01 12 locus & complex nos 3 (2010)
PDF
X2 T01 11 locus & complex nos 2 (2010)
PDF
X2 t01 09 geometrical representation (2012)
PDF
X2 T01 09 geometrical representation (2010)
PDF
X2 T01 09 geometrical representation (2011)
PDF
X2 t01 06 geometrical representation (2013)
PDF
X2 T01 09 geometrical representation of complex numbers
PPT
Goodbye slideshare UPDATE
X2 t01 11 locus & complex nos 2 (2012)
X2 t01 08 factorising complex expressions (2012)
X2 T01 12 locus & complex nos 3 (2010)
X2 T01 11 locus & complex nos 2 (2010)
X2 t01 09 geometrical representation (2012)
X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2011)
X2 t01 06 geometrical representation (2013)
X2 T01 09 geometrical representation of complex numbers
Goodbye slideshare UPDATE
Ad

More from Nigel Simmons (20)

PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
PDF
11 x1 t16 01 area under curve (2013)
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)
11 x1 t16 01 area under curve (2013)

Recently uploaded (6)

PDF
فورمولر عمومی مضمون فزیک برای همه انجنیران
PDF
15 AUG 2025 PS 15 AUG 2025 PS 15 AUG 2025 PS
PPTX
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
PDF
Materi seni rupa untuk sekolah dasar materi tentang seni rupa
PPTX
Tahfidz Qur’an TIMING tampa musik bagian 2.pptx
PDF
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf
فورمولر عمومی مضمون فزیک برای همه انجنیران
15 AUG 2025 PS 15 AUG 2025 PS 15 AUG 2025 PS
Madison dsfnsd dslsf sada;sdmas;ds;dls.pptx
Materi seni rupa untuk sekolah dasar materi tentang seni rupa
Tahfidz Qur’an TIMING tampa musik bagian 2.pptx
Cold positive punishment of the student سزادانی ئەرێنی ساردی قوتابی.pdf

X2 T01 11 locus & complex numbers 2

  • 2. Locus and Complex Numbers Lines
  • 3. Locus and Complex Numbers Lines y x
  • 4. Locus and Complex Numbers Lines y c x
  • 5. Locus and Complex Numbers Lines y c x Im z   c
  • 6. Locus and Complex Numbers Lines y y c x x Im z   c
  • 7. Locus and Complex Numbers Lines y y c x k x Im z   c
  • 8. Locus and Complex Numbers Lines y y c x k x Im z   c Re z   k
  • 9. Locus and Complex Numbers Lines y y c x k x Im z   c Re z   k y x
  • 10. Locus and Complex Numbers Lines y y c x k x Im z   c Re z   k y x
  • 11. Locus and Complex Numbers Lines y y c x k x Im z   c Re z   k y 1 x 2
  • 12. Locus and Complex Numbers Lines y y c x k x Im z   c Re z   k y 1 z  1  z  2 x 2
  • 13. e.g . z  1  i  z  2  i
  • 14. e.g . z  1  i  z  2  i  x  12   y  12   x  22   y  12
  • 15. e.g . z  1  i  z  2  i  x  12   y  12   x  22   y  12 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1
  • 16. e.g . z  1  i  z  2  i  x  12   y  12   x  22   y  12 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1 6x  4 y  3  0
  • 17. e.g . z  1  i  z  2  i  x  12   y  12   x  22   y  12 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1 6x  4 y  3  0 OR  bisector of 1,1 and  2,1
  • 18. e.g . z  1  i  z  2  i  x  12   y  12   x  22   y  12 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1 6x  4 y  3  0 OR  bisector of 1,1 and  2,1 M 1  2 ,1  1   2 2   1    ,0   2 
  • 19. e.g . z  1  i  z  2  i  x  12   y  12   x  22   y  12 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1 6x  4 y  3  0 OR  bisector of 1,1 and  2,1 M 1  2 ,1  1 11  m  2 2  1 2  1   2   ,0   2  3
  • 20. e.g . z  1  i  z  2  i  x  12   y  12   x  22   y  12 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1 6x  4 y  3  0 OR  bisector of 1,1 and  2,1 M 1  2 ,1  1 11  m  2 2  1 2  1   2 3   ,0   required slope is   2  3 2
  • 21. e.g . z  1  i  z  2  i  x  12   y  12   x  22   y  12 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1 6x  4 y  3  0 OR  bisector of 1,1 and  2,1 M 1  2 ,1  1 11  m  2 2  1 2  1   2 3   ,0   required slope is   2  3 2 3 1 y0   x  2 2
  • 22. e.g . z  1  i  z  2  i  x  12   y  12   x  22   y  12 x2  2x 1  y2  2 y 1  x2  4x  4  y 2  2 y 1 6x  4 y  3  0 OR  bisector of 1,1 and  2,1 M 1  2 ,1  1 11  m  2 2  1 2  1   2 3   ,0   required slope is   2  3 2 3 1 y0   x  2 2 3 2 y  3 x  2 6x  4 y  3  0
  • 23. ii  Sketch z  2i  z  4i
  • 24. ii  Sketch z  2i  z  4i y x
  • 25. ii  Sketch z  2i  z  4i y 4 x -2
  • 26. ii  Sketch z  2i  z  4i y 4 1 x -2
  • 27. ii  Sketch z  2i  z  4i y 4 1 x -2
  • 28. ii  Sketch z  2i  z  4i y 4 1 x -2 Rays
  • 29. ii  Sketch z  2i  z  4i y 4 1 x -2 Rays y x
  • 30. ii  Sketch z  2i  z  4i y 4 1 x -2 Rays y  x
  • 31. ii  Sketch z  2i  z  4i y 4 1 x -2 Rays y  x arg z  
  • 32. ii  Sketch z  2i  z  4i y 4 1 x -2 Rays y y  x x arg z  
  • 33. ii  Sketch z  2i  z  4i y 4 1 x -2 Rays y y    x x arg z  
  • 34. ii  Sketch z  2i  z  4i y 4 1 x -2 Rays y y    x x arg z   arg z     
  • 35.  e.g. z  1 and 0  arg z  4
  • 36.  e.g. z  1 and 0  arg z  4 y x
  • 37.  e.g. z  1 and 0  arg z  4 y 1 z 1 -1 1 x -1
  • 38.  e.g. z  1 and 0  arg z  4 y  1 arg z  z 1 4  4 -1 1 x -1
  • 39.  e.g. z  1 and 0  arg z  4 y  1 arg z  z 1 4  4 -1 1 x arg z  0 -1
  • 40.  e.g. z  1 and 0  arg z  4 y  1 arg z  z 1 4  4 -1 1 x arg z  0 -1
  • 41.  e.g. z  1 and 0  arg z  4 y  1 arg z  z 1 4  4 -1 1 x arg z  0 -1
  • 42.  e.g. z  1 and 0  arg z  4 y  1 arg z  z 1 4  4 -1 1 x arg z  0 -1 Exercise 4N; 1a to j, 2ace, 3ace etc, 4ace