SlideShare a Scribd company logo
HEATING LOAD
CALCULATION
T = 0°Cext
T = 20°Cint
20kW
20kW
70°C
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Heating through the stove pipe
Historical
Scene from the 3rd century BC
Fumes through the chimney
500 000 BC : Direct Evacuation Scene from the 3rd century BC
Modern Heating
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
System Parameters
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
HEAT
T ↑ T ↓
Conduction
Convection
Radiation
Heat Transfer
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Conduction
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Convection
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Radiation
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
2 - Conduction
3 - Convection
1 - Radiation
Da Vinci simulation
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Thermal Balance
Comfort = Balance between the man and environment
Thermal Balance Thermal imbalance Heating Balance
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Human Behavior
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Human Behavior
24%
35%
35%
6%
HEAT EXCHANGE
Evaporation
Convection
Radiation
Ingestion of food
0 - 1% Conduction
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Comfort parameters
Air velocity
Ambient air
Temperature
Walls
Temperature
Relative Humidity
Metabolism
Clothes
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Metabolism “MET”
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Clothes “CLO”
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Relative humidity
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Air Velocity
 0.2 /aV m s
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Confort temperature
Radiant temperature
of Walls Tp
Temperature of the
ambient air Ta
+
=
2
air parois
rs
T T
T
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Global Comfort Calculation
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Room Temperature
Indoor Temperature To Tday Tnight
Dwellings
Living, Bed room, Kitchen, Dining,
Dressing room
21 °C 17 °C
Bath, Shower 23 °C 17 °C
Entrance, Release, Corridor, Stairway,
laundry, Store
18 °C 15 °C
Schools, Universities
Classroom, Library, Permanence
19 to 21
°C
15 °C
Access, Halls, Releases, Circulations,
Stairway
15 °C 12 °C
Gymnasium, Workshops 18 °C 15 °C
Light workshops 21 °C 17 °C
Shower 23 °C 17 °C
Polyvalent rooms, Restaurants 18 °C 15 °C
Dorms, chambers, Cloakroom 21 °C 17 °C
Administration, Ganitor 21 °C 17 °C
Indoor Temperature To Tday Tnight
Offices
Offices 21 °C 17 °C
Hospital, Private clinic
Patients rooms 20 - 22 °C 17 °C
Operating rooms 26 °C
Rooms of radio 22 °C
Rooms of consultation 22 °C
Rooms of breeding of the
premature ones
25 - 30 °C
Infants 22 °C
Rooms of spectacle
Removed external clothing 18 °C
Preserved external clothing 14 °C
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Building Enhancement for more comfort
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Thermal Conductivity

Wood
Homogeneous
Isotropic
v
e
Transmission by vibrations of atoms or molecules
Transmission by the free electrons
 Thermal conductivity  of the material (W/m.°C)

“ = constant”
Brick Copper Air
Material
Glass FiberIron
0.21 85386 0.024 0.046
(W/m.°C)
0.52
Glass
0.74
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019


Insulator
Conductor
 Void = o
 Liquids< Solids
 Gas <  Liquids
 in (W/m.°C)
METALS AND ALLOYS (at the ambient temperature)
Copper 99,9% 386 Tin 61
Aluminum 99,9% 228 Nickel 61
Aluminum 99% 203 Mild steel (1% of C) 46
Zinc 111 Lead 35
Alloy (Al 92% - Mg 8%) 104 Titanium 21
Brass (Cu 70% - Zn 30%) 99 Stainless steel (Cr 18% - Nor 8%) 16
Iron 85
NONMETAL SOLIDS (at the ambient temperature)
Electro graphite 116 Wood 0.21
Concrete 1.75 Polyester 0.209
Glass pyrex 1.16 Polyvinyls 0.162
Porcelain 0.928 Asbestos (sheets) 0.162
Glass 0.74 Phenoplasts 0.046
Asbestos cement 0.70 Glass Fiber 0.046
Bricks 0.52 Rock Wool 0.043
LIQUIDS GAS (at 0°C and under the normal pressure)
Sodium at 200°C 81,20 Hydrogen 0.174
Mercury at 20°C 8,47 Air 0.024
Water at 100°C 0.67 Nitrogen 0.024
Water at 20°C 0.59 Oxygen 0.024
Benzene at 30°C 0.162 Acetylene 0.019
Dowtherm A at 20°C 0.139 Carbon dioxide 0.014
Thermal Conductivity
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019

d
 A
A . T
R

 
d
R


: Flux Thermique (W)
Parois Homogène Simple
Flux Thermique
A : Surface de la parois (m2)
: Différence de température(°C)
R : Résistance Thermique (m2°C/W)

T
d : Epaisseur de la parois (m)
: Conductivité Thermique (W/m°C)T1 T2
Conduction through a homogeneous wall
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Transmission through multi-layer walls

d1
1 2 3
d2 d3
A
Homogeneous walls
Non-Homogeneous walls
Wall in series Wall in Parallel
1
2
3
1
2
3
di
A3
A2
A1
31 2
1 2 3
+
dd d
R
  
 
iR R  i i
i
A A
R R

 
3 31 1 2 2
1 2 3
+
AA A A
R d d d
 
 
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Global heat transmission coefficient U
Internal surface
transfer
Conduction
through the wall
External surface
transfer
=
1
U
R
= +s si se
R R R
Global Heat
Transmission
Coefficient
[W/m²°C]
Thermal Resistance
  = si i se
R R R R
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
WALL Flow Rsi Rse Rs
Vertical 0,13 0,04 0,17
Horizontal
0,10 0,04 0,14
0,17 0,04 0,21
Periferal Resistances
Circulation d’air
Rsi = 0.13 m²°C/WRse = 0.04 m²°C/W
Rse = 0 m²°C/W
Rsi = 0.17 m²°C/WRsi = 0.10 m²°C/W
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Air Layer
Thickness of the
air layer (mm)
Thermal resistance Rg m²°C/W
4 0.10 0.10 0.10
6 0.12 0.12 0.12
8 0.14 0.14 0.14
10 0.15 0.15 0.15
12 0.16 0.16 0.16
15 0.16 0.17 0.17
20 0.16 0.18 0.18
25 0.16 0.18 0.19
50 0.16 0.18 0.21
100 0.16 0.18 0.22
300 0.16 0.18 0.23
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Rsi Rse = Rsi
Indoor
Clading
Ventilated
Air Layer
Outoor
Air Layer
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
U Value
4
4
5
5
Rsi Rse
Indoor Outoor
 
      1
si 2 se
1
1
= + ... ... n
n
dd
R R R Rg R
U
Internal Plaster
Brick terra cotta
Thermal insulation
Brick terra cotta
External Plaster
Rsi Rse
+ + + + + + =
0.015 0.15 0.16 0.12 0.02
= 0.13 0.04 5.26
0.7 0.44 0.36 0.44 0.87
R
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Example of calculation of U value
Construction de l’élément Désignation de l’élément Mur extérieur .
No Matériaux de construction d
(m)
l
(W/m°C)
R , d/l
(m2°C/W)
- Résistance surfacique intérieur Rsi 0.13
1 Enduit béton avec sable - intérieur 0.015 0.7 0.02
2 Block Béton creux 15cm 0,09
3 Isolation thermique - XPS 0.05 0.03 1.66
4 Block Béton creux 10cm 0.12
5 Enduit béton avec sable - extérieur 0.02 0. 7 0.03
- Résistance surfacique extérieur Rse 0.04
Rtotal = 2.00
U = 0.5 W/m2°C
=
1
U
R
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Glazing
+ + Y g
. . .l
=
f f g g g
W
W
U A U A
U
A
Af =
Ag =
+
Lg =
AW =
U Value of the Frames Uf
In practice, the Uf values are very wide. If it misses controlled
data, the following values will be taken:
 Wooden/Uf wood-metal = 1.9 (W/m2°C)
 Synthetic material Uf = 2.5 (W/m2°C)
 Insulated metal frame Uf = 3.3 (W/m2°C)
 Non insulated metal frame Uf = 5.0 (W/m2°C)
U Value of glass Ug
• Simple glazing All thicknesses.
vertical glazing Ug = 5,8 (W/m2°C)
horizontal glazing Ug = 6,9 (W/m2°C)
• Double glazing or triple, makes the calculation of Ug.
Guides ψg
The values ψg depend on the U values of glasses :
• Simple glazing: ψg = 0.00 (W/m°C)
• Doubles or triple Glazing with frame in:
 Wood/wood-metal ψg = 0.05 (W/m°C)
 Synthetic material ψg = 0.05 (W/m°C)
 Insulated metal frame ψg = 0.07 (W/m°C)
 Non insulated metal frame ψg = 0.00 (W/m°C)
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Thermal bridges
Indoor
Cold bridge
ψ
Oudoor
IndoorOutdoor
Cold bridgeψ
ψ1
ψ2
Insulator
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Ubat calculation
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Type of Heating Losses
Openings
~13%
Roofs
~30%
Renewed air
~20%
Grounds
~7%
Thermal
Bridges
~5%
Walls
~25%
~ 80% Transmission
~ 20% air Renewal
HLt = U x A x b x ΔT1
HLr = 0.34 x N x V x ΔT1
HL = ( HLt + HLr ) x 1.1
ΔT1 = Ti - To
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Walls
Plancher bas
Plancher haut
Plancher basPlancher bas
Plancher bas
Plancher haut
Plancher haut
Plancher haut
Plancher bas Plancher intermédiaire
Plancher intermédiaire
Plancher intermédiaire
Plancher intermédiaire
Plancher intermédiaire
Plancher haut
Angle < 60°
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Adjacent non-heated areas – Correction Factor « b »
Roof
Garage
Underfloor space Full ground
Type of air tightness of the room not heated Situation
A No carries nor window, jointed well, not of opening of ventilation Non-ventilated
B All well jointed components, small openings of ventilation Slightly ventilated
C Little seals, some open joints or presence of openings of ventilation Ventilated
D Little seals, many opened joints, or large openings of ventilation Strongly ventilated
Type of Room A B C D
Underfloor space 0.35 0.6 0.75 0.9
Technical shaft 0.5 0.7 0.8 1
Stairway 0.3 0.5 0.7
Attic 0.25 0.5 0.75 0.9
Insulated tiled roof 0.2 0.4 0.6 0.8
Non insulated tiled roof 0.4 0.6 0.8 0.9
Parking 0.4 0.6 0.8 0.9
Under ground
(Horizontal)
0.4 0.6 0.8 0.9
Under ground (Vertical) 0.6 0.75 0.9 1
Cellar 0.25 0.5
Extension buildings 0.25 0.5 0.75 0.9
Full ground (Horiz.) 0.3
Full ground (Vert.) 0.6
Heated neighbor 0.2
Non heated neighbor 0.35
Table for Correction factor “b”
HLt = U x A x b x ΔT1
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Air Renewal
Air Change rate N (h-1)
Dwellings
Living, Bed room, Dining. 0.5
Kitchen, Entrance, Hallway, Stairway 1.5
Bathroom, Shower 2
Schools, Universities
Classroom, Permanence 1.5
Halls, Releases, Circulations, Stairway 1.5
Library, Auditorium 4
Teachers Rooms, Administration 1
Polyvalent rooms, Restaurants, Gymnasium 2
Hospital, Private clinic
patients rooms, operation rooms 0.5
consultation Rooms, Operating rooms 1
Theater 4
Store 2
Offices 0.5
Natural ventilation:Forced ventilation:To heat
Why? Consequences?
Thermal
comfort
Technical
Equipment
Energy
Consumption
To ventilate
Why? Consequences?
Indoor Air
Quality
Technical
Equipment
Energy
Consumption
HLr = 0.34 x N x V x ΔT1HLr = 0.34 x Q x ΔT1
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Heat Loss Calculation
Room: ............................ Ti: ..................... (°C) Te: .................. (°C)
Length: ..................... (m) Width: .................... (m) Height: ........... (m)
Surface: ..................... (m²) Volume: ..................... (m³)
Walls Length Width Height Area
Net
Area
U
Coeff.
b
ΔT1
Results
(U.A.ΔT1.b)
Ext. Wall (1)
Opening
Ext. Wall (2)
Opening
Int. Wall (1)
Int. Wall (2)
Ceiling
Floor
H.L.t=
Air Renewal N = V = m³ Flow Q= m³/H H.L.r=
(0.34xNxVx ΔT1)
Sommation
Increases (%)
Total Heat Losses H.L.(W)
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
• Type of building
• Type of walls & insulation.
• Single or Double glass
• Ceiling and floor
• Place of project
• Which floor
Heat Loss Calculation
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Heat Losses from Buildings
T = 0°Cext
T = 20°Cint
Déperdition
20m
0m
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
20m
0m
20m /h
3
T = 0°Cext
T = 20°Cint
20kW
10m
0m
10m /h
3
T = 0°Cext
T = 10°Cint
10kW
5m
0m
5m /h3
T = 0°Cext
T = 5°Cint
5kW
Heat Losses Evolution
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
T = 0°Cext
T = 20°Cint
20kW
20kW
70°C
20m
0m
20m /h
3
20m /h3
How to maintain the indoor temperature
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
T = 0°Cext
T = 20°Cint
20kW
20kW
70°C
20m
0m
20m /h
3
20m /h3
T = 5°Cext
T = 20°Cint
15kW
15kW
57.5°C
20m
0m
15m /h3
15m /h3
5m
T = 10°Cext
T = 20°Cint
10kW
10kW
45°C
20m
0m
10m /h3
10m /h3
10m
Outdoor temperature variation Effect
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
20m
0m
25m /h
3
20m /h
3
T = 0°Cext
T = 20°Cint
20kW
25kW
20m
0m
25m /h3
25m /h
3
25m
T = 0°Cext
T = 25°Cint
25kW
25kW
Excess of Heat
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
T = 0°Cext
T = 15°Cint
15kW
15kW
20m
0m
15m /h3
20m /h3
T = 0°Cext
T = 20°Cint
20kW
15kW
20m
0m
15m /h3
15m /h3
15m
Unsufficient Heat
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
T = 0°Cext
T = 20°Cint
20kW
20kW
70°C
75°C
65°C
Radiator Temperature
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
Radiator Selection
Ts
Tr
Tm
Ta
Tm=70ºC ΔT2=50ºCTs: Supply temperature
Tr: Return temperature
Ta: Ambient temperature
Tm: Mean radiator temperature
ΔT2: Temperature difference
between radiator and ambiance
ΔT2=Tm-Ta
Small radiators with high temperature
90ºC
70ºC
Old standard
75ºC
65ºC
EN standard
The new Low temperature standard
55ºC
45ºC
Tm=
Ts+Tr
2
HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019
T = 0°Cext
T = 20°Cint
20kW
20kW
70°C
T = 0°Cext
T = 20°Cint
20kW
20kW
50°C
T = 0°Cext
T = 20°Cint
20kW
20kW
90°C
Radiator Sizing
www.‫.زمرلي‬com
Thank you
‫مالحظة‬:،‫محفوظة‬ ‫غير‬ ‫لدينا‬ ‫النشر‬ ‫حقوق‬
‫ال‬ ‫تعميم‬ ‫بهدف‬ ‫التوزيع‬ ‫و‬ ‫النسخ‬ ‫بإمكانكم‬‫فائدة‬.

More Related Content

PPT
Chiller-vs-vrf.ppt
PDF
Cooling load calculations
PDF
HVAC System
PPT
Refrigeration And Air Conditioning
PDF
chilled water pipe sizer chart
PDF
PDF
How dose heat pump work
PPTX
HVAC Basic Concepts of Air Conditioning
Chiller-vs-vrf.ppt
Cooling load calculations
HVAC System
Refrigeration And Air Conditioning
chilled water pipe sizer chart
How dose heat pump work
HVAC Basic Concepts of Air Conditioning

What's hot (20)

PPTX
central air conditioning system
PPTX
Heating and cooling load of a building
PPTX
AIR CONDITIONING
PPTX
HVAC PPT.pptx
PPTX
HVAC Systems- A Complete Guide
PPTX
Water Chilled Airconditioning
PPTX
Airconditioning ppt
PDF
Data center cooling ahmed abdel-salam (2019)
PPTX
HVAC introduction
PDF
SPLIT AIR CONDITINER
PDF
Air Conditioning System
PPTX
Cooling Systems - Chiller Technologies
PPTX
Project on HVACR
PPTX
Air conditioning system
PPTX
Air Conditioning & Hvac Systems
PDF
Thermal Comfort in Buildings
PDF
Basic Mechanical Engineering - Air conditioning
PDF
How Does A Chiller Work? - What Is A Chiller & How To Choose the Best One
PPT
Hvac psychrometry and concepts
PDF
HVAC, Heating Ventilation Air Conditioning BMS
central air conditioning system
Heating and cooling load of a building
AIR CONDITIONING
HVAC PPT.pptx
HVAC Systems- A Complete Guide
Water Chilled Airconditioning
Airconditioning ppt
Data center cooling ahmed abdel-salam (2019)
HVAC introduction
SPLIT AIR CONDITINER
Air Conditioning System
Cooling Systems - Chiller Technologies
Project on HVACR
Air conditioning system
Air Conditioning & Hvac Systems
Thermal Comfort in Buildings
Basic Mechanical Engineering - Air conditioning
How Does A Chiller Work? - What Is A Chiller & How To Choose the Best One
Hvac psychrometry and concepts
HVAC, Heating Ventilation Air Conditioning BMS
Ad

Similar to Zmr heating load calculation (20)

PDF
ZMR THE HEATING SYSTEM
PPTX
THERMAL-COMFORT-CALCULATION-OF-HEATING-LOAD.pptx
PDF
Heat Load Calculation
PDF
Zmr floor heating
PPT
Thermal studies U Vlaues
PPT
B.Heat Exchange-PPT.ppt
PPT
Basic factors that affect human comfort
PDF
AE103_R3
PDF
Basic heat load calculation for air conditioning
PDF
Solution Manual for Engineering Heat Transfer 3rd Edition William Janna
PDF
Zmr heating system innovation
PDF
Answers to Problems from Engineering Heat Transfer, 3rd Edition by William Janna
PDF
Chemical engineering iiit rgukt Nuzvid a159050802436.pdf
PDF
Convention and radtiation
PDF
Heat transfer 5th ed incropera solution manual
PPT
Building thermal quantities
PDF
HEAT AND MASS TRANSFER Question Bank.pdf
PPTX
Introduction to thermal quantities.pptxehejejrhr
PPTX
Chapter 3 here and there going now .pptx
PDF
Mathematical Thermal Model of a House
ZMR THE HEATING SYSTEM
THERMAL-COMFORT-CALCULATION-OF-HEATING-LOAD.pptx
Heat Load Calculation
Zmr floor heating
Thermal studies U Vlaues
B.Heat Exchange-PPT.ppt
Basic factors that affect human comfort
AE103_R3
Basic heat load calculation for air conditioning
Solution Manual for Engineering Heat Transfer 3rd Edition William Janna
Zmr heating system innovation
Answers to Problems from Engineering Heat Transfer, 3rd Edition by William Janna
Chemical engineering iiit rgukt Nuzvid a159050802436.pdf
Convention and radtiation
Heat transfer 5th ed incropera solution manual
Building thermal quantities
HEAT AND MASS TRANSFER Question Bank.pdf
Introduction to thermal quantities.pptxehejejrhr
Chapter 3 here and there going now .pptx
Mathematical Thermal Model of a House
Ad

More from ZMERLY & CO (20)

PDF
ZMR SEWAGE TREATMENT 2023.pdf
PDF
ZMR FUEL TANK 2023.pdf
PDF
ZMR SOLAR ENERGY
PDF
ZMR VENTILATION
PDF
ZMR Solar Water Heaters
PDF
ZMR Storage Tanks
PDF
ZMR PHYSICS AND THERMAL REMINDER
PDF
ZMR Solar System Layouts
PDF
ZMR THERMAL COMFORT
PDF
ZMR Solar System Maintenance
PDF
ZMR U VALUE CALCULATION
PDF
ZMR Solar Controller
PDF
ZMR Sun and Solar Radiation
PDF
ZMR HEATING CIRCUITS
PDF
ZMR HEATING CONTROL
PDF
ZMR FLOOR HEATING
PDF
ZMR Solar Collectors
PDF
ZMR Solar System Sizing
PDF
ZMR RADIATORS
PDF
ZMR BOILERS
ZMR SEWAGE TREATMENT 2023.pdf
ZMR FUEL TANK 2023.pdf
ZMR SOLAR ENERGY
ZMR VENTILATION
ZMR Solar Water Heaters
ZMR Storage Tanks
ZMR PHYSICS AND THERMAL REMINDER
ZMR Solar System Layouts
ZMR THERMAL COMFORT
ZMR Solar System Maintenance
ZMR U VALUE CALCULATION
ZMR Solar Controller
ZMR Sun and Solar Radiation
ZMR HEATING CIRCUITS
ZMR HEATING CONTROL
ZMR FLOOR HEATING
ZMR Solar Collectors
ZMR Solar System Sizing
ZMR RADIATORS
ZMR BOILERS

Recently uploaded (20)

PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PDF
Abrasive, erosive and cavitation wear.pdf
PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PPTX
introduction to high performance computing
PDF
PPT on Performance Review to get promotions
PPT
Occupational Health and Safety Management System
PPTX
communication and presentation skills 01
PDF
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PPTX
Safety Seminar civil to be ensured for safe working.
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPT
introduction to datamining and warehousing
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Fundamentals of safety and accident prevention -final (1).pptx
UNIT 4 Total Quality Management .pptx
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
Abrasive, erosive and cavitation wear.pdf
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
introduction to high performance computing
PPT on Performance Review to get promotions
Occupational Health and Safety Management System
communication and presentation skills 01
Artificial Superintelligence (ASI) Alliance Vision Paper.pdf
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
Safety Seminar civil to be ensured for safe working.
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
introduction to datamining and warehousing
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf

Zmr heating load calculation

  • 1. HEATING LOAD CALCULATION T = 0°Cext T = 20°Cint 20kW 20kW 70°C
  • 2. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Heating through the stove pipe Historical Scene from the 3rd century BC Fumes through the chimney 500 000 BC : Direct Evacuation Scene from the 3rd century BC Modern Heating
  • 3. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 System Parameters
  • 4. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 HEAT T ↑ T ↓ Conduction Convection Radiation Heat Transfer
  • 5. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Conduction
  • 6. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Convection
  • 7. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Radiation
  • 8. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 2 - Conduction 3 - Convection 1 - Radiation Da Vinci simulation
  • 9. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Thermal Balance Comfort = Balance between the man and environment Thermal Balance Thermal imbalance Heating Balance
  • 10. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Human Behavior
  • 11. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Human Behavior 24% 35% 35% 6% HEAT EXCHANGE Evaporation Convection Radiation Ingestion of food 0 - 1% Conduction
  • 12. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Comfort parameters Air velocity Ambient air Temperature Walls Temperature Relative Humidity Metabolism Clothes
  • 13. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Metabolism “MET”
  • 14. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Clothes “CLO”
  • 15. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Relative humidity
  • 16. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Air Velocity  0.2 /aV m s
  • 17. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Confort temperature Radiant temperature of Walls Tp Temperature of the ambient air Ta + = 2 air parois rs T T T
  • 18. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Global Comfort Calculation
  • 19. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Room Temperature Indoor Temperature To Tday Tnight Dwellings Living, Bed room, Kitchen, Dining, Dressing room 21 °C 17 °C Bath, Shower 23 °C 17 °C Entrance, Release, Corridor, Stairway, laundry, Store 18 °C 15 °C Schools, Universities Classroom, Library, Permanence 19 to 21 °C 15 °C Access, Halls, Releases, Circulations, Stairway 15 °C 12 °C Gymnasium, Workshops 18 °C 15 °C Light workshops 21 °C 17 °C Shower 23 °C 17 °C Polyvalent rooms, Restaurants 18 °C 15 °C Dorms, chambers, Cloakroom 21 °C 17 °C Administration, Ganitor 21 °C 17 °C Indoor Temperature To Tday Tnight Offices Offices 21 °C 17 °C Hospital, Private clinic Patients rooms 20 - 22 °C 17 °C Operating rooms 26 °C Rooms of radio 22 °C Rooms of consultation 22 °C Rooms of breeding of the premature ones 25 - 30 °C Infants 22 °C Rooms of spectacle Removed external clothing 18 °C Preserved external clothing 14 °C
  • 20. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Building Enhancement for more comfort
  • 21. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Thermal Conductivity  Wood Homogeneous Isotropic v e Transmission by vibrations of atoms or molecules Transmission by the free electrons  Thermal conductivity  of the material (W/m.°C)  “ = constant” Brick Copper Air Material Glass FiberIron 0.21 85386 0.024 0.046 (W/m.°C) 0.52 Glass 0.74
  • 22. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019   Insulator Conductor  Void = o  Liquids< Solids  Gas <  Liquids  in (W/m.°C) METALS AND ALLOYS (at the ambient temperature) Copper 99,9% 386 Tin 61 Aluminum 99,9% 228 Nickel 61 Aluminum 99% 203 Mild steel (1% of C) 46 Zinc 111 Lead 35 Alloy (Al 92% - Mg 8%) 104 Titanium 21 Brass (Cu 70% - Zn 30%) 99 Stainless steel (Cr 18% - Nor 8%) 16 Iron 85 NONMETAL SOLIDS (at the ambient temperature) Electro graphite 116 Wood 0.21 Concrete 1.75 Polyester 0.209 Glass pyrex 1.16 Polyvinyls 0.162 Porcelain 0.928 Asbestos (sheets) 0.162 Glass 0.74 Phenoplasts 0.046 Asbestos cement 0.70 Glass Fiber 0.046 Bricks 0.52 Rock Wool 0.043 LIQUIDS GAS (at 0°C and under the normal pressure) Sodium at 200°C 81,20 Hydrogen 0.174 Mercury at 20°C 8,47 Air 0.024 Water at 100°C 0.67 Nitrogen 0.024 Water at 20°C 0.59 Oxygen 0.024 Benzene at 30°C 0.162 Acetylene 0.019 Dowtherm A at 20°C 0.139 Carbon dioxide 0.014 Thermal Conductivity
  • 23. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019  d  A A . T R    d R   : Flux Thermique (W) Parois Homogène Simple Flux Thermique A : Surface de la parois (m2) : Différence de température(°C) R : Résistance Thermique (m2°C/W)  T d : Epaisseur de la parois (m) : Conductivité Thermique (W/m°C)T1 T2 Conduction through a homogeneous wall
  • 24. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Transmission through multi-layer walls  d1 1 2 3 d2 d3 A Homogeneous walls Non-Homogeneous walls Wall in series Wall in Parallel 1 2 3 1 2 3 di A3 A2 A1 31 2 1 2 3 + dd d R      iR R  i i i A A R R    3 31 1 2 2 1 2 3 + AA A A R d d d    
  • 25. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Global heat transmission coefficient U Internal surface transfer Conduction through the wall External surface transfer = 1 U R = +s si se R R R Global Heat Transmission Coefficient [W/m²°C] Thermal Resistance   = si i se R R R R
  • 26. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 WALL Flow Rsi Rse Rs Vertical 0,13 0,04 0,17 Horizontal 0,10 0,04 0,14 0,17 0,04 0,21 Periferal Resistances Circulation d’air Rsi = 0.13 m²°C/WRse = 0.04 m²°C/W Rse = 0 m²°C/W Rsi = 0.17 m²°C/WRsi = 0.10 m²°C/W
  • 27. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Air Layer Thickness of the air layer (mm) Thermal resistance Rg m²°C/W 4 0.10 0.10 0.10 6 0.12 0.12 0.12 8 0.14 0.14 0.14 10 0.15 0.15 0.15 12 0.16 0.16 0.16 15 0.16 0.17 0.17 20 0.16 0.18 0.18 25 0.16 0.18 0.19 50 0.16 0.18 0.21 100 0.16 0.18 0.22 300 0.16 0.18 0.23
  • 28. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Rsi Rse = Rsi Indoor Clading Ventilated Air Layer Outoor Air Layer
  • 29. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 U Value 4 4 5 5 Rsi Rse Indoor Outoor         1 si 2 se 1 1 = + ... ... n n dd R R R Rg R U Internal Plaster Brick terra cotta Thermal insulation Brick terra cotta External Plaster Rsi Rse + + + + + + = 0.015 0.15 0.16 0.12 0.02 = 0.13 0.04 5.26 0.7 0.44 0.36 0.44 0.87 R
  • 30. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Example of calculation of U value Construction de l’élément Désignation de l’élément Mur extérieur . No Matériaux de construction d (m) l (W/m°C) R , d/l (m2°C/W) - Résistance surfacique intérieur Rsi 0.13 1 Enduit béton avec sable - intérieur 0.015 0.7 0.02 2 Block Béton creux 15cm 0,09 3 Isolation thermique - XPS 0.05 0.03 1.66 4 Block Béton creux 10cm 0.12 5 Enduit béton avec sable - extérieur 0.02 0. 7 0.03 - Résistance surfacique extérieur Rse 0.04 Rtotal = 2.00 U = 0.5 W/m2°C = 1 U R
  • 31. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Glazing + + Y g . . .l = f f g g g W W U A U A U A Af = Ag = + Lg = AW = U Value of the Frames Uf In practice, the Uf values are very wide. If it misses controlled data, the following values will be taken:  Wooden/Uf wood-metal = 1.9 (W/m2°C)  Synthetic material Uf = 2.5 (W/m2°C)  Insulated metal frame Uf = 3.3 (W/m2°C)  Non insulated metal frame Uf = 5.0 (W/m2°C) U Value of glass Ug • Simple glazing All thicknesses. vertical glazing Ug = 5,8 (W/m2°C) horizontal glazing Ug = 6,9 (W/m2°C) • Double glazing or triple, makes the calculation of Ug. Guides ψg The values ψg depend on the U values of glasses : • Simple glazing: ψg = 0.00 (W/m°C) • Doubles or triple Glazing with frame in:  Wood/wood-metal ψg = 0.05 (W/m°C)  Synthetic material ψg = 0.05 (W/m°C)  Insulated metal frame ψg = 0.07 (W/m°C)  Non insulated metal frame ψg = 0.00 (W/m°C)
  • 32. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Thermal bridges Indoor Cold bridge ψ Oudoor IndoorOutdoor Cold bridgeψ ψ1 ψ2 Insulator
  • 33. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Ubat calculation
  • 34. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Type of Heating Losses Openings ~13% Roofs ~30% Renewed air ~20% Grounds ~7% Thermal Bridges ~5% Walls ~25% ~ 80% Transmission ~ 20% air Renewal HLt = U x A x b x ΔT1 HLr = 0.34 x N x V x ΔT1 HL = ( HLt + HLr ) x 1.1 ΔT1 = Ti - To
  • 35. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Walls Plancher bas Plancher haut Plancher basPlancher bas Plancher bas Plancher haut Plancher haut Plancher haut Plancher bas Plancher intermédiaire Plancher intermédiaire Plancher intermédiaire Plancher intermédiaire Plancher intermédiaire Plancher haut Angle < 60°
  • 36. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Adjacent non-heated areas – Correction Factor « b » Roof Garage Underfloor space Full ground Type of air tightness of the room not heated Situation A No carries nor window, jointed well, not of opening of ventilation Non-ventilated B All well jointed components, small openings of ventilation Slightly ventilated C Little seals, some open joints or presence of openings of ventilation Ventilated D Little seals, many opened joints, or large openings of ventilation Strongly ventilated Type of Room A B C D Underfloor space 0.35 0.6 0.75 0.9 Technical shaft 0.5 0.7 0.8 1 Stairway 0.3 0.5 0.7 Attic 0.25 0.5 0.75 0.9 Insulated tiled roof 0.2 0.4 0.6 0.8 Non insulated tiled roof 0.4 0.6 0.8 0.9 Parking 0.4 0.6 0.8 0.9 Under ground (Horizontal) 0.4 0.6 0.8 0.9 Under ground (Vertical) 0.6 0.75 0.9 1 Cellar 0.25 0.5 Extension buildings 0.25 0.5 0.75 0.9 Full ground (Horiz.) 0.3 Full ground (Vert.) 0.6 Heated neighbor 0.2 Non heated neighbor 0.35 Table for Correction factor “b” HLt = U x A x b x ΔT1
  • 37. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Air Renewal Air Change rate N (h-1) Dwellings Living, Bed room, Dining. 0.5 Kitchen, Entrance, Hallway, Stairway 1.5 Bathroom, Shower 2 Schools, Universities Classroom, Permanence 1.5 Halls, Releases, Circulations, Stairway 1.5 Library, Auditorium 4 Teachers Rooms, Administration 1 Polyvalent rooms, Restaurants, Gymnasium 2 Hospital, Private clinic patients rooms, operation rooms 0.5 consultation Rooms, Operating rooms 1 Theater 4 Store 2 Offices 0.5 Natural ventilation:Forced ventilation:To heat Why? Consequences? Thermal comfort Technical Equipment Energy Consumption To ventilate Why? Consequences? Indoor Air Quality Technical Equipment Energy Consumption HLr = 0.34 x N x V x ΔT1HLr = 0.34 x Q x ΔT1
  • 38. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Heat Loss Calculation Room: ............................ Ti: ..................... (°C) Te: .................. (°C) Length: ..................... (m) Width: .................... (m) Height: ........... (m) Surface: ..................... (m²) Volume: ..................... (m³) Walls Length Width Height Area Net Area U Coeff. b ΔT1 Results (U.A.ΔT1.b) Ext. Wall (1) Opening Ext. Wall (2) Opening Int. Wall (1) Int. Wall (2) Ceiling Floor H.L.t= Air Renewal N = V = m³ Flow Q= m³/H H.L.r= (0.34xNxVx ΔT1) Sommation Increases (%) Total Heat Losses H.L.(W)
  • 39. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 • Type of building • Type of walls & insulation. • Single or Double glass • Ceiling and floor • Place of project • Which floor Heat Loss Calculation
  • 40. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Heat Losses from Buildings T = 0°Cext T = 20°Cint Déperdition 20m 0m
  • 41. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 20m 0m 20m /h 3 T = 0°Cext T = 20°Cint 20kW 10m 0m 10m /h 3 T = 0°Cext T = 10°Cint 10kW 5m 0m 5m /h3 T = 0°Cext T = 5°Cint 5kW Heat Losses Evolution
  • 42. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 T = 0°Cext T = 20°Cint 20kW 20kW 70°C 20m 0m 20m /h 3 20m /h3 How to maintain the indoor temperature
  • 43. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 T = 0°Cext T = 20°Cint 20kW 20kW 70°C 20m 0m 20m /h 3 20m /h3 T = 5°Cext T = 20°Cint 15kW 15kW 57.5°C 20m 0m 15m /h3 15m /h3 5m T = 10°Cext T = 20°Cint 10kW 10kW 45°C 20m 0m 10m /h3 10m /h3 10m Outdoor temperature variation Effect
  • 44. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 20m 0m 25m /h 3 20m /h 3 T = 0°Cext T = 20°Cint 20kW 25kW 20m 0m 25m /h3 25m /h 3 25m T = 0°Cext T = 25°Cint 25kW 25kW Excess of Heat
  • 45. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 T = 0°Cext T = 15°Cint 15kW 15kW 20m 0m 15m /h3 20m /h3 T = 0°Cext T = 20°Cint 20kW 15kW 20m 0m 15m /h3 15m /h3 15m Unsufficient Heat
  • 46. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 T = 0°Cext T = 20°Cint 20kW 20kW 70°C 75°C 65°C Radiator Temperature
  • 47. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 Radiator Selection Ts Tr Tm Ta Tm=70ºC ΔT2=50ºCTs: Supply temperature Tr: Return temperature Ta: Ambient temperature Tm: Mean radiator temperature ΔT2: Temperature difference between radiator and ambiance ΔT2=Tm-Ta Small radiators with high temperature 90ºC 70ºC Old standard 75ºC 65ºC EN standard The new Low temperature standard 55ºC 45ºC Tm= Ts+Tr 2
  • 48. HEATING LOAD CALCULATIONZMERLY ACADEMY - 2019 T = 0°Cext T = 20°Cint 20kW 20kW 70°C T = 0°Cext T = 20°Cint 20kW 20kW 50°C T = 0°Cext T = 20°Cint 20kW 20kW 90°C Radiator Sizing
  • 49. www.‫.زمرلي‬com Thank you ‫مالحظة‬:،‫محفوظة‬ ‫غير‬ ‫لدينا‬ ‫النشر‬ ‫حقوق‬ ‫ال‬ ‫تعميم‬ ‫بهدف‬ ‫التوزيع‬ ‫و‬ ‫النسخ‬ ‫بإمكانكم‬‫فائدة‬.