SlideShare a Scribd company logo
Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources




                                                                           Partially Separated Meta-Models
                                                                             with Evolution Strategies for
                                                                               Well Placement Problem
                                                                                                                Zyed Bouzarkouna
                                                                                                                                IFP-EN (French Institute of Petroleum)
                                                                                                                                INRIA
© 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                                                        Joint work with
                                                                                                            Didier Yu Ding (IFP-EN)
                                                                                                               Anne Auger (INRIA)
                                                                                                                        SPE EUROPEC 2011
2
    © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France



                                                                Well Placement Problem




                                  Onwunalu & Durlofsky (2010)
Well Placement Problem
    © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                                    r s !!   Onwunalu & Durlofsky (2010)
                                                                                              l hou
                                                                                      se vera
                                                                                  o
                                                                             tes t
                                                                     l   minu
                                                               severa

3
Outline



                                                                  Optimization Approach: CMA-ES

                                                                  CMA-ES with meta-models
    © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                  Exploiting the partial Separability of the objective function

                                                                  Results and Discussions




4
CMA-ES
                                                               Covariance Matrix Adaptation – Evolution Strategy
                                                               Hansen & Ostermeier (2001)

                                                                                               Initializing



                                                                             Sampling:     x i  m   N i (0, C)  i  1..
    © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                  Next
                                                                generation                     Evaluating individuals



                                                                                         Adapting the distribution parameters


5
6
    © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France



                                                               CMA-ES (Cont'd)
CMA-ES with Meta-Models

                                                                 f : 'true' objective                        ˆ
                                                                                                             f : approximate
                                                                        function                              function (MM)
    © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                      simulated well configuration
                                                                      non-simulated well configuration : approximated with   ˆ
                                                                                                                             f
7
CMA-ES with Meta-models (Cont'd)
                                                               Building the meta-model


                                                                    f : 'true' objective                      ˆ
                                                                                                              f : approximate
                                                                           function                            function (MM)

                                                                  Locally weighted regression
    © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                           q : point to evaluate
                                                                                                 n

                                                                                                     ^
                                                                                                  f (q) : full quadratic meta-model on q


8
CMA-ES with Meta-models (Cont'd)
                                                               Building the meta-model


                                                                    f : 'true' objective                        ˆ
                                                                                                                f : approximate
                                                                           function                               function (MM)

                                                                  Locally weighted regression
    © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                           A training set containing m points with their
                                                                                           objective function values
                                                                                                      (x j , y j  f (x j )), j  1...m



9
CMA-ES with Meta-models (Cont'd)
                                                            Building the meta-model


                                                                 f : 'true' objective                       ˆ
                                                                                                            f : approximate
                                                                        function                             function (MM)

                                                               Locally weighted regression
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                        We select the k nearest neighbor data points to
                                                                                        q according to the Mahalanobis distance with
                                                                                        respect to the current covariance matrix C.



10
CMA-ES with Meta-models (Cont'd)
                                                            Building the meta-model


                                                                 f : 'true' objective                           ˆ
                                                                                                                f : approximate
                                                                        function                                 function (MM)

                                                               Locally weighted regression
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                        Building the full quadratic meta-model   ˆ
                                                                                                                                 f
                                                                                        on q




11
CMA-ES with Meta-models (Cont'd)
                                                            Approximate Ranking Procedure

                                                                                         ^                                ^                                                 ^
                                                                   evaluate with        f         evaluate with         f                          evaluate with         f
                                                                                 ^                                 ^                                                 ^
                                                                   rank with    f (Rank0)         rank with      f (Rank1)                         rank with      f (Ranki)
Training Set                                                                                                                                ...
n elements                                                         evaluate with f the            If (NO criteria)                                 If (NO criteria)
                                                                    best from Rank0.                     evaluate with        f the best                  evaluate with        f   the best
                                                                                                          from Rank2.                                       with Rank2.
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                       ad




                                                                                                                                                            ad
                                                                                                          ad
                                                                         dt




                                                                                                                                                              dt
                                                                                                            dt
                                                                          ot




                                                                                                                                                              ot
                                                                                                            ot
                                                                           he




                                                                                                                                                               he
                                                                                                             he
                                                                              tra




                                                                                                                                                                  tra
                                                                                                                tra
                                                                                 ini




                                                                                                                                                                     ini
                                                                                                                   ini
                                                                                    n




                                                                                                                                                                        n
                                                                                                                      n
                                                                                  gs




                                                                                                                                                                         gs
                                                                                                                       gs
                                                                                        et




                                                                                                                                                                            et
                                                                                                                          et



                                                                                  Training Set                       Training Set                                  Training Set
                                                                                (n + 1 ) elements                  (n + 2 ) elements                           (n + 1 + i ) elements


12
MM Acceptance Criteria: nlmm-CMA
                                                            Bouzarkouna et al. (2010a)
                                                               The meta-model is accepted if it succeeds in keeping:
                                                                        the best individual and the ensemble of the μ best individuals
                                                                         unchanged
                                                                    or
                                                                        the best individual unchanged, if more than one fourth of the
                                                                         population is evaluated.
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




13
Test Case                                                Di
                                                                                                                        me
                                                                                                                           ns
                                                                                                                              ion
                                                                                                                                  =
                                                               PUNQ S-3: 19 x 28 x 5.                                                 12


                                                               2 wells to be placed:
                                                                   1 unilateral producer               vertical, horizontal or deviated.

                                                                   1 unilateral injector               Lmax = 1000 m.
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                               NPV = the objective function
                                                                                           T
                                                                                         Qo   Co 
                                                                                        Q  C  )  C
                                                                       Y
                                                                                1
                                                                NPV   (             n  g  g
                                                                      n 1 (1  APR )
                                                                                                        d

                                                                                        Qw  n Cw  n
                                                                                           



14
CMA-ES with meta-models: Performance
                                                            10 runs on the PUNQ-S3 reservoir case
                                                            Bouzarkouna et al. (ECMOR 2010)
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                  The number of reservoir simulations is reduced by 19 - 25%

15
Why this work

                                                               Why ?
                                                                   The well placement problem is still demanding in reducing the
                                                                    number of reservoir simulations


                                                               Idea
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                   Building a more accurate approximate model


                                                               How ?
                                                                   Exploit the problem structure to reduce more the number of
                                                                    simulations
                                                                           Reduce the dimension of the approximate model


16
Well Placement Problem
                                                                        W3 W4
                                                                W1 W2                W5
                                                                                               Objective function: Net Present Value
                                                                                                               (NPV)
                                                                                                   NPV (field)     NPV (well )
                                                                                                                   wells
                                                                                                                           i   i




                                                                                                When evaluating the NPV, we have
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                    Reservoir Simulation        access to all the NPVi

                                                                   W1
                                                                                                Each NPVi can be approximated
                                                                                                using only a few variables instead of
                                                                                W2
                                                                                                all the variables of the problem.
                                                            Production
                                                                                          W3
                                                            curves for
                                                             each well
17
Partial Separability of the Objective Function


                                                                                                                    
                                                                                                N
                                                                                     f ( x)           f i  i ( x)
                                                                                                i 1

                                                               Two Conditions
                                                                    i must be explicit ;
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                    i must define a number of variables < dimension;
                                                               well placement problem:
                                                                   f i : The NPV for each well
                                                                      i:   defines the variables for each     fi

18
Partially Separated Meta-Models


                                                                 f : 'true' objective                     ˆ
                                                                                                          f : approximate
                                                                        function                           function (MM)



                                                                                                                                
                                                                                                              N

                                                                                         
                                                                       N
                                                            f ( x)           f i  ( x)
                                                                                   i               ˆ
                                                                                                   f ( x)           ˆ  i ( x)
                                                                                                                     fi
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                       i 1                                   i 1



                                                                   Building N meta-models (1 for each element function)
                                                                   instead of 1 meta-model for the whole objective function.


19
Building the p-sep Meta-Model


                                                               Locally weighted regression



                                                                                          qn: point to evaluate on fˆ
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                      f i ( i (q)) ???
                                                                                          i (q) ni   : point to evaluate on   ˆ
                                                                                                                                 fi
                                                                                                 ^
                                                                                                 f i : full quadratic meta-model on    i
                                                                                                                                            (q)




20
Building the p-sep Meta-Model


                                                               Locally weighted regression
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                      A training set containing mi points with their
                                                                            i (q)    true element function values

                                                                                            (x ), f ( (x ))  ,
                                                                                              i
                                                                                                  j   i
                                                                                                          i
                                                                                                              j       j  1,..., mi




21
Building the p-sep Meta-Model


                                                               Locally weighted regression
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                      We select the ki nearest neighbor data points to
                                                                            i (q)    Φi (q) according to the Mahalanobis distance
                                                                                      with respect to a matrix Ci.

                                                                                      Ci is an ni  ni matrix adapted to the local shape
                                                                                      of the landscape of fi.




22
Building the p-sep Meta-Model


                                                               Locally weighted regression


                                                                                     Building the full quadratic meta-model f i
                                                                                                                            ˆ
                                                                                     on Φi(q)
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                            i (q)                                                                ni ( ni  3)

                                                                                                                         
                                                                                          ki
                                                                                     min  ˆi               i  i     j 
                                                                                               f  i (x ),   f  i (x ) 2   , w.r.t.                   1
                                                                                                                                                        2
                                                                                              
                                                                                         j 1 
                                                                                                        j                     j
                                                                                                                               
                                                                                                                                           i




23
Test Case                                         Di m
                                                                                                                  ens
                                                                                                                        ion
                                                                                                                              =1
                                                                                                                                8
                                                               PUNQ S-3: 19 x 28 x 5.

                                                               1 injector already drilled
                                                                                                                         I-1
                                                               3 unilateral producers to be placed
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                               NPV = the objective function
                                                                                             T
                                                                                           Qo   Co 
                                                                                          Q  C  )  C
                                                                         Y
                                                                                  1
                                                                  NPV   (             n  g  g
                                                                        n 1 (1  APR )
                                                                                                          d

                                                                                          Qw  n Cw  n
                                                                                             

24
Problem Modeling                           Di m
                                                                                                           ens
                                                                                                                 ion
                                                                                                                       =1
                                                                                                                         8
                                                               Meta-models to approximate the NPV of each well
                                                                    NPV(field) = NPV(P1) + NPV(P2) + NPV(P3) + NPV(I1)

                                                               Each sub-objective function will be approximated with
                                                                a few parameters
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                   the coordinates of the considered well
                                                                   the minimum distance to other producers
                                                                   the minimum distance to the injector

                                                            We build 4 meta-models
                                                            For wells to be drilled, each meta-model depends on 8 parameters
                                                            For wells already drilled, the meta-model depends on 2 parameters
25
26
     © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                10 runs
                                                                          Performance on PUNQ-S3
Performance on PUNQ-S3 (Cont'd)


                                                            Map of HPhiSo
                                                                             I-1
                                                             Position of                 P-1
                                                            solution wells
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                         P-2



                                                                                   P-3

27
Summary

                                                               New approach based on exploiting the partial
                                                                separability of the objective function

                                                               The approach can be combined with any other
                                                                stochastic optimizer
 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                               Promising results on the PUNQ-S3: It reduces the
                                                                number of simulations by:
                                                                   60% compared to CMA-ES;
                                                                   28% compared to CMA-ES with meta-models;



28
Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources




                                                                                Thank you for Your Attention
© 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                                        zyed.bouzarkouna@ifpen.fr

                                                                                                                        SPE EUROPEC 2011
Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources




                                                                           Partially Separated Meta-Models
                                                                             with Evolution Strategies for
                                                                               Well Placement Problem
                                                                                                               Zyed Bouzarkouna
                                                                                                           zyed.bouzarkouna@ifpen.fr
© 2010 - IFP Energies nouvelles, Rueil-Malmaison, France




                                                                                                                        Joint work with
                                                                                                                       Didier Yu Ding
                                                                                                                        Anne Auger
                                                                                                                        SPE EUROPEC 2011

More Related Content

PDF
Shillington Portfolio Nat W
PDF
Heizer om10 mod_d-waiting-line models
PDF
01/27/2010 - Credit Suisse Conference
PDF
Instance-based learning (aka Case-based or Memory-based or non-parametric)
PDF
Data analysis02 twovariables
PDF
8_Service line strategic analysis
PPT
Artificial Intelligence
PDF
Task-Based Automatic Camera Placement
Shillington Portfolio Nat W
Heizer om10 mod_d-waiting-line models
01/27/2010 - Credit Suisse Conference
Instance-based learning (aka Case-based or Memory-based or non-parametric)
Data analysis02 twovariables
8_Service line strategic analysis
Artificial Intelligence
Task-Based Automatic Camera Placement

Viewers also liked (12)

PDF
2015 video-surveillance-guide-toc
PDF
Communication cost minimization in wireless sensor and actor networks for roa...
PDF
Exploring DEM error with geographically weighted regression
PDF
Learning Kinematics from direct Self-Observation using Nearest-Neighbour Methods
PDF
Step Into Security Webinar - Video Surveillance in Classrooms & Around Campus
PPTX
Step Into Security Webinar - Planning for Outdoor Video Surveillance Projects
PPT
Forecasting techniques
PDF
Gsm rf-optimization
PDF
CCTV Design software: IP Video System Design Tool
PPT
Presentation Rf Optimization And Planning
PPT
What is stress
PPTX
RF Planning & Optimization
2015 video-surveillance-guide-toc
Communication cost minimization in wireless sensor and actor networks for roa...
Exploring DEM error with geographically weighted regression
Learning Kinematics from direct Self-Observation using Nearest-Neighbour Methods
Step Into Security Webinar - Video Surveillance in Classrooms & Around Campus
Step Into Security Webinar - Planning for Outdoor Video Surveillance Projects
Forecasting techniques
Gsm rf-optimization
CCTV Design software: IP Video System Design Tool
Presentation Rf Optimization And Planning
What is stress
RF Planning & Optimization
Ad

Similar to Well Placement Optimization (with a reduced number of reservoir simualtions) (20)

PDF
Well placement optimization
PDF
5.2. ulb beams
PDF
BMS: Review of approaches for the design of BMS functions
PPT
Foothill College Energy System
PDF
Optimal and Heuristic Techniques for Fault Detection
PPTX
Presentation_PhD_DOCEIS_RicardoSantos_.pptx
PDF
BMS State-Of-Charge estimation for I posted a presentation concerning an adap...
PDF
Optimal Synthesis of Array Pattern for Concentric Circular Antenna Array Usin...
PDF
Fail safe design for large capacity lithium ion batteries
DOC
I E E E Projects
PDF
Latest forecasting methods applied to lean production systems
PPT
Optimization of distributed generation of renewable energy sources by intelli...
PPT
Optimization of distributed generation of renewable energy sources by intelli...
PPT
Optimization of distributed generation of renewable energy sources by intelli...
PDF
22.5. Systeemiajattelu energiaintensiivisessä teollisuudessa
PPT
Robust algorithms for the solution of the inventory problem in Life Cycle Imp...
PDF
Solving Unit Commitment Problem Using Chemo-tactic PSO–DE Optimization Algori...
PDF
A Novel Metaheuristics To Solve Mixed Shop Scheduling Problems
PPT
Draft PhD Presentation Robert Brunet
PDF
Steven Hauser India Delegation May162011
Well placement optimization
5.2. ulb beams
BMS: Review of approaches for the design of BMS functions
Foothill College Energy System
Optimal and Heuristic Techniques for Fault Detection
Presentation_PhD_DOCEIS_RicardoSantos_.pptx
BMS State-Of-Charge estimation for I posted a presentation concerning an adap...
Optimal Synthesis of Array Pattern for Concentric Circular Antenna Array Usin...
Fail safe design for large capacity lithium ion batteries
I E E E Projects
Latest forecasting methods applied to lean production systems
Optimization of distributed generation of renewable energy sources by intelli...
Optimization of distributed generation of renewable energy sources by intelli...
Optimization of distributed generation of renewable energy sources by intelli...
22.5. Systeemiajattelu energiaintensiivisessä teollisuudessa
Robust algorithms for the solution of the inventory problem in Life Cycle Imp...
Solving Unit Commitment Problem Using Chemo-tactic PSO–DE Optimization Algori...
A Novel Metaheuristics To Solve Mixed Shop Scheduling Problems
Draft PhD Presentation Robert Brunet
Steven Hauser India Delegation May162011
Ad

Well Placement Optimization (with a reduced number of reservoir simualtions)

  • 1. Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources Partially Separated Meta-Models with Evolution Strategies for Well Placement Problem Zyed Bouzarkouna IFP-EN (French Institute of Petroleum) INRIA © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Joint work with Didier Yu Ding (IFP-EN) Anne Auger (INRIA) SPE EUROPEC 2011
  • 2. 2 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Well Placement Problem Onwunalu & Durlofsky (2010)
  • 3. Well Placement Problem © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France r s !! Onwunalu & Durlofsky (2010) l hou se vera o tes t l minu severa 3
  • 4. Outline  Optimization Approach: CMA-ES  CMA-ES with meta-models © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France  Exploiting the partial Separability of the objective function  Results and Discussions 4
  • 5. CMA-ES Covariance Matrix Adaptation – Evolution Strategy Hansen & Ostermeier (2001) Initializing Sampling: x i  m   N i (0, C)  i  1.. © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Next generation Evaluating individuals Adapting the distribution parameters 5
  • 6. 6 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France CMA-ES (Cont'd)
  • 7. CMA-ES with Meta-Models f : 'true' objective ˆ f : approximate function function (MM) © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France simulated well configuration non-simulated well configuration : approximated with ˆ f 7
  • 8. CMA-ES with Meta-models (Cont'd) Building the meta-model f : 'true' objective ˆ f : approximate function function (MM)  Locally weighted regression © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France q : point to evaluate n ^ f (q) : full quadratic meta-model on q 8
  • 9. CMA-ES with Meta-models (Cont'd) Building the meta-model f : 'true' objective ˆ f : approximate function function (MM)  Locally weighted regression © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France A training set containing m points with their objective function values (x j , y j  f (x j )), j  1...m 9
  • 10. CMA-ES with Meta-models (Cont'd) Building the meta-model f : 'true' objective ˆ f : approximate function function (MM)  Locally weighted regression © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France We select the k nearest neighbor data points to q according to the Mahalanobis distance with respect to the current covariance matrix C. 10
  • 11. CMA-ES with Meta-models (Cont'd) Building the meta-model f : 'true' objective ˆ f : approximate function function (MM)  Locally weighted regression © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Building the full quadratic meta-model ˆ f on q 11
  • 12. CMA-ES with Meta-models (Cont'd) Approximate Ranking Procedure ^ ^ ^  evaluate with f  evaluate with f  evaluate with f ^ ^ ^  rank with f (Rank0)  rank with f (Rank1)  rank with f (Ranki) Training Set ... n elements  evaluate with f the  If (NO criteria)  If (NO criteria) best from Rank0.  evaluate with f the best  evaluate with f the best from Rank2. with Rank2. © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France ad ad ad dt dt dt ot ot ot he he he tra tra tra ini ini ini n n n gs gs gs et et et Training Set Training Set Training Set (n + 1 ) elements (n + 2 ) elements (n + 1 + i ) elements 12
  • 13. MM Acceptance Criteria: nlmm-CMA Bouzarkouna et al. (2010a)  The meta-model is accepted if it succeeds in keeping:  the best individual and the ensemble of the μ best individuals unchanged or  the best individual unchanged, if more than one fourth of the population is evaluated. © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France 13
  • 14. Test Case Di me ns ion =  PUNQ S-3: 19 x 28 x 5. 12  2 wells to be placed:  1 unilateral producer vertical, horizontal or deviated.  1 unilateral injector Lmax = 1000 m. © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France  NPV = the objective function T  Qo   Co  Q  C  )  C Y 1 NPV   ( n  g  g n 1 (1  APR ) d Qw  n Cw  n     14
  • 15. CMA-ES with meta-models: Performance 10 runs on the PUNQ-S3 reservoir case Bouzarkouna et al. (ECMOR 2010) © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France The number of reservoir simulations is reduced by 19 - 25% 15
  • 16. Why this work  Why ?  The well placement problem is still demanding in reducing the number of reservoir simulations  Idea © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France  Building a more accurate approximate model  How ?  Exploit the problem structure to reduce more the number of simulations Reduce the dimension of the approximate model 16
  • 17. Well Placement Problem W3 W4 W1 W2 W5 Objective function: Net Present Value (NPV) NPV (field)   NPV (well ) wells i i  When evaluating the NPV, we have © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Reservoir Simulation access to all the NPVi W1  Each NPVi can be approximated using only a few variables instead of W2 all the variables of the problem. Production W3 curves for each well 17
  • 18. Partial Separability of the Objective Function    N f ( x)  f i  i ( x) i 1  Two Conditions   i must be explicit ; © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France   i must define a number of variables < dimension;  well placement problem:  f i : The NPV for each well   i: defines the variables for each fi 18
  • 19. Partially Separated Meta-Models f : 'true' objective ˆ f : approximate function function (MM)    N    N f ( x)  f i  ( x) i ˆ f ( x)  ˆ  i ( x) fi © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France i 1 i 1 Building N meta-models (1 for each element function) instead of 1 meta-model for the whole objective function. 19
  • 20. Building the p-sep Meta-Model  Locally weighted regression qn: point to evaluate on fˆ © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France f i ( i (q)) ??? i (q) ni : point to evaluate on ˆ fi ^ f i : full quadratic meta-model on  i (q) 20
  • 21. Building the p-sep Meta-Model  Locally weighted regression © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France A training set containing mi points with their  i (q) true element function values   (x ), f ( (x ))  , i j i i j j  1,..., mi 21
  • 22. Building the p-sep Meta-Model  Locally weighted regression © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France We select the ki nearest neighbor data points to  i (q) Φi (q) according to the Mahalanobis distance with respect to a matrix Ci. Ci is an ni  ni matrix adapted to the local shape of the landscape of fi. 22
  • 23. Building the p-sep Meta-Model  Locally weighted regression Building the full quadratic meta-model f i ˆ on Φi(q) © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France  i (q) ni ( ni  3)   ki min  ˆi  i i  j   f  i (x ),   f  i (x ) 2   , w.r.t.    1 2  j 1  j j  i 23
  • 24. Test Case Di m ens ion =1 8  PUNQ S-3: 19 x 28 x 5.  1 injector already drilled I-1  3 unilateral producers to be placed © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France  NPV = the objective function T  Qo   Co  Q  C  )  C Y 1 NPV   ( n  g  g n 1 (1  APR ) d Qw  n Cw  n     24
  • 25. Problem Modeling Di m ens ion =1 8  Meta-models to approximate the NPV of each well NPV(field) = NPV(P1) + NPV(P2) + NPV(P3) + NPV(I1)  Each sub-objective function will be approximated with a few parameters © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France  the coordinates of the considered well  the minimum distance to other producers  the minimum distance to the injector We build 4 meta-models For wells to be drilled, each meta-model depends on 8 parameters For wells already drilled, the meta-model depends on 2 parameters 25
  • 26. 26 © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France 10 runs Performance on PUNQ-S3
  • 27. Performance on PUNQ-S3 (Cont'd) Map of HPhiSo I-1 Position of P-1 solution wells © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France P-2 P-3 27
  • 28. Summary  New approach based on exploiting the partial separability of the objective function  The approach can be combined with any other stochastic optimizer © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France  Promising results on the PUNQ-S3: It reduces the number of simulations by:  60% compared to CMA-ES;  28% compared to CMA-ES with meta-models; 28
  • 29. Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources Thank you for Your Attention © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France zyed.bouzarkouna@ifpen.fr SPE EUROPEC 2011
  • 30. Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources Partially Separated Meta-Models with Evolution Strategies for Well Placement Problem Zyed Bouzarkouna zyed.bouzarkouna@ifpen.fr © 2010 - IFP Energies nouvelles, Rueil-Malmaison, France Joint work with Didier Yu Ding Anne Auger SPE EUROPEC 2011