- Alòs, E. (2006). A generalization of the Hull and White formula with applications to option pricing approximation.
Paper not yet in RePEc: Add citation now
- Alòs, E. (2012). A decomposition formula for option prices in the Heston model and applications to option pricing approximation. Finance Stoch. 16(3), 403–422. ISSN 0949-2984. DOI 10.1007/s00780-012-0177-0.
Paper not yet in RePEc: Add citation now
Alòs, E., de Santiago, R., and Vives, J. (2015). Calibration of stochastic volatility models via secondorder approximation: The Heston case. Int. J. Theor. Appl. Finance 18(6), 1–31. ISSN 0219-0249.
Alòs, E., León, J. A., and Vives, J. (2007). On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility. Finance Stoch. 11(4), 571–589. ISSN 0949-2984.
Alòs, E., León, J. A., Pontier, M., and Vives, J. (2008). A Hull and White formula for a general stochastic volatility jump-diffusion model with applications to the study of the short-time behavior of the implied volatility.
- Albrecher, H., Mayer, P., Schoutens, W., and Tistaert, J. (2007). The little Heston trap. Wilmott Magazine 2007(January/February), 83–92.
Paper not yet in RePEc: Add citation now
Ball, C. A. and Roma, A. (1994). Stochastic volatility option pricing. J. Finan. Quant. Anal. 29(4), 589–607.
Barndorff-Nielsen, O. E. and Shephard, N. (2001). Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc. Ser. B. Stat. Methodol. 63(2), 167–241. ISSN 1467-9868. DOI 10.1111/1467-9868.00282.
Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche mark options.
Baustian, F., Mrázek, M., PospÃÂÅ¡il, J., and Sobotka, T. (2017). Unifying pricing formula for several stochastic volatility models with jumps. Appl. Stoch. Models Bus. Ind. 33(4), 422–442. ISSN 1524-1904.
Bayer, C., Friz, P., and Gatheral, J. (2016). Pricing under rough volatility. Quant. Finance 16(6), 887–904.
- Benhamou, E., Gobet, E., and Miri, M. (2010). Time dependent Heston model. SIAM J. Finan. Math. 1(1), 289–325. ISSN 1945-497X. DOI 10.1137/090753814.
Paper not yet in RePEc: Add citation now
Cox, J. C., Ingersoll, J. E., and Ross, S. A. (1985). A theory of the term structure of interest rates.
Duffie, D., Pan, J., and Singleton, K. (2000). Transform analysis and asset pricing for affine jump-diffusions.
- Econometrica 53(2), 385–407. ISSN 0012-9682. DOI 10.2307/1911242.
Paper not yet in RePEc: Add citation now
Elices, A. (2008). Models with time-dependent parameters using transform methods: application to Heston’s model. Available at arXiv: https://arxiv.org/abs/0708.2020.
- Fouque, J.-P., Papanicolaou, G., and Sircar, K. R. (2000). Derivatives in financial markets with stochastic volatility. Cambridge University Press, Cambridge, U.K. ISBN 0-521-79163-4.
Paper not yet in RePEc: Add citation now
- Fouque, J.-P., Papanicolaou, G., Sircar, R., and Solna, K. (2003). Multiscale stochastic volatility asymptotics.
Paper not yet in RePEc: Add citation now
- Gatheral, J. (2006). The volatility surface: A practitioner’s guide. Wiley Finance. John Wiley & Sons, Hoboken, New Jersey. ISBN 9780470068250.
Paper not yet in RePEc: Add citation now
- Gulisashvili, A. and Vives, J. (2012). Two-sided estimates for distribution densities in models with jumps. In Stochastic Differential Equations and Processes, pp. 239–254. Springer, Berlin, Heidelberg.
Paper not yet in RePEc: Add citation now
- Hanson, F. B. (2007). Applied stochastic processes and control for jump-diffusions, vol. 13 of Advances in Design and Control. SIAM, Philadelphia, PA. ISBN 9780898716337.
Paper not yet in RePEc: Add citation now
Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343. ISSN 0893-9454. DOI 10.1093/rfs/6.2.327.
Hull, J. C. and White, A. D. (1987). The pricing of options on assets with stochastic volatilities. J. Finance 42(2), 281–300. ISSN 1540-6261. DOI 10.1111/j.1540-6261.1987.tb02568.x. Jafari, H. and Vives, J. (2013). A Hull and White formula for a stochastic volatility Lévy model with infinite activity. Commun. Stoch. Anal. 7(2), 321–336. ISSN 0973-9599.
- J. Appl. Math. Stoch. Anal. pp. Art. ID 359142, 17. ISSN 1048-9533. DOI 10.1155/2008/359142.
Paper not yet in RePEc: Add citation now
- Killmann, F. and von Collani, E. (2001). A note on the convolution of the uniform and related distributions and their use in quality control. Econ. Qual. Control 16(1), 17–41. ISSN 0940-5151. DOI 10.1515/EQC.2001.17.
Paper not yet in RePEc: Add citation now
Kou, S. G. (2002). A jump-diffusion model for option pricing. Manage. Sci. 48(8), 1086–1101. ISSN 0025-1909.
Lewis, A. L. (2000). Option Valuation Under Stochastic Volatility: With Mathematica code. Finance Press, Newport Beach, CA. ISBN 9780967637204.
Merino, R. and Vives, J. (2015). A generic decomposition formula for pricing vanilla options under stochastic volatility models. Int. J. Stoch. Anal. pp. Art. ID 103647, 11. ISSN 2090-3332. DOI 10.1155/2015/103647.
Merino, R. and Vives, J. (2017). Option price decomposition in spot-dependent volatility models and some applications. Int. J. Stoch. Anal. pp. Art. ID 8019498, 16. ISSN 2090-3332. DOI 10.1155/2017/8019498.
Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3(1–2), 125–144. ISSN 0304-405X. DOI 10.1016/0304-405X(76)90022-2.
- Mikhailov, S. and Nögel, U. (2003). Heston’s stochastic volatility model - implementation, calibration and some extensions. Wilmott magazine 2003(July), 74–79.
Paper not yet in RePEc: Add citation now
Mrázek, M., PospÃÂÅ¡il, J., and Sobotka, T. (2016). On calibration of stochastic and fractional stochastic volatility models. European J. Oper. Res. 254(3), 1036–1046. ISSN 0377-2217. DOI 10.1016/j.ejor.2016.04.033.
PospÃÂÅ¡il, J. and Sobotka, T. (2016). Market calibration under a long memory stochastic volatility model. Appl.
Scott, L. O. (1987). Option pricing when the variance changes randomly: Theory, estimation, and an application.
Scott, L. O. (1997). Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates: Applications of fourier inversion methods. Math. Finance 7(4), 413–426. ISSN 0960-1627.
Stein, J. and Stein, E. (1991). Stock price distributions with stochastic volatility: An analytic approach. Rev.
- Vives, J. (2016). Decomposition of the pricing formula for stochastic volatility models based on malliavin-skorohod type calculus. In M. Eddahbi, E. H. Essaky, and J. Vives, eds., Statistical Methods and Applications in Insurance and Finance: CIMPA School, Marrakech and El Kelaa M’gouna, Morocco, April 2013, pp. 103–123.
Paper not yet in RePEc: Add citation now
- Yan, G. and Hanson, F. B. (2006). Option pricing for a stochastic-volatility jump-diffusion model with loguniform jump-amplitude. In Proceedings of American Control Conference, pp. 2989–2994. IEEE, Piscataway, NJ. DOI 10.1109/acc.2006.1657175.
Paper not yet in RePEc: Add citation now