BanÃŒÂbura, M., D. Giannone, and L. Reichlin (2010). Large Bayesian vector auto regressions. Journal of Applied Econometrics 25(1), 71–92.
Bassetti, F., R. Casarin, and F. Leisen (2014). Beta-product dependent Pitman–Yor processes for Bayesian inference. Journal of Econometrics 180(1), 49–72.
Canova, F. (1993). Modelling and forecasting exchange rates with a Bayesian time-varying coefficient model. Journal of Economic Dynamics and Control 17(1-2), 233–261.
- CappeÃŒÂ, O., E. Moulines, and T. RydeÃŒÂn (2009). Inference in hidden Markov models. In Proceedings of EUSFLAT conference, pp. 14–16.
Paper not yet in RePEc: Add citation now
Carriero, A., T. E. Clark, and M. Marcellino (2015). Bayesian VARs: specification choices and forecast accuracy. Journal of Applied Econometrics 30(1), 46–73.
Carriero, A., T. E. Clark, and M. Marcellino (2016). Common drifting volatility in large Bayesian VARs. Journal of Business & Economic Statistics 34(3), 375–390.
Carriero, A., T. E. Clark, and M. Marcellino (2019). Large bayesian vector autoregressions with stochastic volatility and non-conjugate priors. Journal of Econometrics 212, 137–154.
Chan, J. C., E. Eisenstat, and G. Koop (2016). Large bayesian VARMAs. Journal of Econometrics 192(2), 374–390.
Chan, J. C., E. Eisenstat, et al. (2013). Gibbs samplers for VARMA and its extensions. Technical report, Australian National University, College of Business and Economics.
- Chen, S. X. and T.-M. Huang (2007). Nonparametric estimation of copula functions for dependence modelling. Canadian Journal of Statistics 35(2), 265–282.
Paper not yet in RePEc: Add citation now
Chib, S. and E. Greenberg (1996). Markov chain monte carlo simulation methods in econometrics. Econometric Theory 12(3), 409–431.
Clark, T. E. (2011). Real-time density forecasts from bayesian vector autoregressions with stochastic volatility. Journal of Business & Economic Statistics 29(3), 327–341.
- Cogley, T. and T. J. Sargent (2001). Evolving post-World War II US inflation dynamics. NBER macroeconomics annual 16, 331–373.
Paper not yet in RePEc: Add citation now
Creal, D. D. and R. S. Tsay (2015). High dimensional dynamic stochastic copula models. Journal of Econometrics 189(2), 335–345.
- Di Lucca, M. A., A. Guglielmi, P. Müller, and F. A. Quintana (2013). A simple class of Bayesian nonparametric autoregression models. Bayesian Analysis (Online) 8(1), 63.
Paper not yet in RePEc: Add citation now
- Doan, T., R. Litterman, and C. Sims (1984). Forecasting and conditional projection using realistic prior distributions. Econometric Reviews 3(1), 1–100.
Paper not yet in RePEc: Add citation now
Geweke, J. and G. Amisano (2014). Analysis of variance for Bayesian inference. Econometric Reviews 33(1-4), 270–288.
Geweke, J. and M. Keane (2007). Smoothly mixing regressions. Journal of Econometrics 138(1), 252–290.
Giannone, D. and L. Reichlin (2006). Does information help recovering structural shocks from past observations? Journal of the European Economic Association 4(2-3), 455–465.
Giannone, D., M. Lenza, and G. E. Primiceri (2015). Prior selection for vector autoregressions. Review of Economics and Statistics 97(2), 436–451.
Girolami, M. and B. Calderhead (2011). Riemann manifold Langevin and Hamiltonian Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73(2), 123– 214.
- GourieÃŒÂroux, C., A. Monfort, and J.-P. Renne (2019). Identification and estimation in nonfundamental structural VARMA models. The Review of Economic Studies, to appear.
Paper not yet in RePEc: Add citation now
- Gruber, L. and C. Czado (2015). Sequential Bayesian model selection of regular vine copulas. Bayesian Analysis 10(4), 937–963.
Paper not yet in RePEc: Add citation now
Guhaniyogi, R. and D. B. Dunson (2015). Bayesian compressed regression. Journal of the American Statistical Association 110(512), 1500–1514.
- Humphreys, D. A., P. M. Harris, M. RodrıÌÂguez-Higuero, F. A. Mubarak, D. Zhao, and K. Ojasalo (2015). Principal component compression method for covariance matrices used for uncertainty propagation. IEEE Transactions on Instrumentation and Measurement 64(2), 356–365.
Paper not yet in RePEc: Add citation now
Ibragimov, R. (2005). Copula-based dependence characteriztions and modeling for time series.
- Jeffreys, H. (1998). The theory of probability. OUP Oxford.
Paper not yet in RePEc: Add citation now
Kapetanios, G., M. Marcellino, and F. Venditti (2019). Large time-varying parameter VARs: A non-parametric approach. Journal of Applied Econometrics, to appear.
Kim, S., N. Shephard, and S. Chib (1998). Stochastic volatility: likelihood inference and comparison with ARCH models. The Review of Economic Studies 65(3), 361–393.
Koop, G. and D. Korobilis (2013). Large time-varying parameter VARs. Journal of Econometrics 177(2), 185–198.
Koop, G., D. Korobilis, and D. Pettenuzzo (2019). Bayesian compressed vector autoregressions. Journal of Econometrics 210(1), 135–154.
Korobilis, D. and D. Pettenuzzo (2019). Adaptive hierarchical priors for high-dimensional vector autoregressions. Journal of Econometrics 212, 241–271.
Litterman, R. B. (1986). Forecasting with Bayesian vector autoregressions: five years of experience. Journal of Business & Economic Statistics 4(1), 25–38.
- Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer Science & Business Media.
Paper not yet in RePEc: Add citation now
Lütkepohl, H. and D. S. Poskitt (1996). Specification of echelon-form VARMA models. Journal of M. Tsionas, M. Izzeldin and L. Trapani/Large Bayesian TVP-VARs 24 Business & Economic Statistics 14(1), 69–79.
- M. Tsionas, M. Izzeldin and L. Trapani/Large Bayesian TVP-VARs 22 Clark, T. E. and F. Ravazzolo (2015). Macroeconomic forecasting performance under alternative specifications of time-varying volatility. Journal of Applied Econometrics 30(4), 551–575.
Paper not yet in RePEc: Add citation now
- M. Tsionas, M. Izzeldin and L. Trapani/Large Bayesian TVP-VARs 23 Gruber, L. F. and C. Czado (2018). Bayesian model selection of regular vine copulas. Bayesian Analysis 13(4), 1107–1131.
Paper not yet in RePEc: Add citation now
- Nelsen, R. B. (2007). An introduction to copulas. Springer Science & Business Media.
Paper not yet in RePEc: Add citation now
Nemeth, C., C. Sherlock, and P. Fearnhead (2016). Particle Metropolis-adjusted Langevin algorithms. Biometrika 103(3), 701–717.
Nieto-Barajas, L. E. and F. A. Quintana (2016). A Bayesian non-parametric dynamic AR model for multiple time series analysis. Journal of Time Series Analysis 37(5), 675–689.
Nieto-Barajas, L. E., P. Müller, Y. Ji, Y. Lu, and G. B. Mills (2012). A time-series DDP for functional proteomics profiles. Biometrics 68(3), 859–868.
Primiceri, G. E. (2005). Time varying structural vector autoregressions and monetary policy. The Review of Economic Studies 72(3), 821–852.
Roberts, G. O. and J. S. Rosenthal (1998). Optimal scaling of discrete approximations to Langevin diffusions. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 60(1), 255– 268.
- Rodriguez, A. and E. ter Horst (2008). Bayesian dynamic density estimation. Bayesian Analysis 3(2), 339–365.
Paper not yet in RePEc: Add citation now
Scaillet, O. and J.-D. Fermanian (2003). Nonparametric estimation of copulas for time series. Journal of Risk (5), 25–54.
Sims, C. A. (1980). Macroeconomics and reality. Econometrica 48, 1–48.
Sims, C. A. (1993). A nine-variable probabilistic macroeconomic forecasting model. In Business Cycles, Indicators and Forecasting, pp. 179–212. University of Chicago Press.
- Sklar, A. (1996). Random variables, distribution functions, and copulas: a personal look backward and forward. Lecture notes-monograph series, 1–14.
Paper not yet in RePEc: Add citation now
- Sklar, M. (1959). Fonctions de repartition an dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8, 229–231.
Paper not yet in RePEc: Add citation now
Stock, J. H. and M. W. Watson (1996). Evidence on structural instability in macroeconomic time M. Tsionas, M. Izzeldin and L. Trapani/Large Bayesian TVP-VARs 25 series relations. Journal of Business & Economic Statistics 14(1), 11–30.
Taddy, M. A. (2010). Autoregressive mixture models for dynamic spatial Poisson processes: Application to tracking intensity of violent crime. Journal of the American Statistical Association 105(492), 1403–1417.
- Tewari, A., M. J. Giering, and A. Raghunathan (2011). Parametric characterization of multimodal distributions with non-gaussian modes. In 2011 IEEE 11th International Conference on Data Mining Workshops, pp. 286–292. IEEE.
Paper not yet in RePEc: Add citation now
- Tsionas, M., M. Izzeldin, and L. Trapani (2019). Copula-based Bayesian estimation of large multivariate stochastic volatility models. Technical report.
Paper not yet in RePEc: Add citation now
Uhlig, H. (1997). Bayesian vector autoregressions with stochastic volatility. Econometrica 65, 59–74.
Villani, M., R. Kohn, and P. Giordani (2009). Regression density estimation using smooth adaptive Gaussian mixtures. Journal of Econometrics 153(2), 155–173.
- Watson, M. W. (1994). Vector autoregressions and cointegration. Handbook of Econometrics 4, 2843–2915. M. Tsionas, M. Izzeldin and L. Trapani/Large Bayesian TVP-VARs 26
Paper not yet in RePEc: Add citation now