- A. Geron. Hands-on machine learning with Scikit-Learn and TensorFlow : Concepts, tools, and techniques to build intelligent systems. OâReilly Media, Sebastopol, CA, 2017.
Paper not yet in RePEc: Add citation now
A. Gnoatto and N. Seiffert. Cross currency valuation and hedging in the multiple curve framework. SIAM Journal on Financial Mathematics, 12(3):967â1012, 2021.
A. Gnoatto, A. Picarelli, and C. Reisinger. Deep xVA solver â A neural network based counterparty credit risk management framework. SSRN Electronic Journal, 2020.
- A. Karpatne, R. Kannan, and V. Kumar. Knowledge-guided machine learning: Accelerating discovery using scientific knowledge and data. Chapman and Hall/CRC, 1st edition, 2022.
Paper not yet in RePEc: Add citation now
A. Pallavicini, D. Perini, and D. Brigo. Funding valuation adjustment: a consistent framework including CVA, DVA, collateral, netting rules and re-hypothecation. SSRN Electronic Journal, 2011.
- A. Paszke, S. Gross, S. Chintala, G. Chanan, and E. Yang. Automatic differentiation in PyTorch. Neural Information Processing Systems, Tech. Rep, 2017.
Paper not yet in RePEc: Add citation now
- A.J. Meade and A.A. Fernandez. The numerical solution of linear ordinary differential equations by feedforward neural networks. Mathematical and Computer Modelling, 19(12):1â25, 1994.
Paper not yet in RePEc: Add citation now
B. Horvath, A. Muguruza, and M. Tomas. Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models. Quantitative Finance, 21(1):11â27, 2021.
- B. Huge and A. Savine. Differential machine learning. arXiv 2005.02347, 2020.
Paper not yet in RePEc: Add citation now
B. Salvador and C. W. Oosterlee. Total value adjustment for a stochastic volatility model. A comparison with the Black-Scholes model. Applied Mathematics and Computation, 391:125489, 2021.
- B. Salvador, C. W. Oosterlee, and R. van der Meer. Financial option valuation by unsupervised learning with artificial neural networks. Mathematics, 9(1), 2021.
Paper not yet in RePEc: Add citation now
- C. Burgard and M. Kjaer. In the balance. Risk journal, pages 72â75, 2011.
Paper not yet in RePEc: Add citation now
- C. Burgard and M. Kjaer. Partial differential equation representations of derivatives with bilateral counterparty risk and funding costs. The Journal of Credit Risk, 7(3):1â19, 2011.
Paper not yet in RePEc: Add citation now
C. Cuchiero, C. Fontana, and A. Gnoatto. Affine multiple yield curve models. Mathematical Finance, 29(2):568â611, 2019.
- C. Randall and D. A. Tavella. Pricing financial instruments: The finite difference method. Wiley, 2000.
Paper not yet in RePEc: Add citation now
D. Brigo and A. Pallavicini. Nonlinear consistent valuation of CCP cleared or CSA bilateral trades with initial margins under credit, funding and wrong-way risks. Journal of Financial Engineering, 01(01):1450001, 2014.
- D. Brigo and M. Masetti. Risk-neutral pricing of counterparty risk. Pykhtin (Ed.). London: Risk Books, 2005.
Paper not yet in RePEc: Add citation now
D. Brigo, A. Capponi, and A. Pallavicini. Arbitrage-free bilateral counterparty risk valuation under collateralization and application to credit default swaps. Mathematical Finance, 24(1):125â 146, 2014.
D. Brigo, A. Pallavicini, and V. Papatheodorou. Arbitrage-free valuation of bilateral counterparty risk for interest-rate products: impact of volatilities and correlations. International Journal of Theoretical and Applied Finance, 14(06):773â802, 2011.
D. Brigo, C. Buescu, M. Francischello, A. Pallavicini, and M. Rutkowski. Risk-neutral valuation under differential funding costs, defaults and collateralization. Risk Management and Analysis in Financial Institutions eJournal, 2018.
D. Brigo, M. Francischello, and A. Pallavicini. Nonlinear valuation under credit, funding, and margins: Existence, uniqueness, invariance, and disentanglement. European Journal of Operational Research, 274(2):788â805, 2019.
- D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Mathematical programming, 45(1):503â528, 1989.
Paper not yet in RePEc: Add citation now
- D. Castillo, A. M. Ferreiro, J. A. GarcıÌa-RodrıÌguez, and C. VaÌzquez. Numerical methods to solve PDE models for pricing business companies in different regimes and implementation in GPUs. Applied Mathematics and Computation, 219(24):11233â11257, 2013.
Paper not yet in RePEc: Add citation now
D. Duffie and M. Huang. Swap rates and credit quality. The Journal of Finance, 51(3):921â949, 1996.
- D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv 1412.6980, 2014.
Paper not yet in RePEc: Add citation now
- E. Weinan, J. Han, and A. Jentzen. Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Communications in Mathematics and Statistics, 5:349â380, 2017.
Paper not yet in RePEc: Add citation now
E. Weinan, M. Hutzenthaler, A. Jentzen, and T. Kruse. Multilevel Picard iterations for solving smooth semilinear parabolic heat equations. Partial Differential Equations and Applications, 2(6), nov 2021.
- G. Bai, U. Koley, S. Mishra, and R. Molinaro. Physics informed neural networks (PINNs) for approximating nonlinear dispersive PDEs. Journal of Computational Mathematics, 39(6):816â847, 2021.
Paper not yet in RePEc: Add citation now
- I. Arregui, B. Salvador, and C. VaÌzquez. CVA computing by PDE models. In Numerical Analysis and Its Applications, pages 15â24, Cham, 2017. Springer International Publishing.
Paper not yet in RePEc: Add citation now
- I. Arregui, B. Salvador, and C. VaÌzquez. PDE models and numerical methods for total value adjustment in European and American options with counterparty risk. Applied Mathematics and Computation, 308:31â53, 2017.
Paper not yet in RePEc: Add citation now
- I. Goodfellow, Y Bengio, and A. Courville. Deep learning. MIT Press, 2016.
Paper not yet in RePEc: Add citation now
- I.E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 9(5):987â1000, 1998.
Paper not yet in RePEc: Add citation now
J. C. Cox, J. E. Ingersoll, and S. A. Ross. A theory of the term structure of interest rates. Econometrica, 53(2):385â407, 1985.
- J. Han, A. Jentzen, and E. Weinan. Solving high-dimensional partial differential equations using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505â8510, 2018.
Paper not yet in RePEc: Add citation now
- J. Herb. Options on the maximum or the minimum of several assets. Journal of Financial and Quantitative Analysis, 22(3):277â283, 1987.
Paper not yet in RePEc: Add citation now
- K. J. In ât Hout and S. Foulon. ADI finite difference schemes for option pricing in the Heston model with correlation. International Journal of Numerical Analysis and Modeling, 7(2):303â320, 2010.
Paper not yet in RePEc: Add citation now
- L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning. SIAM Review, 60(2):223â311, 2018.
Paper not yet in RePEc: Add citation now
- Lu Lu, X. Meng, Z. Mao, and G. E. Karniadakis. DeepXDE: A deep learning library for solving differential equations. SIAM Review, 63(1):208â228, 2021.
Paper not yet in RePEc: Add citation now
- M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. TensorFlow: A system for large-scale Machine Learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16), pages 265â283, 2016.
Paper not yet in RePEc: Add citation now
- M. Bichuch, A. Capponi, and S. Sturm. Arbitrage-free pricing of XVA - Part II: PDE representation and numerical analysis. SSRN Electronic Journal, 02 2015.
Paper not yet in RePEc: Add citation now
- M. Bichuch, A. Capponi, and S. Sturm. Arbitrage-free XVA. Mathematical Finance, 28(2):582â 620, 2018.
Paper not yet in RePEc: Add citation now
- M. De Florio, E. Schiassi, and R. Furfaro. Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science, 32(6):063107, 2022.
Paper not yet in RePEc: Add citation now
- M. Dissanayake and N. Phan-Thien. Neural network-based approximations for solving partial differential equations. Communications in Numerical Methods in Engineering, 10(3):195â201, 1994.
Paper not yet in RePEc: Add citation now
M. Fujii, Y. Shimada, and A. Takahashi. A market model of interest rates with dynamic basis spreads in the presence of collateral and multiple currencies. Wilmott Journal, 54:61â73, 2011.
M. Fujii, Y. Shimada, and A. Takahashi. Note on construction of multiple swap curves with and without collateral. SSRN Electronic Journal, 23(02), 2010.
- M. Hutzenthaler, A. Jentzen, T. Kruse, T. Anh Nguyen, and P. von Wurstemberger. Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations. Proceedings Of The Royal Society A, 476, 2020.
Paper not yet in RePEc: Add citation now
- M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378:686â707, 2019.
Paper not yet in RePEc: Add citation now
- N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1):1929â1958, 2014.
Paper not yet in RePEc: Add citation now
R. M. Stulz. Options on the minimum or the maximum of two risky assets: Analysis and applications. Journal of Financial Economics, 10(2):161â185, 1982.
- R. van der Meer, C. W. Oosterlee, and A. Borovykh. Optimally weighted loss functions for solving PDEs with neural networks. Journal of Computational and Applied Mathematics, 405, 2022.
Paper not yet in RePEc: Add citation now
- S. CreÌpey. Bilateral counterparty risk under funding constraints-part II: CVA. Mathematical Finance, 25(1):23â50, 2015.
Paper not yet in RePEc: Add citation now
- S. CreÌpey. Gaussian process regression for derivative portfolio modelling and application to credit valuation adjustment computations. Risk journal, 24(1):47â81, 2020.
Paper not yet in RePEc: Add citation now
S. L. Heston. A closed-form solution for options with stochastic volatility with applications to bond and currency options. The review of financial studies, 6(2):327â343, 1993.
- S. Mishra and R. Molinaro. Estimates on the generalization error of physics-informed neural networks for approximating PDEs. IMA Journal of Numerical Analysis, 2022.
Paper not yet in RePEc: Add citation now
- T. De Ryck and S. Mishra. Error analysis for deep neural network approximations of parametric hyperbolic conservation laws. arXiv 2207.07362, 2022.
Paper not yet in RePEc: Add citation now
- T. De Ryck and S. Mishra. Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs. arXiv 2106.14473, 2021.
Paper not yet in RePEc: Add citation now
- T. De Ryck and S. Mishra. Generic bounds on the approximation error for physics-informed (and) operator learning. arXiv 2205.11393, 2022.
Paper not yet in RePEc: Add citation now
- T. De Ryck, A. D. Jagtap, and S. Mishra. Error estimates for physics informed neural networks approximating the Navier-Stokes equations. arXiv 2203.09346, 2022.
Paper not yet in RePEc: Add citation now
- T. De Ryck, S. Mishra, and R. Molinaro. wPINNs: Weak physics informed neural networks for approximating entropy solutions of hyperbolic conservation laws. arXiv 2207.08483, 2022.
Paper not yet in RePEc: Add citation now
- T. KossaczkaÌ, M. Ehrhardt, and M. GuÌnther. A neural network enhanced WENO method for nonlinear degenerate parabolic equations. Physics of Fluids, 34, 2022.
Paper not yet in RePEc: Add citation now
- T. KossaczkaÌ, M. Ehrhardt, and M. GuÌnther. Enhanced fifth order WENO shock-capturing schemes with deep learning. Results in Applied Mathematics, 12:100201, 2021.
Paper not yet in RePEc: Add citation now
- U. Cherubini. Counterparty risk in derivatives and collateral policies: The replicating portfolio approach. In L. Tilman, editor, ALM of Financial Institutions. institutional Investor Books, 2005.
Paper not yet in RePEc: Add citation now
- V. Piterbarg. Cooking with collateral. Risk Magazine, 23(02):58â63, 2012.
Paper not yet in RePEc: Add citation now
- V. Piterbarg. Funding beyond discounting: collateral agreements and derivatives pricing. Risk Magazine, 23(02):97â102, 2010.
Paper not yet in RePEc: Add citation now
- X Meng, Z Li, D. Zhang, and G. E. Karniadakis. PPINN: Parallel physics-informed neural network for time-dependent PDEs. Computer Methods in Applied Mechanics and Engineering, 370:113250, 2020.
Paper not yet in RePEc: Add citation now
- Y. Chen and C. Christara. Penalty methods for bilateral XVA pricing in European and American contingent claims by a PDE model. Journal of Computational Finance, Forthcoming, 2019.
Paper not yet in RePEc: Add citation now
- Y. Shin, J. Darbon, and G. E. Karniadakis. On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs. Communications in Computational Physics, 28(5):2042â2074, 2020.
Paper not yet in RePEc: Add citation now