create a website

Surrogate modelling of a detailed farm‐level model using deep learning. (2024). Heckelei, Thomas ; Shang, Linmei ; Gall, Juergen ; Wang, Jifeng ; Storm, Hugo ; Appel, Franziska ; Schafer, David.
In: Journal of Agricultural Economics.
RePEc:bla:jageco:v:75:y:2024:i:1:p:235-260.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 79

References cited by this document

Cocites: 41

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Albanese, D., Filosi, M., Visintainer, R., Riccadonna, S., Jurman, G. & Furlanello, C. (2013) Minerva and minepy: a C engine for the MINE suite and its R, python and MATLAB wrappers. Bioinformatics (Oxford, England), 29, 407–408.
    Paper not yet in RePEc: Add citation now
  2. Alibabaei, K., Gaspar, P.D. & Lima, T.M. (2021) Modeling soil water content and reference evapotranspiration from climate data using deep learning method. Applied Sciences, 11, 5029.
    Paper not yet in RePEc: Add citation now
  3. Amouzgar, K. & Strömberg, N. (2017) Radial basis functions as surrogate models with a priori bias in comparison with a posteriori bias. Structural and Multidisciplinary Optimization, 55, 1453–1469.
    Paper not yet in RePEc: Add citation now
  4. An, L., Grimm, V., Sullivan, A., Turner, B.L., II, Malleson, N., Heppenstall, A. et al. (2021) Challenges, tasks, and opportunities in modeling agent‐based complex systems. Ecological Modelling, 457, 109685.
    Paper not yet in RePEc: Add citation now
  5. Appel, F. & Balmann, A. (2019) Human behaviour versus optimising agents and the resilience of farms – insights from agent‐based participatory experiments with FarmAgriPoliS. Ecological Complexity, 40, 100731.
    Paper not yet in RePEc: Add citation now
  6. Appel, F., Ostermeyer‐Wiethaup, A. & Balmann, A. (2016) Effects of the German renewable energy act on structural change in agriculture – the case of biogas. Utilities Policy, 41, 172–182.

  7. Audsley, E., Pearn, K.R., Harrison, P.A. & Berry, P.M. (2008) The impact of future socio‐economic and climate changes on agricultural land use and the wider environment in East Anglia and north West England using a metamodel system. Climatic Change, 90, 57–88.
    Paper not yet in RePEc: Add citation now
  8. Bengio, Y., Simard, P. & Frasconi, P. (1994) Learning long‐term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5, 157–166.
    Paper not yet in RePEc: Add citation now
  9. Bradhurst, R.A., Roche, S.E., East, I.J., Kwan, P. & Garner, M.G. (2016) Improving the computational efficiency of an agent‐based spatiotemporal model of livestock disease spread and control. Environmental Modelling & Software, 77, 1–12.
    Paper not yet in RePEc: Add citation now
  10. Britz, W. (2021) Automated calibration of farm‐Sale mixed linear programming models using Bi‐level programming. German Journal of Agricultural Economics, 70, 165–181.
    Paper not yet in RePEc: Add citation now
  11. Britz, W., Ciaian, P., Gocht, A., Kanellopoulos, A., Kremmydas, D., Müller, M. et al. (2021) A design for a generic and modular bio‐economic farm model. Agricultural Systems, 191, 103133.
    Paper not yet in RePEc: Add citation now
  12. Britz, W., Lengers, B., Kuhn, T. & Schäfer, D. (2016) A highly detailed template model for dynamic optimization of farms – FARMDYN. Bonn: Institute for Food and Resource Economics, University of Bonn. Available from: https://www.ilr.uni‐bonn.de/em/rsrch/farmdyn/farmdyn_docu.pdf [Accessed 03rd April 2022].
    Paper not yet in RePEc: Add citation now
  13. Cao, D., Chen, Y., Chen, J., Zhang, H. & Yuan, Z. (2021) An improved algorithm for the maximal information coefficient and its application. Royal Society Open Science, 8, 201424.
    Paper not yet in RePEc: Add citation now
  14. Carnevale, C., Finzi, G., Guariso, G., Pisoni, E. & Volta, M. (2012) Surrogate models to compute optimal air quality planning policies at a regional scale. Environmental Modelling & Software, 34, 44–50.
    Paper not yet in RePEc: Add citation now
  15. Chen, R., Zhang, W. & Wang, X. (2020) Machine learning in tropical cyclone forecast modeling: a review. Atmosphere, 11, 676.
    Paper not yet in RePEc: Add citation now
  16. Chen, X., Chen, R., Wan, Q., Xu, R. & Liu, J. (2021) An improved data‐free surrogate model for solving partial differential equations using deep neural networks. Scientific Reports, 11, 19507.
    Paper not yet in RePEc: Add citation now
  17. Chollet, F. (2015) Keras (GitHub, 2015). Available from: https://github.com/fchollet/keras [Accessed 03rd April 2022].
    Paper not yet in RePEc: Add citation now
  18. Chopra, C., Sinha, S., Jaroli, S., Shukla, A. & Maheshwari, S. (2017) Recurrent Neural Networks with Non‐Sequential Data to Predict Hospital Readmission of Diabetic Patients. Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics – ICCBB 2017, Newark, NJ, USA, 18/10/2017–20/10/2017.
    Paper not yet in RePEc: Add citation now
  19. Debertin, D.L. (2012) Agricultural production economics. New York: Macmillan Publishing Company.

  20. Elman, J. (1990) Finding structure in time. Cognitive Science, 14, 179–211.
    Paper not yet in RePEc: Add citation now
  21. Fallah‐Mehdipour, E., Bozorg Haddad, O. & Mariño, M.A. (2013) Prediction and simulation of monthly groundwater levels by genetic programming. Journal of Hydro‐Environment Research, 7, 253–260.
    Paper not yet in RePEc: Add citation now
  22. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L. & Muller, P.‐A. (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery, 33, 917–963.
    Paper not yet in RePEc: Add citation now
  23. Gilbert, N. (2007) Agent‐Based Models. London: SAGE Publications, Inc.
    Paper not yet in RePEc: Add citation now
  24. Goodfellow, I., Bengio, Y. & Courville, A. (2016) Deep learning. Cambridge, MA: The MIT Press.
    Paper not yet in RePEc: Add citation now
  25. Goodfellow, I., Pouget‐Abadie, J., Mirza, M., Xu, B., Warde‐Farley, D., Ozair, S. et al. (2014) Generative adversarial networks. In: Advances in neural information processing systems. Cambridge, MA: MIT Press, pp. 2672–2680.
    Paper not yet in RePEc: Add citation now
  26. Graves, A., Fernández, S. & Schmidhuber, J. (2005) Bidirectional LSTM networks for improved phoneme classification and recognition. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C. et al. (Eds.) Artificial neural networks: formal models and their applications – ICANN 2005. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 799–804.
    Paper not yet in RePEc: Add citation now
  27. Graves, A., Mohamed, A.‐R. & Hinton, G. (2013) Speech recognition with deep recurrent neural networks. Available from: http://arxiv.org/pdf/1303.5778v1 [Accessed 03rd April 2022].
    Paper not yet in RePEc: Add citation now
  28. Gruber, A., Yanovski, S. & Ben‐Gal, I. (2013) Condition‐based maintenance via simulation and a targeted Bayesian network metamodel. Quality Engineering, 25, 370–384.
    Paper not yet in RePEc: Add citation now
  29. Happe, K., Balmann, A., Kellermann, K. & Sahrbacher, C. (2008) Does structure matter? The impact of switching the agricultural policy regime on farm structures. Journal of Economic Behavior & Organization, 67, 431–444.

  30. Happe, K., Kellermann, K. & Balmann, A. (2006) Agent‐based analysis of agricultural policies: an illustration of the agricultural policy simulator AgriPoliS, its adaptation and behavior. Ecology and Society, 11, 49.

  31. He, K., Zhang, X., Ren, S. & Sun, J. (2016) Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA. Piscataway, NJ: IEEE, pp. 770–778.
    Paper not yet in RePEc: Add citation now
  32. Heckelei, T. (2013) General methodological issues on farm level modelling. In: Langrell, S. (Ed.) Farm level modelling of CAP: a methodological overview. Luxembourg: Publications Office, pp. 29–34.
    Paper not yet in RePEc: Add citation now
  33. Heinrichs, J., Jouan, J., Pahmeyer, C. & Britz, W. (2021) Integrated assessment of legume production challenged by European policy interaction: a case‐study approach from French and German dairy farms. Q Open, 1, qoaa011.
    Paper not yet in RePEc: Add citation now
  34. Hochreiter, S. & Schmidhuber, J. (1997) Long short‐term memory. Neural Computation, 9, 1735–1780.
    Paper not yet in RePEc: Add citation now
  35. Hornik, K., Stinchcombe, M. & White, H. (1989) Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359–366.
    Paper not yet in RePEc: Add citation now
  36. Hsu, D. (2017) Multi‐period Time Series Modeling with Sparsity via Bayesian Variational Inference. Available from: https://arxiv.org/abs/1707.00666v3 [Accessed 03rd April 2022].
    Paper not yet in RePEc: Add citation now
  37. Huang, L., Qin, J., Zhou, Y., Zhu, F., Liu, L. & Shao, L. (2020) Normalization techniques in training DNNs: methodology, analysis and application. https://doi.org/10.48550/arXiv.2009.12836 [Accessed 03rd April 2022].
    Paper not yet in RePEc: Add citation now
  38. Huber, R., Bakker, M., Balmann, A., Berger, T., Bithell, M., Brown, C. et al. (2018) Representation of decision‐making in European agricultural agent‐based models. Agricultural Systems, 167, 143–160.

  39. Huber, R., Xiong, H., Keller, K. & Finger, R. (2022) Bridging behavioural factors and standard bio‐economic modelling in an agent‐based modelling framework. Journal of Agricultural Economics, 73, 35–63.

  40. Hussain, M.F., Barton, R.R. & Joshi, S.B. (2002) Metamodeling: radial basis functions, versus polynomials. European Journal of Operational Research, 138, 142–154.

  41. Jäger, G. (2021) Using neural networks for a universal framework for agent‐based models. Mathematical and Computer Modelling of Dynamical Systems, 27, 162–178.
    Paper not yet in RePEc: Add citation now
  42. Jiang, P., Zhou, Q. & Shao, X. (2020) Surrogate model‐based engineering design and optimization. Springer Singapore: Singapore.
    Paper not yet in RePEc: Add citation now
  43. Kleijnen, J.P.C. (2009) Kriging metamodeling in simulation: a review. European Journal of Operational Research, 192, 707–716.

  44. Kremmydas, D., Athanasiadis, I.N. & Rozakis, S. (2018) A review of agent based modeling for agricultural policy evaluation. Agricultural Systems, 164, 95–106.

  45. Kuhfuss, L., Préget, R., Thoyer, S. & Hanley, N. (2016) Nudging farmers to enrol land into Agri‐environmental schemes: the role of a collective bonus. European Review of Agricultural Economics, 43, 609–636.
    Paper not yet in RePEc: Add citation now
  46. Kuhn, T., Enders, A., Gaiser, T., Schäfer, D., Srivastava, A.K. & Britz, W. (2020) Coupling crop and bio‐economic farm modelling to evaluate the revised fertilization regulations in Germany. Agricultural Systems, 177, 102687.
    Paper not yet in RePEc: Add citation now
  47. LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W. et al. (1990) Handwritten digit recognition with a Back‐propagation network. In: Touretzky, D.S. (Ed.) Neural information processing systems. Natural and synthetic conference papers. Denver: Morgan Kaufmann.
    Paper not yet in RePEc: Add citation now
  48. Liong, S.‐Y., Khu, S.‐T. & Chan, W.‐T. (2001) Derivation of pareto front with genetic algorithm and neural network. Journal of Hydrologic Engineering, 6, 52–61.
    Paper not yet in RePEc: Add citation now
  49. Marhon, S.A., Cameron, C.J.F. & Kremer, S.C. (2013) Recurrent neural networks. In: Bianchini, M., Maggini, M. & Jain, L.C. (Eds.) Handbook on neural information processing. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 29–65.
    Paper not yet in RePEc: Add citation now
  50. McKay, M.D., Beckman, R.J. & Conover, W.J. (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21, 239.
    Paper not yet in RePEc: Add citation now
  51. Müller, B., Hoffmann, F., Heckelei, T., Müller, C., Hertel, T.W., Polhill, J.G. et al. (2020) Modelling food security: bridging the gap between the micro and the macro scale. Global Environmental Change, 63, 102085.
    Paper not yet in RePEc: Add citation now
  52. Murray‐Rust, D., Brown, C., van Vliet, J., Alam, S.J., Robinson, D.T., Verburg, P.H. et al. (2014) Combining agent functional types, capitals and services to model land use dynamics. Environmental Modelling & Software, 59, 187–201.
    Paper not yet in RePEc: Add citation now
  53. Nguyen, T.H., Nong, D. & Paustian, K. (2019) Surrogate‐based multi‐objective optimization of management options for agricultural landscapes using artificial neural networks’. Ecological Modelling, 400, 1–13.

  54. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G. et al. (2019) Pytorch: An imperative style, high‐performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché‐Buc, F., Fox, E. & Garnett, R. (Eds.) Advances in neural information processing systems, Vol. 32. Red Hook, NY: Curran Associates, Inc, pp. 8024–8035.
    Paper not yet in RePEc: Add citation now
  55. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O. et al. (2011) Scikit‐learn: machine learning in python. Available from: http://arxiv.org/pdf/1201.0490v4 [Accessed 03rd April 2022].
    Paper not yet in RePEc: Add citation now
  56. Picheny, V. (2015) Multiobjective optimization using gaussian process emulators via stepwise uncertainty reduction. Statistics and Computing, 25, 1265–1280.
    Paper not yet in RePEc: Add citation now
  57. Poppe, K., Duinen, L. & Koeijer, T. (2021) Reduction of greenhouse gases from peat soils in Dutch agriculture. EuroChoices, 20, 38–45.

  58. Rahmani, F., Lawson, K., Ouyang, W., Appling, A., Oliver, S. & Shen, C. (2021) Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data. Environmental Research Letters, 16, 24025.
    Paper not yet in RePEc: Add citation now
  59. Rasch, S., Heckelei, T., Storm, H., Oomen, R. & Naumann, C. (2017) Multi‐scale resilience of a communal rangeland system in South Africa. Ecological Economics, 131, 129–138.
    Paper not yet in RePEc: Add citation now
  60. Ratto, M., Castelletti, A. & Pagano, A. (2012) Emulation techniques for the reduction and sensitivity analysis of complex environmental models. Environmental Modelling & Software, 34, 1–4.
    Paper not yet in RePEc: Add citation now
  61. Razavi, S. (2021) Deep learning, explained: fundamentals, Explainability, and Bridgeability to process‐based modelling. Environmental Modelling & Software, 144, 105159.
    Paper not yet in RePEc: Add citation now
  62. Razavi, S., Tolson, B.A. & Burn, D.H. (2012) Review of surrogate modeling in water resources. Water Resources Research, 48, 559.
    Paper not yet in RePEc: Add citation now
  63. Reshef, D.N., Reshef, Y.A., Finucane, H.K., Grossman, S.R., McVean, G., Turnbaugh, P.J. et al. (2011) Detecting novel associations in large data sets. Science (New York, N.Y.), 334, 1518–1524.
    Paper not yet in RePEc: Add citation now
  64. Richardson, J.W., Hennessy, T. & O'Donoghue, C. (2014) Farm Level Models. In: O'Donoghue, C. (Ed.) Handbook of microsimulation modelling. Bingley: Emerald Group Publishing Limited, pp. 505–534.
    Paper not yet in RePEc: Add citation now
  65. Roman, N.D., Bre, F., Fachinotti, V.D. & Lamberts, R. (2020) Application and characterization of metamodels based on artificial neural networks for building performance simulation: a systematic review. Energy and Buildings, 217, 109972.
    Paper not yet in RePEc: Add citation now
  66. Rumelhart, D.E., Hinton, G.E. & Williams, R.J. (1986) Learning representations by back‐propagating errors. Nature, 323, 533–536.
    Paper not yet in RePEc: Add citation now
  67. Shang, L., Heckelei, T., Gerullis, M.K., Börner, J. & Rasch, S. (2021) Adoption and diffusion of digital farming technologies – integrating farm‐level evidence and system interaction. Agricultural Systems, 190, 103074.

  68. Storm, H., Baylis, K. & Heckelei, T. (2020) Machine learning in agricultural and applied economics. European Review of Agricultural Economics, 47, 849–892.

  69. Šumrada, T., Japelj, A., Verbič, M. & Erjavec, E. (2022) Farmers’ preferences for result‐based schemes for grassland conservation in Slovenia. Journal for Nature Conservation, 66, 126143.
    Paper not yet in RePEc: Add citation now
  70. Sun, G. & Wang, S. (2019) A review of the artificial neural network surrogate modeling in aerodynamic design. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 0, 1–10.
    Paper not yet in RePEc: Add citation now
  71. Sun, J., Di, L., Sun, Z., Shen, Y. & Lai, Z. (2019) County‐level soybean yield prediction using deep CNN‐LSTM model. Sensors (Basel, Switzerland), 19, 4363.
    Paper not yet in RePEc: Add citation now
  72. Sun, Z., Lorscheid, I., Millington, J.D., Lauf, S., Magliocca, N.R., Groeneveld, J. et al. (2016) Simple or complicated agent‐based models? A complicated issue. Environmental Modelling & Software, 86, 56–67.
    Paper not yet in RePEc: Add citation now
  73. Tian, H., Wang, P., Tansey, K., Zhang, J., Zhang, S. & Li, H. (2021) An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong plain, Pr China. Agricultural and Forest Meteorology, 310, 108629.
    Paper not yet in RePEc: Add citation now
  74. Troost, C., Parussis‐Krech, J., Mejaíl, M. & Berger, T. (2022) Boosting the scalability of farm‐level models: efficient surrogate modeling of compositional simulation output. Computational Economics. Available from: https://doi.org/10.1007/s10614‐022‐10276‐0.
    Paper not yet in RePEc: Add citation now
  75. Tyan, M. & Lee, J.‐W. (2019) Efficient multi‐response adaptive sampling algorithm for construction of variable‐fidelity aerodynamic tables. Chinese Journal of Aeronautics, 32, 547–558.
    Paper not yet in RePEc: Add citation now
  76. Weber, T., Corotan, A., Hutchinson, B., Kravitz, B. & Link, R. (2019) Technical Note: Deep Learning for Creating Surrogate Models of Precipitation in Earth System Models.
    Paper not yet in RePEc: Add citation now
  77. Weersink, A., Jeffrey, S. & Pannell, D. (2002) Farm‐level modeling for bigger issues. Review of Agricultural Economics, 24, 123–140.
    Paper not yet in RePEc: Add citation now
  78. Werbos, P.J. (1988) Generalization of backpropagation with application to a recurrent gas market model. Neural Networks, 1, 339–356.
    Paper not yet in RePEc: Add citation now
  79. Xiang, H., Li, Y., Liao, H. & Li, C. (2017) An adaptive surrogate model based on support vector regression and its application to the optimization of railway wind barriers. Structural and Multidisciplinary Optimization, 55, 701–713.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. The impact of energy justice on local economic outcomes: Evidence from the bioenergy village program in Germany. (2025). Yu, Xiaohua ; Maruejols, Lucie ; Hoeschle, Lisa.
    In: Energy Economics.
    RePEc:eee:eneeco:v:145:y:2025:i:c:s0140988325002567.

    Full description at Econpapers || Download paper

  2. Surrogate modelling of a detailed farm‐level model using deep learning. (2024). Heckelei, Thomas ; Gall, Juergen ; Wang, Jifeng ; Storm, Hugo ; Appel, Franziska ; Schafer, David ; Shang, Linmei.
    In: EconStor Open Access Articles and Book Chapters.
    RePEc:zbw:espost:282906.

    Full description at Econpapers || Download paper

  3. Surrogate modelling of a detailed farm‐level model using deep learning. (2024). Heckelei, Thomas ; Shang, Linmei ; Gall, Juergen ; Wang, Jifeng ; Storm, Hugo ; Appel, Franziska ; Schafer, David.
    In: Journal of Agricultural Economics.
    RePEc:bla:jageco:v:75:y:2024:i:1:p:235-260.

    Full description at Econpapers || Download paper

  4. Biogas Energy Resources in Pakistan Status, Potential, and Barriers. (2023). Hayat, Tasawer ; Shah, Noor Samad ; Wakeel, Muhammad ; Iqbal, Jibran ; Rasool, Atta ; Ul, Zia.
    In: Utilities Policy.
    RePEc:eee:juipol:v:84:y:2023:i:c:s0957178723001558.

    Full description at Econpapers || Download paper

  5. Increasing Biowaste and Manure in Biogas Feedstock Composition in Luxembourg: Insights from an Agent-Based Model. (2022). Porcel, Marta ; Myridinas, Maria ; Marvuglia, Antonino ; Bayram, Alper.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2022:i:1:p:264-:d:1013419.

    Full description at Econpapers || Download paper

  6. Anaerobic Digestion of Food Waste and Its Microbial Consortia: A Historical Review and Future Perspectives. (2022). Wang, Shuijing ; Song, Liyan ; Zhang, Jin ; Xu, Chenming.
    In: IJERPH.
    RePEc:gam:jijerp:v:19:y:2022:i:15:p:9519-:d:879059.

    Full description at Econpapers || Download paper

  7. Economic Conditions of Using Biodegradable Waste for Biogas Production, Using the Example of Poland and Germany. (2022). Roycka, Monika ; Stasiak, Jacek ; Choma-Pierzecka, Ewa ; Sobo, Dariusz ; Sobczak, Anna ; Kokiel, Andrzej.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:14:p:5239-:d:866510.

    Full description at Econpapers || Download paper

  8. Nexus between renewable energy, foreign direct investment, and agro-productivity: The mediating role of carbon emission. (2022). Qamruzzaman, MD.
    In: Renewable Energy.
    RePEc:eee:renene:v:184:y:2022:i:c:p:526-540.

    Full description at Econpapers || Download paper

  9. Farm growth and land concentration. (2022). Ritter, Matthias ; Odening, Martin ; Musshoff, Oliver ; Plogmann, Jana.
    In: Land Use Policy.
    RePEc:eee:lauspo:v:115:y:2022:i:c:s0264837722000631.

    Full description at Econpapers || Download paper

  10. German Farmers’ Perspectives on Price Drivers in Agricultural Land Rental Markets—A Combination of a Systematic Literature Review and Survey Results. (2021). Musshoff, Oliver ; Michels, Marius ; von Hobe, Cord-Friedrich.
    In: Land.
    RePEc:gam:jlands:v:10:y:2021:i:2:p:180-:d:496899.

    Full description at Econpapers || Download paper

  11. Identifying the Necessities of Regional-Based Analysis to Study Germany’s Biogas Production Development under Energy Transition. (2021). Liu, Yang ; Yang, Xueqing ; Wang, Mei ; Thran, Daniela ; Bezama, Alberto.
    In: Land.
    RePEc:gam:jlands:v:10:y:2021:i:2:p:135-:d:490653.

    Full description at Econpapers || Download paper

  12. Policy Impact on Regional Biogas Using a Modular Modeling Tool. (2021). Rozakis, Stelios ; Bartoli, Andrea ; Mamica, Ukasz ; Pudelko, Rafa ; Pochwatka, Patrycja ; Shu, Kesheng ; Dach, Jacek ; Jdrejek, Anna ; Kowalczyk-Juko, Alina.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:13:p:3738-:d:579871.

    Full description at Econpapers || Download paper

  13. Renewable energy generation from livestock waste for a sustainable circular economy in Bangladesh. (2021). TAGHIZADEH-HESARY, Farhad ; Sarker, Tapan ; Alam, Mohammad Shafiul ; Islam, Km Nazmul ; Atri, Anashuwa Chowdhury.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:139:y:2021:i:c:s1364032120309795.

    Full description at Econpapers || Download paper

  14. Biogas production from small-scale anaerobic digestion plants on European farms. (2021). O'Connor, S ; Pillai, S C ; Bartlett, J ; Ehimen, E ; Tormey, D ; Black, A.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:139:y:2021:i:c:s1364032120308649.

    Full description at Econpapers || Download paper

  15. Understanding stakeholder preferences for future biogas development in Germany. (2021). Venus, Thomas ; Sauer, Johannes ; Strauss, Felix.
    In: Land Use Policy.
    RePEc:eee:lauspo:v:109:y:2021:i:c:s0264837721004270.

    Full description at Econpapers || Download paper

  16. Spatio-temporal analysis of the effects of biogas production on agricultural lands. (2021). Fricke, Thomas ; Astor, Thomas ; Grass, Rudiger ; Wachendorf, Michael ; Kyere, Isaac.
    In: Land Use Policy.
    RePEc:eee:lauspo:v:102:y:2021:i:c:s0264837720325783.

    Full description at Econpapers || Download paper

  17. Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction. (2021). Heckelei, Thomas ; Rasch, Sebastian ; Gerullis, Maria K ; Shang, Linmei ; Borner, Jan.
    In: Agricultural Systems.
    RePEc:eee:agisys:v:190:y:2021:i:c:s0308521x21000275.

    Full description at Econpapers || Download paper

  18. Erfolgsfaktoren und Zukunftsaussichten für eine wirtschaftliche Biogasproduktion in Deutschland - Ergebnisse einer qualitativen Inhaltsanalyse. (2021). Mohrmann, Soren ; Schaper, Christian ; Steins, Aaron.
    In: 61st Annual Conference, Berlin, Germany, September 22-24, 2021.
    RePEc:ags:gewi21:317072.

    Full description at Econpapers || Download paper

  19. Assessing New Biotechnologies by Combining TEA and TM-LCA for an Efficient Use of Biomass Resources. (2020). Olsen, Stig Irving ; Birkved, Morten ; Voogt, Julien ; Sohn, Joshua ; Vega, Giovanna Croxatto.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:9:p:3676-:d:353237.

    Full description at Econpapers || Download paper

  20. More Sustainable Bioenergy by Making Use of Regional Alternative Biomass?. (2020). Klenke, Thomas ; Tsydenova, Nina ; Grecksch, Kevin ; Wulf, Kalle ; Pehlken, Alexandra.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:19:p:7849-:d:417735.

    Full description at Econpapers || Download paper

  21. Modelling Future Agricultural Mechanisation of Major Crops in China: An Assessment of Energy Demand, Land Use and Emissions. (2020). Giarola, Sara ; Tuleu, Marin ; Kerdan, Ivan Garcia ; Skinner, Ellis ; Hawkes, Adam.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:24:p:6636-:d:462966.

    Full description at Econpapers || Download paper

  22. Farm growth and land concentration. (2020). Ritter, Matthias ; Odening, Martin ; Musshoff, Oliver ; Plogmann, Jana.
    In: 2020 Annual Meeting, July 26-28, Kansas City, Missouri.
    RePEc:ags:aaea20:304514.

    Full description at Econpapers || Download paper

  23. Can land market regulations fulfill their promises?. (2019). Appel, Franziska ; Heinrich, Florian ; Balmann, Alfons.
    In: FORLand Working Papers.
    RePEc:zbw:forlwp:122019.

    Full description at Econpapers || Download paper

  24. Can land market regulations fulfill their promises?. (2019). Appel, Franziska ; Heinrich, Florian ; Balmann, Alfons.
    In: EconStor Preprints.
    RePEc:zbw:esprep:208388.

    Full description at Econpapers || Download paper

  25. Energy Crops in Regional Biogas Systems: An Integrative Spatial LCA to Assess the Influence of Crop Mix and Location on Cultivation GHG Emissions. (2019). Okeeffe, Sinead ; Thran, Daniela.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2019:i:1:p:237-:d:302479.

    Full description at Econpapers || Download paper

  26. Density of Biogas Power Plants as An Indicator of Bioenergy Generated Transformation of Agricultural Landscapes. (2019). Duttmann, Rainer ; Szilassi, Peter ; Csikos, Nandor ; Kuhwald, Michael ; Schwanebeck, Malte.
    In: Sustainability.
    RePEc:gam:jsusta:v:11:y:2019:i:9:p:2500-:d:226832.

    Full description at Econpapers || Download paper

  27. The Influence of Wind Energy and Biogas on Farmland Prices. (2019). Ritter, Matthias ; Odening, Martin ; Myrna, Olena.
    In: Land.
    RePEc:gam:jlands:v:8:y:2019:i:1:p:19-:d:197864.

    Full description at Econpapers || Download paper

  28. The Future Agricultural Biogas Plant in Germany: A Vision. (2019). Kreidenweis, Ulrich ; Theuerl, Susanne ; Grundmann, Philipp ; Landwehr, Niels ; Heiermann, Monika ; Herrmann, Christiane ; Prochnow, Annette.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:3:p:396-:d:201161.

    Full description at Econpapers || Download paper

  29. Promoting agricultural biogas and biomethane production: Lessons from cross-country studies. (2019). Zhu, Tong ; Curtis, John ; Clancy, Matthew.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:114:y:2019:i:c:37.

    Full description at Econpapers || Download paper

  30. Estimating the revenue potential of flexible biogas plants in the power sector. (2019). Desideri, Umberto ; Lauven, Lars-Peter ; Geldermann, Jutta.
    In: Energy Policy.
    RePEc:eee:enepol:v:128:y:2019:i:c:p:402-410.

    Full description at Econpapers || Download paper

  31. FarmAgriPoliS: An agricultural business management game for behavioral experiments, teaching, and gaming. (2018). Rommel, Jens ; Balmann, Alfons ; Appel, Franziska ; Dong, Changxing.
    In: IAMO Discussion Papers.
    RePEc:zbw:iamodp:173.

    Full description at Econpapers || Download paper

  32. Factors affecting purchasing process of digestate: evidence from an economic experiment on Sicilian farmers’ willingness to pay. (2018). Bracco, Salvatore ; Selvaggi, Roberta ; Pappalardo, Gioacchino ; Chinnici, Gaetano ; Pecorino, Biagio.
    In: Agricultural and Food Economics.
    RePEc:spr:agfoec:v:6:y:2018:i:1:d:10.1186_s40100-018-0111-7.

    Full description at Econpapers || Download paper

  33. Factors influencing prices for heat from biogas plants. (2018). Halbherr, Verena ; Braun, Lorenz ; Herbes, Carsten.
    In: Applied Energy.
    RePEc:eee:appene:v:221:y:2018:i:c:p:308-318.

    Full description at Econpapers || Download paper

  34. A review of Agent Based Modeling for agricultural policy evaluation. (2018). Rozakis, Stelios ; Athanasiadis, Ioannis N ; Kremmydas, Dimitris.
    In: Agricultural Systems.
    RePEc:eee:agisys:v:164:y:2018:i:c:p:95-106.

    Full description at Econpapers || Download paper

  35. FarmAgriPoliS: An agricultural business management game for behavioral experiments, teaching, and gaming. (2018). Rommel, Jens ; Balmann, Alfons ; Appel, Franziska ; Dong, Changxing.
    In: IAMO Discussion Papers.
    RePEc:ags:iamodp:271455.

    Full description at Econpapers || Download paper

  36. Predator or prey? - Effects of fast-growing farms on their neighborhood. (2018). Balmann, Alfons ; Appel, F.
    In: 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia.
    RePEc:ags:iaae18:277358.

    Full description at Econpapers || Download paper

  37. Do investors ruin Germany s peasant agriculture?. (2018). Heinrich, F ; Appel, F.
    In: 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia.
    RePEc:ags:iaae18:277171.

    Full description at Econpapers || Download paper

  38. ADAPTION DES AGRARSTRUKTURMODELLS AGRIPOLIS ZUR MODELLIERUNG AUßERLANDWIRTSCHAFTLICHER INVESTOREN IN DER BIOGASPRODUKTION. (2018). Appel, Franziska ; Heinrich, Florian.
    In: 58th Annual Conference, Kiel, Germany, September 12-14, 2018.
    RePEc:ags:gewi18:275895.

    Full description at Econpapers || Download paper

  39. A review of global strategies promoting the conversion of food waste to bioenergy via anaerobic digestion. (2017). Wen, Zongguo ; Gottfried, Oliver ; Schmidt, Franziska ; Fei, Fan ; de Clercq, Djavan.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:79:y:2017:i:c:p:204-221.

    Full description at Econpapers || Download paper

  40. Biogas digestate management: Evaluating the attitudes and perceptions of German gardeners towards digestate-based soil amendments. (2017). Nelles, Michael ; Dahlin, Johannes ; Herbes, Carsten.
    In: Resources, Conservation & Recycling.
    RePEc:eee:recore:v:118:y:2017:i:c:p:27-38.

    Full description at Econpapers || Download paper

  41. The Effect of Biogas Production on Farmland Rental Prices: Empirical Evidences from Northern Italy. (2016). Cavicchioli, Daniele ; Gelati, Marco ; Demartini, Eugenio ; Gaviglio, Anna.
    In: Energies.
    RePEc:gam:jeners:v:9:y:2016:i:11:p:965-:d:83221.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-21 07:56:09 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.