- Albanese, D., Filosi, M., Visintainer, R., Riccadonna, S., Jurman, G. & Furlanello, C. (2013) Minerva and minepy: a C engine for the MINE suite and its R, python and MATLAB wrappers. Bioinformatics (Oxford, England), 29, 407–408.
Paper not yet in RePEc: Add citation now
- Alibabaei, K., Gaspar, P.D. & Lima, T.M. (2021) Modeling soil water content and reference evapotranspiration from climate data using deep learning method. Applied Sciences, 11, 5029.
Paper not yet in RePEc: Add citation now
- Amouzgar, K. & Strömberg, N. (2017) Radial basis functions as surrogate models with a priori bias in comparison with a posteriori bias. Structural and Multidisciplinary Optimization, 55, 1453–1469.
Paper not yet in RePEc: Add citation now
- An, L., Grimm, V., Sullivan, A., Turner, B.L., II, Malleson, N., Heppenstall, A. et al. (2021) Challenges, tasks, and opportunities in modeling agent‐based complex systems. Ecological Modelling, 457, 109685.
Paper not yet in RePEc: Add citation now
- Appel, F. & Balmann, A. (2019) Human behaviour versus optimising agents and the resilience of farms – insights from agent‐based participatory experiments with FarmAgriPoliS. Ecological Complexity, 40, 100731.
Paper not yet in RePEc: Add citation now
Appel, F., Ostermeyer‐Wiethaup, A. & Balmann, A. (2016) Effects of the German renewable energy act on structural change in agriculture – the case of biogas. Utilities Policy, 41, 172–182.
- Audsley, E., Pearn, K.R., Harrison, P.A. & Berry, P.M. (2008) The impact of future socio‐economic and climate changes on agricultural land use and the wider environment in East Anglia and north West England using a metamodel system. Climatic Change, 90, 57–88.
Paper not yet in RePEc: Add citation now
- Bengio, Y., Simard, P. & Frasconi, P. (1994) Learning long‐term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5, 157–166.
Paper not yet in RePEc: Add citation now
- Bradhurst, R.A., Roche, S.E., East, I.J., Kwan, P. & Garner, M.G. (2016) Improving the computational efficiency of an agent‐based spatiotemporal model of livestock disease spread and control. Environmental Modelling & Software, 77, 1–12.
Paper not yet in RePEc: Add citation now
- Britz, W. (2021) Automated calibration of farm‐Sale mixed linear programming models using Bi‐level programming. German Journal of Agricultural Economics, 70, 165–181.
Paper not yet in RePEc: Add citation now
- Britz, W., Ciaian, P., Gocht, A., Kanellopoulos, A., Kremmydas, D., Müller, M. et al. (2021) A design for a generic and modular bio‐economic farm model. Agricultural Systems, 191, 103133.
Paper not yet in RePEc: Add citation now
- Britz, W., Lengers, B., Kuhn, T. & Schäfer, D. (2016) A highly detailed template model for dynamic optimization of farms – FARMDYN. Bonn: Institute for Food and Resource Economics, University of Bonn. Available from: https://www.ilr.uni‐bonn.de/em/rsrch/farmdyn/farmdyn_docu.pdf [Accessed 03rd April 2022].
Paper not yet in RePEc: Add citation now
- Cao, D., Chen, Y., Chen, J., Zhang, H. & Yuan, Z. (2021) An improved algorithm for the maximal information coefficient and its application. Royal Society Open Science, 8, 201424.
Paper not yet in RePEc: Add citation now
- Carnevale, C., Finzi, G., Guariso, G., Pisoni, E. & Volta, M. (2012) Surrogate models to compute optimal air quality planning policies at a regional scale. Environmental Modelling & Software, 34, 44–50.
Paper not yet in RePEc: Add citation now
- Chen, R., Zhang, W. & Wang, X. (2020) Machine learning in tropical cyclone forecast modeling: a review. Atmosphere, 11, 676.
Paper not yet in RePEc: Add citation now
- Chen, X., Chen, R., Wan, Q., Xu, R. & Liu, J. (2021) An improved data‐free surrogate model for solving partial differential equations using deep neural networks. Scientific Reports, 11, 19507.
Paper not yet in RePEc: Add citation now
- Chollet, F. (2015) Keras (GitHub, 2015). Available from: https://github.com/fchollet/keras [Accessed 03rd April 2022].
Paper not yet in RePEc: Add citation now
- Chopra, C., Sinha, S., Jaroli, S., Shukla, A. & Maheshwari, S. (2017) Recurrent Neural Networks with Non‐Sequential Data to Predict Hospital Readmission of Diabetic Patients. Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics – ICCBB 2017, Newark, NJ, USA, 18/10/2017–20/10/2017.
Paper not yet in RePEc: Add citation now
Debertin, D.L. (2012) Agricultural production economics. New York: Macmillan Publishing Company.
- Elman, J. (1990) Finding structure in time. Cognitive Science, 14, 179–211.
Paper not yet in RePEc: Add citation now
- Fallah‐Mehdipour, E., Bozorg Haddad, O. & Mariño, M.A. (2013) Prediction and simulation of monthly groundwater levels by genetic programming. Journal of Hydro‐Environment Research, 7, 253–260.
Paper not yet in RePEc: Add citation now
- Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L. & Muller, P.‐A. (2019) Deep learning for time series classification: a review. Data Mining and Knowledge Discovery, 33, 917–963.
Paper not yet in RePEc: Add citation now
- Gilbert, N. (2007) Agent‐Based Models. London: SAGE Publications, Inc.
Paper not yet in RePEc: Add citation now
- Goodfellow, I., Bengio, Y. & Courville, A. (2016) Deep learning. Cambridge, MA: The MIT Press.
Paper not yet in RePEc: Add citation now
- Goodfellow, I., Pouget‐Abadie, J., Mirza, M., Xu, B., Warde‐Farley, D., Ozair, S. et al. (2014) Generative adversarial networks. In: Advances in neural information processing systems. Cambridge, MA: MIT Press, pp. 2672–2680.
Paper not yet in RePEc: Add citation now
- Graves, A., Fernández, S. & Schmidhuber, J. (2005) Bidirectional LSTM networks for improved phoneme classification and recognition. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C. et al. (Eds.) Artificial neural networks: formal models and their applications – ICANN 2005. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 799–804.
Paper not yet in RePEc: Add citation now
- Graves, A., Mohamed, A.‐R. & Hinton, G. (2013) Speech recognition with deep recurrent neural networks. Available from: http://arxiv.org/pdf/1303.5778v1 [Accessed 03rd April 2022].
Paper not yet in RePEc: Add citation now
- Gruber, A., Yanovski, S. & Ben‐Gal, I. (2013) Condition‐based maintenance via simulation and a targeted Bayesian network metamodel. Quality Engineering, 25, 370–384.
Paper not yet in RePEc: Add citation now
Happe, K., Balmann, A., Kellermann, K. & Sahrbacher, C. (2008) Does structure matter? The impact of switching the agricultural policy regime on farm structures. Journal of Economic Behavior & Organization, 67, 431–444.
Happe, K., Kellermann, K. & Balmann, A. (2006) Agent‐based analysis of agricultural policies: an illustration of the agricultural policy simulator AgriPoliS, its adaptation and behavior. Ecology and Society, 11, 49.
- He, K., Zhang, X., Ren, S. & Sun, J. (2016) Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA. Piscataway, NJ: IEEE, pp. 770–778.
Paper not yet in RePEc: Add citation now
- Heckelei, T. (2013) General methodological issues on farm level modelling. In: Langrell, S. (Ed.) Farm level modelling of CAP: a methodological overview. Luxembourg: Publications Office, pp. 29–34.
Paper not yet in RePEc: Add citation now
- Heinrichs, J., Jouan, J., Pahmeyer, C. & Britz, W. (2021) Integrated assessment of legume production challenged by European policy interaction: a case‐study approach from French and German dairy farms. Q Open, 1, qoaa011.
Paper not yet in RePEc: Add citation now
- Hochreiter, S. & Schmidhuber, J. (1997) Long short‐term memory. Neural Computation, 9, 1735–1780.
Paper not yet in RePEc: Add citation now
- Hornik, K., Stinchcombe, M. & White, H. (1989) Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359–366.
Paper not yet in RePEc: Add citation now
- Hsu, D. (2017) Multi‐period Time Series Modeling with Sparsity via Bayesian Variational Inference. Available from: https://arxiv.org/abs/1707.00666v3 [Accessed 03rd April 2022].
Paper not yet in RePEc: Add citation now
- Huang, L., Qin, J., Zhou, Y., Zhu, F., Liu, L. & Shao, L. (2020) Normalization techniques in training DNNs: methodology, analysis and application. https://doi.org/10.48550/arXiv.2009.12836 [Accessed 03rd April 2022].
Paper not yet in RePEc: Add citation now
Huber, R., Bakker, M., Balmann, A., Berger, T., Bithell, M., Brown, C. et al. (2018) Representation of decision‐making in European agricultural agent‐based models. Agricultural Systems, 167, 143–160.
Huber, R., Xiong, H., Keller, K. & Finger, R. (2022) Bridging behavioural factors and standard bio‐economic modelling in an agent‐based modelling framework. Journal of Agricultural Economics, 73, 35–63.
Hussain, M.F., Barton, R.R. & Joshi, S.B. (2002) Metamodeling: radial basis functions, versus polynomials. European Journal of Operational Research, 138, 142–154.
- Jäger, G. (2021) Using neural networks for a universal framework for agent‐based models. Mathematical and Computer Modelling of Dynamical Systems, 27, 162–178.
Paper not yet in RePEc: Add citation now
- Jiang, P., Zhou, Q. & Shao, X. (2020) Surrogate model‐based engineering design and optimization. Springer Singapore: Singapore.
Paper not yet in RePEc: Add citation now
Kleijnen, J.P.C. (2009) Kriging metamodeling in simulation: a review. European Journal of Operational Research, 192, 707–716.
Kremmydas, D., Athanasiadis, I.N. & Rozakis, S. (2018) A review of agent based modeling for agricultural policy evaluation. Agricultural Systems, 164, 95–106.
- Kuhfuss, L., Préget, R., Thoyer, S. & Hanley, N. (2016) Nudging farmers to enrol land into Agri‐environmental schemes: the role of a collective bonus. European Review of Agricultural Economics, 43, 609–636.
Paper not yet in RePEc: Add citation now
- Kuhn, T., Enders, A., Gaiser, T., Schäfer, D., Srivastava, A.K. & Britz, W. (2020) Coupling crop and bio‐economic farm modelling to evaluate the revised fertilization regulations in Germany. Agricultural Systems, 177, 102687.
Paper not yet in RePEc: Add citation now
- LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W. et al. (1990) Handwritten digit recognition with a Back‐propagation network. In: Touretzky, D.S. (Ed.) Neural information processing systems. Natural and synthetic conference papers. Denver: Morgan Kaufmann.
Paper not yet in RePEc: Add citation now
- Liong, S.‐Y., Khu, S.‐T. & Chan, W.‐T. (2001) Derivation of pareto front with genetic algorithm and neural network. Journal of Hydrologic Engineering, 6, 52–61.
Paper not yet in RePEc: Add citation now
- Marhon, S.A., Cameron, C.J.F. & Kremer, S.C. (2013) Recurrent neural networks. In: Bianchini, M., Maggini, M. & Jain, L.C. (Eds.) Handbook on neural information processing. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 29–65.
Paper not yet in RePEc: Add citation now
- McKay, M.D., Beckman, R.J. & Conover, W.J. (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21, 239.
Paper not yet in RePEc: Add citation now
- Müller, B., Hoffmann, F., Heckelei, T., Müller, C., Hertel, T.W., Polhill, J.G. et al. (2020) Modelling food security: bridging the gap between the micro and the macro scale. Global Environmental Change, 63, 102085.
Paper not yet in RePEc: Add citation now
- Murray‐Rust, D., Brown, C., van Vliet, J., Alam, S.J., Robinson, D.T., Verburg, P.H. et al. (2014) Combining agent functional types, capitals and services to model land use dynamics. Environmental Modelling & Software, 59, 187–201.
Paper not yet in RePEc: Add citation now
Nguyen, T.H., Nong, D. & Paustian, K. (2019) Surrogate‐based multi‐objective optimization of management options for agricultural landscapes using artificial neural networks’. Ecological Modelling, 400, 1–13.
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G. et al. (2019) Pytorch: An imperative style, high‐performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché‐Buc, F., Fox, E. & Garnett, R. (Eds.) Advances in neural information processing systems, Vol. 32. Red Hook, NY: Curran Associates, Inc, pp. 8024–8035.
Paper not yet in RePEc: Add citation now
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O. et al. (2011) Scikit‐learn: machine learning in python. Available from: http://arxiv.org/pdf/1201.0490v4 [Accessed 03rd April 2022].
Paper not yet in RePEc: Add citation now
- Picheny, V. (2015) Multiobjective optimization using gaussian process emulators via stepwise uncertainty reduction. Statistics and Computing, 25, 1265–1280.
Paper not yet in RePEc: Add citation now
Poppe, K., Duinen, L. & Koeijer, T. (2021) Reduction of greenhouse gases from peat soils in Dutch agriculture. EuroChoices, 20, 38–45.
- Rahmani, F., Lawson, K., Ouyang, W., Appling, A., Oliver, S. & Shen, C. (2021) Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data. Environmental Research Letters, 16, 24025.
Paper not yet in RePEc: Add citation now
- Rasch, S., Heckelei, T., Storm, H., Oomen, R. & Naumann, C. (2017) Multi‐scale resilience of a communal rangeland system in South Africa. Ecological Economics, 131, 129–138.
Paper not yet in RePEc: Add citation now
- Ratto, M., Castelletti, A. & Pagano, A. (2012) Emulation techniques for the reduction and sensitivity analysis of complex environmental models. Environmental Modelling & Software, 34, 1–4.
Paper not yet in RePEc: Add citation now
- Razavi, S. (2021) Deep learning, explained: fundamentals, Explainability, and Bridgeability to process‐based modelling. Environmental Modelling & Software, 144, 105159.
Paper not yet in RePEc: Add citation now
- Razavi, S., Tolson, B.A. & Burn, D.H. (2012) Review of surrogate modeling in water resources. Water Resources Research, 48, 559.
Paper not yet in RePEc: Add citation now
- Reshef, D.N., Reshef, Y.A., Finucane, H.K., Grossman, S.R., McVean, G., Turnbaugh, P.J. et al. (2011) Detecting novel associations in large data sets. Science (New York, N.Y.), 334, 1518–1524.
Paper not yet in RePEc: Add citation now
- Richardson, J.W., Hennessy, T. & O'Donoghue, C. (2014) Farm Level Models. In: O'Donoghue, C. (Ed.) Handbook of microsimulation modelling. Bingley: Emerald Group Publishing Limited, pp. 505–534.
Paper not yet in RePEc: Add citation now
- Roman, N.D., Bre, F., Fachinotti, V.D. & Lamberts, R. (2020) Application and characterization of metamodels based on artificial neural networks for building performance simulation: a systematic review. Energy and Buildings, 217, 109972.
Paper not yet in RePEc: Add citation now
- Rumelhart, D.E., Hinton, G.E. & Williams, R.J. (1986) Learning representations by back‐propagating errors. Nature, 323, 533–536.
Paper not yet in RePEc: Add citation now
Shang, L., Heckelei, T., Gerullis, M.K., Börner, J. & Rasch, S. (2021) Adoption and diffusion of digital farming technologies – integrating farm‐level evidence and system interaction. Agricultural Systems, 190, 103074.
Storm, H., Baylis, K. & Heckelei, T. (2020) Machine learning in agricultural and applied economics. European Review of Agricultural Economics, 47, 849–892.
- Šumrada, T., Japelj, A., Verbič, M. & Erjavec, E. (2022) Farmers’ preferences for result‐based schemes for grassland conservation in Slovenia. Journal for Nature Conservation, 66, 126143.
Paper not yet in RePEc: Add citation now
- Sun, G. & Wang, S. (2019) A review of the artificial neural network surrogate modeling in aerodynamic design. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 0, 1–10.
Paper not yet in RePEc: Add citation now
- Sun, J., Di, L., Sun, Z., Shen, Y. & Lai, Z. (2019) County‐level soybean yield prediction using deep CNN‐LSTM model. Sensors (Basel, Switzerland), 19, 4363.
Paper not yet in RePEc: Add citation now
- Sun, Z., Lorscheid, I., Millington, J.D., Lauf, S., Magliocca, N.R., Groeneveld, J. et al. (2016) Simple or complicated agent‐based models? A complicated issue. Environmental Modelling & Software, 86, 56–67.
Paper not yet in RePEc: Add citation now
- Tian, H., Wang, P., Tansey, K., Zhang, J., Zhang, S. & Li, H. (2021) An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong plain, Pr China. Agricultural and Forest Meteorology, 310, 108629.
Paper not yet in RePEc: Add citation now
- Troost, C., Parussis‐Krech, J., Mejaíl, M. & Berger, T. (2022) Boosting the scalability of farm‐level models: efficient surrogate modeling of compositional simulation output. Computational Economics. Available from: https://doi.org/10.1007/s10614‐022‐10276‐0.
Paper not yet in RePEc: Add citation now
- Tyan, M. & Lee, J.‐W. (2019) Efficient multi‐response adaptive sampling algorithm for construction of variable‐fidelity aerodynamic tables. Chinese Journal of Aeronautics, 32, 547–558.
Paper not yet in RePEc: Add citation now
- Weber, T., Corotan, A., Hutchinson, B., Kravitz, B. & Link, R. (2019) Technical Note: Deep Learning for Creating Surrogate Models of Precipitation in Earth System Models.
Paper not yet in RePEc: Add citation now
- Weersink, A., Jeffrey, S. & Pannell, D. (2002) Farm‐level modeling for bigger issues. Review of Agricultural Economics, 24, 123–140.
Paper not yet in RePEc: Add citation now
- Werbos, P.J. (1988) Generalization of backpropagation with application to a recurrent gas market model. Neural Networks, 1, 339–356.
Paper not yet in RePEc: Add citation now
- Xiang, H., Li, Y., Liao, H. & Li, C. (2017) An adaptive surrogate model based on support vector regression and its application to the optimization of railway wind barriers. Structural and Multidisciplinary Optimization, 55, 701–713.
Paper not yet in RePEc: Add citation now