create a website

Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations. (2019). Zelli, Roberto ; Pittau, Maria Grazia ; Farcomeni, Alessio ; Anderson, Gordon.
In: Journal of the Royal Statistical Society Series C.
RePEc:bla:jorssc:v:68:y:2019:i:3:p:603-621.

Full description at Econpapers || Download paper

Cited: 2

Citations received by this document

Cites: 35

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. A hidden Markov space–time model for mapping the dynamics of global access to food. (2022). Farcomeni, Alessio ; Bartolucci, Francesco.
    In: Journal of the Royal Statistical Society Series A.
    RePEc:bla:jorssa:v:185:y:2022:i:1:p:246-266.

    Full description at Econpapers || Download paper

  2. Penalized estimation of flexible hidden Markov models for time series of counts. (2019). Adam, Timo ; Langrock, Roland ; Weiss, Christian H.
    In: METRON.
    RePEc:spr:metron:v:77:y:2019:i:2:d:10.1007_s40300-019-00153-6.

    Full description at Econpapers || Download paper

References

References cited by this document

    References contributed by pba960-4549

  1. Altman, R. M. (2007) Mixed hidden Markov models: an extension of the hidden Markov model to the longitudinal data setting. J. Am. Statist. Ass., 102, 201–210.

  2. Anderson, G., Pittau, M. G. and Zelli, R. (2016) Assessing the convergence and the mobility of nations without artificially specified class boundaries. J. Econ. Grwth, 21, 283–304.
    Paper not yet in RePEc: Add citation now
  3. Anderson,G.,Farcomeni, A., Pittau,M.G. and Zelli, R. (2018) Multidimensional nationwellbeing,more equal yet more polarized: an analysis of the progress of human development since 1990.Working Paper 602. Department of Economics, University of Toronto, Toronto.

  4. Bartolucci, F. (2006) Likelihood inference for a class of latent Markov models under linear hypotheses on the transition probabilities. J. R. Statist. Soc. B, 68, 155–178.

  5. Bartolucci, F. and Farcomeni, A. (2009) A multivariate extension of the dynamic logit model for longitudinal data based on a latent Markov heterogeneity structure. J. Am. Statist. Ass., 104, 816–831.

  6. Bartolucci, F. and Farcomeni, A. (2015) A discrete time event-history approach to informative drop-out in mixed latent Markov models with covariates. Biometrics, 71, 80–89.

  7. Bartolucci, F. and Farcomeni, A. (2018) A shared-parameter continuous-time hidden Markov and survival model for longitudinal data with informative drop-out. Statist. Med., to be published.
    Paper not yet in RePEc: Add citation now
  8. Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) Latent Markov Models for Longitudinal Data. Boca Raton: Chapman and Hall–CRC.
    Paper not yet in RePEc: Add citation now
  9. Bartolucci, F., Farcomeni, A. and Pennoni, F. (2014) Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates (with discussion). Test, 23, 433–486.

  10. Bartolucci, F., Lupparelli, M. and Montanari, G. E. (2009) Latent Markov models for longitudinal binary data: an application to the performance evaluation of nursing homes. Ann. Appl. Statist., 3, 611–636.
    Paper not yet in RePEc: Add citation now
  11. Biernacki C. and Govaert, G. (1997) Using the classification likelihood to choose the number of clusters. Comput.Sci. Statist., 29, 451–457.
    Paper not yet in RePEc: Add citation now
  12. Biernacki, C., Celeux, G. and Govaert, G. (2000) Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattn Anal. Mach. Intell., 22, 719–725.
    Paper not yet in RePEc: Add citation now
  13. Chakraborty, B. and Chaudhury, P. (2008) On an optimization problem in robust statistics. J. Computnl Graph.Statist., 17, 683–702.
    Paper not yet in RePEc: Add citation now
  14. Chamroukhi,F. (2016) Unsupervised learning of regression mixture models with unknownnumber of components. J. Statist. Computn Simuln, 86, 2308–2334.
    Paper not yet in RePEc: Add citation now
  15. Dotto, F., Farcomeni, A., Pittau, M. G. and Zelli, R. (2019) A dynamic inhomogeneous latent state model for measuring material deprivation. J. R. Statist. Soc. A, to be published.

  16. Dotto,F.,Farcomeni, A., Garcia-Escudero, L. A. andMayo-Iscar, A. (2017) A fuzzy approach to robust regression clustering. Adv. Data Anal. Classificn, 11, 691–710.

  17. Durlauf, S., Johnson, P. A. and Temple, J. (2005) Growth econometrics. In Handbook of Economic Growth, vol. 1B (eds P. Aghion and S. Durlauf), ch. 8. Amsterdam: North-Holland.

  18. Farcomeni, A. (2014a) Robust constrained clustering in presence of entry-wise outliers. Technometrics, 56, 102–111.
    Paper not yet in RePEc: Add citation now
  19. Farcomeni, A. (2014b) Snipping for robust k-means clustering under component-wise contamination. Statist.Comput., 24, 909–917.
    Paper not yet in RePEc: Add citation now
  20. Farcomeni, A. (2015) Generalized linear mixed models based on latent Markov heterogeneity structures. Scand.J. Statist., 42, 1127–1135.

  21. Farcomeni, A. (2017) Penalized estimation in latent Markov models, with application to monitoring serum Calcium levels in end-stage kidney insufficiency. Biometr. J., 59, 1035–1046.
    Paper not yet in RePEc: Add citation now
  22. Farcomeni, A. and Viviani, S. (2011) Robust estimation for the Cox regression model based on trimming. Biometr.J., 53, 956–973.
    Paper not yet in RePEc: Add citation now
  23. Figueiredo, M. A. T. and Jain, A. K. (2002) Unsupervised learning of finite mixture models. IEEE Trans. Pattn Anal. Mach. Intell., 24, 381–396.
    Paper not yet in RePEc: Add citation now
  24. Fr¨uhwirth-Schnatter, S. (2008) Finite Mixture and Markov Switching Models. Berlin: Springer.
    Paper not yet in RePEc: Add citation now
  25. Hastie, T., Tibshirani, R. and Friedman, J. H. (2009) The Elements of Statistical Learning. New York: Springer.
    Paper not yet in RePEc: Add citation now
  26. MacDonald, I. L. (2014) Numerical maximization of likelihood: a neglected alternative to EM. Int. Statist. Rev., 82, 296–308.

  27. Marino, M. F., Tzavidis,N. and Alf´ o, M. (2018) Mixed hidden Markov quantile regression models for longitudinal data with possibly incomplete sequences. Statist. Meth. Med. Res., 27, 2231–2246.
    Paper not yet in RePEc: Add citation now
  28. Maruotti, A. (2011) Mixed hidden Markov models for longitudinal data: an overview. Int. Statist. Rev., 79, 427–454.

  29. Quah,D. (1997) Empirics for growth and distribution: polarization, stratification, and convergence clubs. J. Econ. Grwth, 2, 27–59.

  30. Temin, P. (2017) The Vanishing Middle Class: Prejudice and Power in a Dual Economy. Cambridge: MIT Press.

  31. Turner, R. (2008) Direct maximization of the likelihood of a hidden Markov model. Computnl Statist. Data Anal., 52, 4147–4160.

  32. United Nations Development Programme (1990) Human Development Report 1990. Oxford: Oxford University Press.
    Paper not yet in RePEc: Add citation now
  33. United Nations Development Programme (2016) Human Development Report 2016. New York: United Nations Development Programme.
    Paper not yet in RePEc: Add citation now
  34. Yang, M.-S., Lai, C.-Y. and Lin, C-Y. (2012) A robust EM clustering algorithm for Gaussian mixture models. Pattn Recogn, 45, 3950–3961.
    Paper not yet in RePEc: Add citation now
  35. Zucchini,W. and MacDonald, I. L. (2009) Hidden Markov Models for Time Series: an Introduction using R. New York: Springer.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Optimization Models for Operations and Maintenance of Offshore Wind Turbines Based on Artificial Intelligence and Operations Research: A Systematic Literature Review. (2024). Leite, Ruan Lucas ; de Vasconcelos, Rafael Monteiro ; da Cunha, Priscila ; Aguirre, Mario Orestes ; da Costa, Joao Florencio ; Neto, Joao Agra ; Dos, Eric Lucas ; de Melo, David Cassimiro.
    In: International Journal of Business and Management.
    RePEc:ibn:ijbmjn:v:19:y:2024:i:3:p:1.

    Full description at Econpapers || Download paper

  2. A Perception-Augmented Hidden Markov Model for Parent–Child Relations in Families of Youth with Type 1 Diabetes. (2023). Chen, Zhen ; Nansel, Tonja R ; Lu, Ruijin.
    In: Statistics in Biosciences.
    RePEc:spr:stabio:v:15:y:2023:i:1:d:10.1007_s12561-022-09360-8.

    Full description at Econpapers || Download paper

  3. Hidden Markov Model Based on Logistic Regression. (2023). Kim, Yongku ; Park, Joowon ; Lee, Byeongheon.
    In: Mathematics.
    RePEc:gam:jmathe:v:11:y:2023:i:20:p:4396-:d:1265312.

    Full description at Econpapers || Download paper

  4. Combining mixed effects hidden Markov models with latent alternating recurrent event processes to model diurnal active–rest cycles. (2023). Barnett, Ian ; Ren, Benny.
    In: Biometrics.
    RePEc:bla:biomet:v:79:y:2023:i:4:p:3402-3417.

    Full description at Econpapers || Download paper

  5. Infinite hidden Markov models for multiple multivariate time series with missing data. (2023). Good, Nicholas ; Koslovsky, Matthew D ; Hoskovec, Lauren ; Koehler, Kirsten ; Volckens, John ; Peel, Jennifer L ; Wilson, Ander.
    In: Biometrics.
    RePEc:bla:biomet:v:79:y:2023:i:3:p:2592-2604.

    Full description at Econpapers || Download paper

  6. Detecting Consumers Financial Vulnerability using Open Banking Data: Evidence from UK Payday Loans. (2023). Medina-Olivares, Victor ; Calabrese, Raffaella.
    In: Papers.
    RePEc:arx:papers:2306.01749.

    Full description at Econpapers || Download paper

  7. Model-based two-way clustering of second-level units in ordinal multilevel latent Markov models. (2022). Marino, Maria Francesca ; Doretti, Marco ; Montanari, Giorgio Eduardo.
    In: Advances in Data Analysis and Classification.
    RePEc:spr:advdac:v:16:y:2022:i:2:d:10.1007_s11634-021-00446-7.

    Full description at Econpapers || Download paper

  8. A Mixture Hidden Markov Model to Mine Students’ University Curricula. (2022). Bacci, Silvia ; Bertaccini, Bruno.
    In: Data.
    RePEc:gam:jdataj:v:7:y:2022:i:2:p:25-:d:754381.

    Full description at Econpapers || Download paper

  9. Order selection for regression-based hidden Markov model. (2022). Lin, Yiqi ; Song, Xinyuan.
    In: Journal of Multivariate Analysis.
    RePEc:eee:jmvana:v:192:y:2022:i:c:s0047259x22000707.

    Full description at Econpapers || Download paper

  10. Quantile mixed hidden Markov models for multivariate longitudinal data: An application to childrens Strengths and Difficulties Questionnaire scores. (2022). Petrella, Lea ; Tzavidis, Nikos ; Merlo, Luca.
    In: Journal of the Royal Statistical Society Series C.
    RePEc:bla:jorssc:v:71:y:2022:i:2:p:417-448.

    Full description at Econpapers || Download paper

  11. Hierarchical Markov-switching models for multivariate integer-valued time-series. (2021). di Mari, Roberto ; Catania, Leopoldo.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:221:y:2021:i:1:p:118-137.

    Full description at Econpapers || Download paper

  12. Bayesian latent multi‐state modeling for nonequidistant longitudinal electronic health records. (2021). Luo, YU ; Buckeridge, David L ; Stephens, David A ; Verma, Aman.
    In: Biometrics.
    RePEc:bla:biomet:v:77:y:2021:i:1:p:78-90.

    Full description at Econpapers || Download paper

  13. Directionally dependent multi-view clustering using copula model. (2020). Karimi, Mostafa ; Afrin, Kahkashan ; Mallick, Bani K ; Iquebal, Ashif S ; Souris, Allyson ; Lee, Seyoon.
    In: PLOS ONE.
    RePEc:plo:pone00:0238996.

    Full description at Econpapers || Download paper

  14. Continuous time hidden Markov model for longitudinal data. (2020). Song, Xinyuan ; Sun, Liuquan ; Zhou, Jie.
    In: Journal of Multivariate Analysis.
    RePEc:eee:jmvana:v:179:y:2020:i:c:s0047259x2030227x.

    Full description at Econpapers || Download paper

  15. Ranking Nursing Homes’ Performances Through a Latent Markov Model with Fixed and Random Effects. (2019). Doretti, Marco ; Montanari, Giorgio E.
    In: Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement.
    RePEc:spr:soinre:v:146:y:2019:i:1:d:10.1007_s11205-018-1947-7.

    Full description at Econpapers || Download paper

  16. Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach. (2019). Mark, Tanya ; Bulla, Jan ; Maruotti, Antonello.
    In: METRON.
    RePEc:spr:metron:v:77:y:2019:i:1:d:10.1007_s40300-019-00150-9.

    Full description at Econpapers || Download paper

  17. Bayesian analysis for mixture of latent variable hidden Markov models with multivariate longitudinal data. (2019). Xia, Ye-Mao ; Tang, Nian-Sheng.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:132:y:2019:i:c:p:190-211.

    Full description at Econpapers || Download paper

  18. Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations. (2019). Zelli, Roberto ; Pittau, Maria Grazia ; Farcomeni, Alessio ; Anderson, Gordon.
    In: Journal of the Royal Statistical Society Series C.
    RePEc:bla:jorssc:v:68:y:2019:i:3:p:603-621.

    Full description at Econpapers || Download paper

  19. Practical considerations when analyzing discrete survival times using the grouped relative risk model. (2018). Altman, Rachel Mackay ; Henrey, Andrew.
    In: Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data.
    RePEc:spr:lifeda:v:24:y:2018:i:3:d:10.1007_s10985-017-9410-7.

    Full description at Econpapers || Download paper

  20. Spline‐based nonparametric inference in general state‐switching models. (2018). Papastamatiou, Yannis P ; Leosbarajas, Vianey ; Adam, Timo ; Mews, Sina ; Langrock, Roland ; Miller, David L.
    In: Statistica Neerlandica.
    RePEc:bla:stanee:v:72:y:2018:i:3:p:179-200.

    Full description at Econpapers || Download paper

  21. Cartels Uncovered. (2018). Toivanen, Otto ; Steen, Frode ; Hyytinen, Ari.
    In: American Economic Journal: Microeconomics.
    RePEc:aea:aejmic:v:10:y:2018:i:4:p:190-222.

    Full description at Econpapers || Download paper

  22. Rectangular latent Markov models for time-specific clustering. (2017). Zelli, Roberto ; Pittau, Maria Grazia ; Farcomeni, Alessio ; Anderson, Gordon.
    In: Working Papers.
    RePEc:tor:tecipa:tecipa-589.

    Full description at Econpapers || Download paper

  23. Identifying dynamic knowledge flow patterns of business method patents with a hidden Markov model. (2017). An, Yoonjung ; Park, Yongtae ; Han, Mintak.
    In: Scientometrics.
    RePEc:spr:scient:v:113:y:2017:i:2:d:10.1007_s11192-017-2514-8.

    Full description at Econpapers || Download paper

  24. A multilevel latent Markov model for the evaluation of nursing homes performance. (2017). Bartolucci, Francesco ; Doretti, Marco ; Montanari, Giorgio E.
    In: MPRA Paper.
    RePEc:pra:mprapa:80691.

    Full description at Econpapers || Download paper

  25. Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study. (2016). Marino, Maria Francesca ; Alfo, Marco.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:94:y:2016:i:c:p:193-209.

    Full description at Econpapers || Download paper

  26. S-estimation of hidden Markov models. (2015). Farcomeni, Alessio ; Greco, Luca.
    In: Computational Statistics.
    RePEc:spr:compst:v:30:y:2015:i:1:p:57-80.

    Full description at Econpapers || Download paper

  27. Latent drop-out based transitions in linear quantile hidden Markov models for longitudinal responses with attrition. (2015). Marino, Maria ; Alfo, Marco.
    In: Advances in Data Analysis and Classification.
    RePEc:spr:advdac:v:9:y:2015:i:4:p:483-502.

    Full description at Econpapers || Download paper

  28. Using mixed hidden Markov models to examine behavioral states in a cooperatively breeding bird. (2015). Langrock, Roland ; Walters, Jeffrey R ; Kesler, Dylan C ; McKellar, Ann E.
    In: Behavioral Ecology.
    RePEc:oup:beheco:v:26:y:2015:i:1:p:148-157..

    Full description at Econpapers || Download paper

  29. Multilevel multivariate modelling of legislative count data, with a hidden Markov chain. (2015). Padovano, Fabio ; Lagona, Francesco ; Maruotti, Antonello.
    In: Post-Print.
    RePEc:hal:journl:halshs-01246575.

    Full description at Econpapers || Download paper

  30. Generalized Linear Mixed Models Based on Latent Markov Heterogeneity Structures. (2015). Farcomeni, Alessio.
    In: Scandinavian Journal of Statistics.
    RePEc:bla:scjsta:v:42:y:2015:i:4:p:1127-1135.

    Full description at Econpapers || Download paper

  31. Multilevel multivariate modelling of legislative count data, with a hidden Markov chain. (2015). Padovano, Fabio ; Lagona, Francesco ; Maruotti, Antonello.
    In: Journal of the Royal Statistical Society Series A.
    RePEc:bla:jorssa:v:178:y:2015:i:3:p:705-723.

    Full description at Econpapers || Download paper

  32. Multivariate longitudinal data analysis with mixed effects hidden Markov models. (2015). Dubin, Joel A ; Raffa, Jesse D.
    In: Biometrics.
    RePEc:bla:biomet:v:71:y:2015:i:3:p:821-831.

    Full description at Econpapers || Download paper

  33. Nonparametric inference in hidden Markov models using P-splines. (2015). Kneib, Thomas ; Deruiter, Stacy L ; Langrock, Roland ; Sohn, Alexander .
    In: Biometrics.
    RePEc:bla:biomet:v:71:y:2015:i:2:p:520-528.

    Full description at Econpapers || Download paper

  34. A discrete time event-history approach to informative drop-out in mixed latent Markov models with covariates. (2015). Farcomeni, Alessio ; Bartolucci, Francesco.
    In: Biometrics.
    RePEc:bla:biomet:v:71:y:2015:i:1:p:80-89.

    Full description at Econpapers || Download paper

  35. Rejoinder on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates. (2014). Pennoni, Fulvia ; Farcomeni, Alessio ; Bartolucci, Francesco.
    In: TEST: An Official Journal of the Spanish Society of Statistics and Operations Research.
    RePEc:spr:testjl:v:23:y:2014:i:3:p:484-486.

    Full description at Econpapers || Download paper

  36. Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates. (2014). Pennoni, Fulvia ; Farcomeni, Alessio ; Bartolucci, Francesco.
    In: TEST: An Official Journal of the Spanish Society of Statistics and Operations Research.
    RePEc:spr:testjl:v:23:y:2014:i:3:p:433-465.

    Full description at Econpapers || Download paper

  37. Modelling species abundance in a river by Negative Binomial hidden Markov models. (2014). Cooksley, S. L. ; Brewer, M. J. ; Spezia, L. ; Donnelly, D. ; Tree, A..
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:71:y:2014:i:c:p:599-614.

    Full description at Econpapers || Download paper

  38. Numerical Maximisation of Likelihood: A Neglected Alternative to EM?. (2014). MacDonald, Iain L..
    In: International Statistical Review.
    RePEc:bla:istatr:v:82:y:2014:i:2:p:296-308.

    Full description at Econpapers || Download paper

  39. Partially Ordered Mixed Hidden Markov Model for the Disablement Process of Older Adults. (2013). Harris, Tammy ; Kritchevsky, Stephen ; Zhang, Qiang ; Rejeski, Jack ; Ip, Edward.
    In: Journal of the American Statistical Association.
    RePEc:taf:jnlasa:v:108:y:2013:i:502:p:370-384.

    Full description at Econpapers || Download paper

  40. Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates. (2012). Pennoni, Fulvia ; Farcomeni, Alessio ; Bartolucci, Francesco.
    In: MPRA Paper.
    RePEc:pra:mprapa:39023.

    Full description at Econpapers || Download paper

  41. Maximum likelihood estimation in discrete mixed hidden Markov models using the SAEM algorithm. (2012). Lavielle, M. ; Delattre, M..
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:56:y:2012:i:6:p:2073-2085.

    Full description at Econpapers || Download paper

  42. A Hidden Markov Model of Developer Learning Dynamics in Open Source Software Projects. (2011). Tan, Yong ; Singh, Paramvir ; Youn, Nara.
    In: Information Systems Research.
    RePEc:inm:orisre:v:22:y:2011:i:4:p:790-807.

    Full description at Econpapers || Download paper

  43. Hidden Markov models with arbitrary state dwell-time distributions. (2011). Zucchini, W. ; Langrock, R..
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:55:y:2011:i:1:p:715-724.

    Full description at Econpapers || Download paper

  44. Latent Markov Model for Analyzing Temporal Configuration for Violence Profiles and Trajectories in a Sample of Batterers. (2010). .
    In: Sociological Methods & Research.
    RePEc:sae:somere:v:39:y:2010:i:2:p:222-255.

    Full description at Econpapers || Download paper

  45. Cartels Uncovered.. (2010). Toivanen, Otto ; Steen, Frode ; Hyytinen, Ari.
    In: Discussion Paper Series in Economics.
    RePEc:hhs:nhheco:2010_010.

    Full description at Econpapers || Download paper

  46. Cartels Uncovered. (2010). Toivanen, Otto ; Steen, Frode ; Hyytinen, Ari.
    In: CEPR Discussion Papers.
    RePEc:cpr:ceprdp:7761.

    Full description at Econpapers || Download paper

  47. Markov and Semi-Markov Switching Linear Mixed Models Used to Identify Forest Tree Growth Components. (2010). Guedon, Yann ; Chaubert-Pereira, Florence ; Lavergne, Christian ; Trottier, Catherine.
    In: Biometrics.
    RePEc:bla:biomet:v:66:y:2010:i:3:p:753-762.

    Full description at Econpapers || Download paper

  48. A variance component test for mixed hidden Markov models. (2008). Altman, Rachel Mackay.
    In: Statistics & Probability Letters.
    RePEc:eee:stapro:v:78:y:2008:i:13:p:1885-1893.

    Full description at Econpapers || Download paper

  49. The likelihood ratio test for hidden Markov models in two-sample problems. (2008). Dannemann, Jorn ; Holzmann, Hajo.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:52:y:2008:i:4:p:1850-1859.

    Full description at Econpapers || Download paper

  50. Modeling Time Series of Animal Behavior by Means of a Latent‐State Model with Feedback. (2008). Zucchini, Walter ; MacDonald, Iain L. ; Raubenheimer, David.
    In: Biometrics.
    RePEc:bla:biomet:v:64:y:2008:i:3:p:807-815.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-06 01:40:04 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.