References contributed by pba960-4549
Altman, R. M. (2007) Mixed hidden Markov models: an extension of the hidden Markov model to the longitudinal data setting. J. Am. Statist. Ass., 102, 201–210.
- Anderson, G., Pittau, M. G. and Zelli, R. (2016) Assessing the convergence and the mobility of nations without artificially specified class boundaries. J. Econ. Grwth, 21, 283–304.
Paper not yet in RePEc: Add citation now
Anderson,G.,Farcomeni, A., Pittau,M.G. and Zelli, R. (2018) Multidimensional nationwellbeing,more equal yet more polarized: an analysis of the progress of human development since 1990.Working Paper 602. Department of Economics, University of Toronto, Toronto.
Bartolucci, F. (2006) Likelihood inference for a class of latent Markov models under linear hypotheses on the transition probabilities. J. R. Statist. Soc. B, 68, 155–178.
Bartolucci, F. and Farcomeni, A. (2009) A multivariate extension of the dynamic logit model for longitudinal data based on a latent Markov heterogeneity structure. J. Am. Statist. Ass., 104, 816–831.
Bartolucci, F. and Farcomeni, A. (2015) A discrete time event-history approach to informative drop-out in mixed latent Markov models with covariates. Biometrics, 71, 80–89.
- Bartolucci, F. and Farcomeni, A. (2018) A shared-parameter continuous-time hidden Markov and survival model for longitudinal data with informative drop-out. Statist. Med., to be published.
Paper not yet in RePEc: Add citation now
- Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) Latent Markov Models for Longitudinal Data. Boca Raton: Chapman and Hall–CRC.
Paper not yet in RePEc: Add citation now
Bartolucci, F., Farcomeni, A. and Pennoni, F. (2014) Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates (with discussion). Test, 23, 433–486.
- Bartolucci, F., Lupparelli, M. and Montanari, G. E. (2009) Latent Markov models for longitudinal binary data: an application to the performance evaluation of nursing homes. Ann. Appl. Statist., 3, 611–636.
Paper not yet in RePEc: Add citation now
- Biernacki C. and Govaert, G. (1997) Using the classification likelihood to choose the number of clusters. Comput.Sci. Statist., 29, 451–457.
Paper not yet in RePEc: Add citation now
- Biernacki, C., Celeux, G. and Govaert, G. (2000) Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattn Anal. Mach. Intell., 22, 719–725.
Paper not yet in RePEc: Add citation now
- Chakraborty, B. and Chaudhury, P. (2008) On an optimization problem in robust statistics. J. Computnl Graph.Statist., 17, 683–702.
Paper not yet in RePEc: Add citation now
- Chamroukhi,F. (2016) Unsupervised learning of regression mixture models with unknownnumber of components. J. Statist. Computn Simuln, 86, 2308–2334.
Paper not yet in RePEc: Add citation now
Dotto, F., Farcomeni, A., Pittau, M. G. and Zelli, R. (2019) A dynamic inhomogeneous latent state model for measuring material deprivation. J. R. Statist. Soc. A, to be published.
Dotto,F.,Farcomeni, A., Garcia-Escudero, L. A. andMayo-Iscar, A. (2017) A fuzzy approach to robust regression clustering. Adv. Data Anal. Classificn, 11, 691–710.
Durlauf, S., Johnson, P. A. and Temple, J. (2005) Growth econometrics. In Handbook of Economic Growth, vol. 1B (eds P. Aghion and S. Durlauf), ch. 8. Amsterdam: North-Holland.
- Farcomeni, A. (2014a) Robust constrained clustering in presence of entry-wise outliers. Technometrics, 56, 102–111.
Paper not yet in RePEc: Add citation now
- Farcomeni, A. (2014b) Snipping for robust k-means clustering under component-wise contamination. Statist.Comput., 24, 909–917.
Paper not yet in RePEc: Add citation now
Farcomeni, A. (2015) Generalized linear mixed models based on latent Markov heterogeneity structures. Scand.J. Statist., 42, 1127–1135.
- Farcomeni, A. (2017) Penalized estimation in latent Markov models, with application to monitoring serum Calcium levels in end-stage kidney insufficiency. Biometr. J., 59, 1035–1046.
Paper not yet in RePEc: Add citation now
- Farcomeni, A. and Viviani, S. (2011) Robust estimation for the Cox regression model based on trimming. Biometr.J., 53, 956–973.
Paper not yet in RePEc: Add citation now
- Figueiredo, M. A. T. and Jain, A. K. (2002) Unsupervised learning of finite mixture models. IEEE Trans. Pattn Anal. Mach. Intell., 24, 381–396.
Paper not yet in RePEc: Add citation now
- Fr¨uhwirth-Schnatter, S. (2008) Finite Mixture and Markov Switching Models. Berlin: Springer.
Paper not yet in RePEc: Add citation now
- Hastie, T., Tibshirani, R. and Friedman, J. H. (2009) The Elements of Statistical Learning. New York: Springer.
Paper not yet in RePEc: Add citation now
MacDonald, I. L. (2014) Numerical maximization of likelihood: a neglected alternative to EM. Int. Statist. Rev., 82, 296–308.
- Marino, M. F., Tzavidis,N. and Alf´ o, M. (2018) Mixed hidden Markov quantile regression models for longitudinal data with possibly incomplete sequences. Statist. Meth. Med. Res., 27, 2231–2246.
Paper not yet in RePEc: Add citation now
Maruotti, A. (2011) Mixed hidden Markov models for longitudinal data: an overview. Int. Statist. Rev., 79, 427–454.
Quah,D. (1997) Empirics for growth and distribution: polarization, stratification, and convergence clubs. J. Econ. Grwth, 2, 27–59.
Temin, P. (2017) The Vanishing Middle Class: Prejudice and Power in a Dual Economy. Cambridge: MIT Press.
Turner, R. (2008) Direct maximization of the likelihood of a hidden Markov model. Computnl Statist. Data Anal., 52, 4147–4160.
- United Nations Development Programme (1990) Human Development Report 1990. Oxford: Oxford University Press.
Paper not yet in RePEc: Add citation now
- United Nations Development Programme (2016) Human Development Report 2016. New York: United Nations Development Programme.
Paper not yet in RePEc: Add citation now
- Yang, M.-S., Lai, C.-Y. and Lin, C-Y. (2012) A robust EM clustering algorithm for Gaussian mixture models. Pattn Recogn, 45, 3950–3961.
Paper not yet in RePEc: Add citation now
- Zucchini,W. and MacDonald, I. L. (2009) Hidden Markov Models for Time Series: an Introduction using R. New York: Springer.
Paper not yet in RePEc: Add citation now