- Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281.
Paper not yet in RePEc: Add citation now
Altman RM (2007) Mixed hidden Markov models: an extension of the hidden Markov model to the longitudinal data setting. J Am Stat Assoc 102:201–210.
- Anderson TW (1951) Probability models for analysing time changes in attitudes. In: Paul FL (ed) The use of mathematical models in the measurement of the attitudes, The RAND Research Memorandum No. 455.
Paper not yet in RePEc: Add citation now
- Anderson TW (1954) Probability models for analysing time changes in attitudes. In: Paul FL (ed) Mathematical thinking in the social science. The Free press, IL.
Paper not yet in RePEc: Add citation now
- Andersson S, Rydén T (2009) Subspace estimation and prediction methods for hidden Markov models. Ann Stat 37:4131–4152.
Paper not yet in RePEc: Add citation now
- Archer GEB, Titterington DM (2009) Parameter estimation for hidden Markov chains. J Stat Plann Inference 108:365–390.
Paper not yet in RePEc: Add citation now
Bacci S, Pandolfi S, Pennoni F (2014) A comparison of some criteria for states selection in the latent Markov model for longitudinal data. Adv Data Anal Classif 8:125–145.
Bartolucci F (2006) Likelihood inference for a class of latent Markov models under linear hypotheses on the transition probabilities. J R Stat Soc Ser B 68:155–178.
Bartolucci F, Farcomeni A (2009) A multivariate extension of the dynamic logit model for longitudinal data based on a latent Markov heterogeneity structure. J Am Stat Assoc 104:816–831.
Bartolucci F, Farcomeni A (2010) A note on the mixture transition distribution and hidden Markov models. J Time Ser Anal 31:132–138.
- Bartolucci F, Farcomeni A, Pennoni F (2013) Latent Markov models for longitudinal data. Chapman and Hall/CRC Press, Boca Raton.
Paper not yet in RePEc: Add citation now
- Bartolucci F, Lupparelli M, Montanari GE (2009) Latent Markov model for binary longitudinal data: an application to the performance evaluation of nursing homes. Ann Appl Stat 3:611–636.
Paper not yet in RePEc: Add citation now
- Bartolucci F, Pandolfi S (2013) A new constant memory recursion for hidden Markov models. J Comput Biol (2014, in press).
Paper not yet in RePEc: Add citation now
Bartolucci F, Pennoni F (2007) A class of latent Markov models for capture-recapture data allowing for time, heterogeneity and behavior effects. Biometrics 63:568–578.
Bartolucci F, Pennoni F, Francis B (2007) A latent Markov model for detecting patterns of criminal activity. J R Stat Soc Ser A 170:151–132.
Bartolucci F, Pennoni F, Vittadini G (2011) Assessment of school performance through a multilevel latent Markov Rasch model. J Educ Behav Stat 36:491–522.
- Baum L, Petrie T (1966) Statistical inference for probabilistic functions of finite state Markov chains. Ann Math Stat 37:1554–1563.
Paper not yet in RePEc: Add citation now
- Baum L, Petrie T, Soules G, Weiss N (1970) A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann Math Stat 41:164–171.
Paper not yet in RePEc: Add citation now
- Berchtold A (2004) Optimization of mixture models: Comparison of different strategies. Comput Stat 19:385–406.
Paper not yet in RePEc: Add citation now
- Bernardo JM, Smith AFM (1994) Bayesian Theory. Wiley, Chichester.
Paper not yet in RePEc: Add citation now
- Bickel PJ, Ritov Y, Rydén T (1998) Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models. Ann Stat 26:1614–1635.
Paper not yet in RePEc: Add citation now
- Bollen KA, Curran PJ (2006) Latent curve models: a structural equation perspective. Wiley, Hoboken.
Paper not yet in RePEc: Add citation now
Bonrmann L, Mutz R, Daniel HD (2008) Latent Markov modeling applied to grant peer review. J Informetr 2:217–228.
- Boucheron S, Gassiat E (2007) An information-theoretic perspective on order estimation. In: O Cappé TR E Moulines (ed) Inference in Hidden Markov models, Springer, Berlin, pp 565–602.
Paper not yet in RePEc: Add citation now
- Bye BV, Schechter ES (1986) A latent Markov model approach to the estimation of response error in multiwave panel data. J Am Stat Assoc 81:375–380.
Paper not yet in RePEc: Add citation now
- Cappé O, Moulines E, Rydén T (2005) Inference in Hidden Markov models. Springer, New York.
Paper not yet in RePEc: Add citation now
Cheng RCH, Liu WB (2001) The consistency of estimators in finite mixture models. Scand J Stat 28:603–616.
Chib S (1996) Calculating posterior distributions and modal estimates in Markov mixture models. J Econom 75:79–97.
- Collins LM, Wugalter SE (1992) Latent class models for stage-sequential dynamic latent variables. Multivar Behav Res 27:131–157.
Paper not yet in RePEc: Add citation now
- Colombi R, Forcina A (2001) Marginal regression models for the analysis of positive association of ordinal response variables. Biometrika 88:1007–1019.
Paper not yet in RePEc: Add citation now
Congdon P (2006) Bayesian model choice based on Monte Carlo estimates of posterior model probabilities. Comput Stat Data Anal 50:346–357.
- Cowles MK, Carlin BP (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. J Am Stat Assoc 91:883–904.
Paper not yet in RePEc: Add citation now
- Dannemann J (2012) Semiparametric hidden Markov models. J Comput Graphical Stat 21:677–692.
Paper not yet in RePEc: Add citation now
- Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, Cambridge.
Paper not yet in RePEc: Add citation now
- Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J R Stat Soc Ser B 39:1–38.
Paper not yet in RePEc: Add citation now
- Dias JG, Vermunt JK (2007) Latent class modeling of website users’ search patterns: Implications for online market segmentation. J Retailing Consum Serv 14:359–368.
Paper not yet in RePEc: Add citation now
- Elliot DS, Huizinga D, Menard S (1989) Multiple problem youth: delinquency, substance use, and mental health problems. Springer, New York.
Paper not yet in RePEc: Add citation now
Farcomeni A (2011) Hidden Markov partition models. Stat Probab Lett 81:1766–1770.
- Farcomeni A (2012) Quantile regression for longitudinal data based on latent Markov subject-specific parameters. Stat Comput 22:141–152.
Paper not yet in RePEc: Add citation now
Farcomeni A, Arima S (2012) A Bayesian autoregressive three-state hidden Markov model for identifying switching monotonic regimes in Microarray time course data. Stat Appl Genetics Mol Biol 11(4):article 3.
- Feng Z, McCulloch CE (1996) Using bootstrap likelihood ratios in finite mixture models. J R Stat Soc Ser B 58:609–617.
Paper not yet in RePEc: Add citation now
- Fitzmaurice G, Davidian M, Verbeke G, G M, (eds) (2009) Longitudinal data analysis. Chapman and Hall, CRC, London.
Paper not yet in RePEc: Add citation now
- Frühwirth-Schnatter S (2001) Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models. J Am Stat Assoc 96:194–209.
Paper not yet in RePEc: Add citation now
- GarcÃÂa-Escudero L, Gordaliza A, Mayo-Iscar A (2013) A constrained robust proposal for mixture modeling avoiding spurious solutions. Adv Data Anal Classif 1–17: doi: 10.1007/s11634-013-0153-3 .
Paper not yet in RePEc: Add citation now
- Ghahramani Z, Jordan MI (1997) Factorial hidden Markov models. Mach Learn 29:245–273.
Paper not yet in RePEc: Add citation now
- Glonek GFV, McCullagh P (1995) Multivariate logistic models. J R Stat Soc B 57:533–546.
Paper not yet in RePEc: Add citation now
- Goodman LA (1961) Statistical methods for the mover-stayer model. J Am Stat Assoc 56:841–868.
Paper not yet in RePEc: Add citation now
- Goodman LA (1974) Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika 61:215–231.
Paper not yet in RePEc: Add citation now
- Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711–732.
Paper not yet in RePEc: Add citation now
- Hambleton RK, Swaminathan H (1985) Item response theory: principles and applications. Kluwer Nijhoff, Boston.
Paper not yet in RePEc: Add citation now
- Hoffmann L, Lehrke M, Todt E (1985) Development and changes in pupils’ interest in physics (grade 5 to 10): design of a longitudinal study. In: Lehrke M, Hoffmann L, Gardner PL (eds) Interest in science and technology education. IPN, Kiel, pp 71–80.
Paper not yet in RePEc: Add citation now
- Juang B, Rabiner L (1991) Hidden Markov models for speech recognition. Technometrics 33:251–272.
Paper not yet in RePEc: Add citation now
- Künsch HR (2005) State space and hidden Markov models. In: Barndorff-Nielsen OE, Cox DR, Klüppelberg C (eds) Complex stochastic systems. Chapman and Hall/CRC, Boca Raton, FL, pp 109–173.
Paper not yet in RePEc: Add citation now
- Kaplan D (2008) An overview of Markov chain methods for the study of stage-sequential developmental processes. Dev Psychol 44:457–467.
Paper not yet in RePEc: Add citation now
- Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795.
Paper not yet in RePEc: Add citation now
- Khreich W, Granger E, Miri A, Sabourin R (2010) On the memory complexity of the forward-backward algorithm. Pattern Recognit Lett 31:91–99.
Paper not yet in RePEc: Add citation now
- Koski T (2001) Hidden Markov models for bioinformatics. Kluwer, Dordrecht.
Paper not yet in RePEc: Add citation now
- Langeheine R (1988) New development in latent class theory. In: Langeheine R, Rost J (eds) Latent trait and latent class models. Plenum Press, New York, pp 77–108.
Paper not yet in RePEc: Add citation now
- Langeheine R (1994) Latent variables Markov models. In: von Eye A, Clogg C (eds) Latent variables analysis: applications for developmental research. Sage, Thousand Oaks, CA, pp 373–395.
Paper not yet in RePEc: Add citation now
- Langeheine R, van de Pol F (1994) Discrete-time mixed Markov latent class models. In: Dale A, Davies R (eds) Analyzing social and political change: a casebook of methods. Sage Publications, London, pp 171–197.
Paper not yet in RePEc: Add citation now
- Lazarsfeld PF (1950) The logical and mathematical foundation of latent structure analysis. In: Stouffer SA, Guttman L, Suchman EA (ed) Measurement and prediction. Princeton University Press, New York.
Paper not yet in RePEc: Add citation now
- Lazarsfeld PF, Henry NW (1968) Latent structure analysis. Houghton Mifflin, Boston.
Paper not yet in RePEc: Add citation now
- Leonard T (1975) Bayesian estimation methods for two-way contingency tables. J R Stat Soc Ser B 37:23–37.
Paper not yet in RePEc: Add citation now
- Leroux BG, Puterman ML (1992) Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models. Biometrics 48:545–558.
Paper not yet in RePEc: Add citation now
- Levinson SE, Rabiner LR, Sondhi MM (1983) An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition. Bell Syst Tech J 62:1035–1074.
Paper not yet in RePEc: Add citation now
- Louis T (1982) Finding the observed information matrix when using the EM algorithm. J R Stat Soc Ser B 44:226–233.
Paper not yet in RePEc: Add citation now
- Lystig TC, Hughes J (2002) Exact computation of the observed information matrix for hidden Markov models. J Comput Graphical Stat 11:678–689.
Paper not yet in RePEc: Add citation now
- MacDonald IL, Zucchini W (1997) Hidden Markov and other models for discrete-valued time series. Chapman and Hall, London.
Paper not yet in RePEc: Add citation now
- Magidson J, Vermunt JK (2001) Latent class factor and cluster models, bi-plots and related graphical displays. Sociol Methodol 31:223–264.
Paper not yet in RePEc: Add citation now
Maruotti A (2011) Mixed hidden Markov models for longitudinal data: an overview. Int Stat Rev 79:427–454.
- McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, CRC, London.
Paper not yet in RePEc: Add citation now
McHugh RB (1956) Efficient estimation and local identification in latent class analysis. Psychometrika 21:331–347.
- McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York.
Paper not yet in RePEc: Add citation now
- Muthén B (2004) Latent variable analysis: growth mixture modeling and related techniques for longitudinal data. In: Kaplan D (ed) Handbook of quantitative methodology for the social sciences. Sage Publications, Newbury Park, pp 345–368.
Paper not yet in RePEc: Add citation now
- Nagin D (1999) Analyzing developmental trajectories: a semi-parametric, group-based approach. Psychol Methods 4:139–157.
Paper not yet in RePEc: Add citation now
- Nazaret W (1987) Bayesian log-linear estimates for three-way contingency tables. Biometrika 74:401–410.
Paper not yet in RePEc: Add citation now
Oakes D (1999) Direct calculation of the information matrix via the EM algorithm. J R Stat Soc Ser B 61:479–482.
- Paas LJ, Vermunt JK, Bijlmolt THA (2009) Discrete time, discrete state latent Markov modelling for assessing and predicting household acquisitions of financial products. J R Stat Soc Ser A 170:955–974.
Paper not yet in RePEc: Add citation now
- Rijmen F, Vansteelandt K, De Boeck P (2007) Latent class models for diary methods data: parameter estimation by local computations. Psychometrika 73:167–182.
Paper not yet in RePEc: Add citation now
Robert C, Ryden T, Titterington D (2000) Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method. J R Stat Soc Ser B 62:57–75.
- Robert CP, Casella G (2010) Monte Carlo statistical methods, 2nd edn. Springer, New York.
Paper not yet in RePEc: Add citation now
- Robert CP, RydÉn T, Titterington D (1999) Convergence controls for MCMC algorithms, with applications to hidden Markov chains. J Stat Comput Simul 64:327–355.
Paper not yet in RePEc: Add citation now
- Roeder K, Lynch KG, Nagin DS (1999) Modeling uncertainty in latent class membership: a case study in criminology. J Am Stat Assoc 94:766–776.
Paper not yet in RePEc: Add citation now
- Rost J (2002) Mixed and latent Markov models as item response models. Methods of psychological research online, Special Issue, pp 53–70.
Paper not yet in RePEc: Add citation now
- Rusakov D, Geiger D (2002) Asymptotic model selection for naive Bayesian networks. In: Proceedings of the eighteenth conference on uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc., pp 438–455.
Paper not yet in RePEc: Add citation now
- Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464.
Paper not yet in RePEc: Add citation now
- Scott SL (2002) Bayesian methods for hidden Markov models: recursive computing in the 21st century. J Am Stat Assoc 97:337–351.
Paper not yet in RePEc: Add citation now
Seidel W, Ã…Â evÄÂÃÂková H (2004) Types of likelihood maxima in mixture models and their implication on the performance of tests. Ann Inst Stat Math 56:631–654.
Spezia L (2010) Bayesian analysis of multivariate Gaussian hidden Markov models with an unknown number of regimes. J Time Ser Anal 31:1–11.
Turner R (2008) Direct maximization of the likelihood of a hidden Markov model. Comput Stat Data Anal 52:4147–4160.
- Turner TR, Cameron MA, Thomson PJ (1998) Hidden Markov chains in generalized linear models. Can J Stat 26:107–125.
Paper not yet in RePEc: Add citation now
- Tuyl F, Gerlach R, Mengersen K (2009) Posterior predictive arguments in favor of the Bayes-Laplace prior as the consensus prior for binomial and multinomial parameters. Bayesian Anal 4:151–158.
Paper not yet in RePEc: Add citation now
- van de Pol F, Langeheine R (1990) Mixed Markov latent class models. Sociol Method 20:213–247.
Paper not yet in RePEc: Add citation now
- Vansteelandt K, Rijmen F, Pieters G, Vanderlinden J (2007) Drive for thinness, affect regulation and physical activity in eating disorders: a daily life study. Behav Res Ther 45:1717–1734.
Paper not yet in RePEc: Add citation now
- Vermunt J (2010) Longitudinal research with latent variables. In: van Montfort K, Oud J, Satorra A (eds) Handbook of advanced multilevel analysis. Springer, Heidelberg, pp 119–152.
Paper not yet in RePEc: Add citation now
- Vermunt JK, Langeheine R, Böckenholt U (1999) Discrete-time discrete-state latent Markov models with time-constant and time-varying covariates. J Educ Behav Stat 24:179–207.
Paper not yet in RePEc: Add citation now
- Viterbi A (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inform Theory 13:260–269.
Paper not yet in RePEc: Add citation now
- Welch LR (2003) Hidden Markov models and the Baum-Welch algorithm. IEEE Inform Theory Soc Newsl 53:1–13.
Paper not yet in RePEc: Add citation now
- Wiggins L (1955) Mathematical models for the analysis of multi-wave panels. In: University C (ed) Ph.D. Dissertation, University microfilms, Ann Arbor.
Paper not yet in RePEc: Add citation now
- Wiggins L (1973) Panel analysis: latent probability models for attitude and behaviour processes. Elsevier, Amsterdam.
Paper not yet in RePEc: Add citation now
Yau C, Papaspiliopoulos O, Roberts G, Holmes C (2011) Bayesian nonparametric hidden Markov models with application to the analysis of copy-number-variation in mammalian genomes. J R Stat Soc Ser B 73:37–57.
- Zucchini W, MacDonald IL (2009) Hidden Markov Models for time series: an introduction using R. Springer, New York.
Paper not yet in RePEc: Add citation now