- — L. Jacobi et al.: Posterior Manifolds over Prior Parameter Regions Li, M., and D. B. Dunson. 2020. “Comparing and Weighting Imperfect Models Using D-Probabilities.” Journal of the American Statistical Association 115 (531): 1349−60. .
Paper not yet in RePEc: Add citation now
Afshin, A., J. L. Penalvo, L. Del Gobbo, J. Silva, M. Michaelson, M. O’Flaherty, S. Capewell, D. Spiegelman, G. Danaei, and D. Mozaffarian. 2017. “The Prospective Impact of Food Pricing on Improving Dietary Consumption: A Systematic Review and Meta-Analysis.” PLoS One 12 (3): e0172277. .
Amir-Ahmadi, P., C. Matthes, and M.-C. Wang. 2020. “Choosing Prior Hyperparameters: With Applications to Time-Varying Parameter Models.” Journal of Business & Economic Statistics 38 (1): 124−36. .
- Banks, J., R. Blundell, and A. Lewbel. 1997. “Quadratic Engel Curves and Consumer Demand.” The Review of Economics and Statistics 79 (4): 527−39. .
Paper not yet in RePEc: Add citation now
- Basu, S., S. R. Jammalamadaka, and W. Liu. 1996. “Local Posterior Robustness with Parametric Priors: Maximum and Average Sensitivity.” In Maximum Entropy and Bayesian Methods, 97−106. Dordrecht: Springer.
Paper not yet in RePEc: Add citation now
Baumeister, C., and J. D. Hamilton. 2019. “Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks.” American Economic Review 109 (5): 1873−910. .
- Berger, J. O. 1985. Statistical Decision Theory and Bayesian Analysis. New York: Springer Science & Business Media.
Paper not yet in RePEc: Add citation now
- Berger, J. O. 1990. “Robust Bayesian Analysis: Sensitivity to the Prior.” Journal of Statistical Planning and Inference 25 (3): 303−28. .
Paper not yet in RePEc: Add citation now
- Bhatia, K., Y.-A. Ma, A. D. Dragan, P. L. Bartlett, and M. I. Jordan. 2023. “Bayesian Robustness: A Nonasymptotic Viewpoint.” Journal of the American Statistical Association (15): 1−12, https://doi.org/10.1080/01621459.2023.2174121.
Paper not yet in RePEc: Add citation now
Bilgic, A., and S. T. Yen. 2014. “Demand for Meat and Dairy Products by Turkish Households: A Bayesian Censored System Approach.” Agricultural Economics 45 (2): 117−27. .
- Branson, Z., M. Rischard, L. Bornn, and L. W. Miratrix. 2019. “A Nonparametric Bayesian Methodology for Regression Discontinuity Designs.” Journal of Statistical Planning and Inference 202: 14−30. .
Paper not yet in RePEc: Add citation now
- Briggs, A. D., A. Kehlbacher, R. Tiffin, T. Garnett, M. Rayner, and P. Scarborough. 2013. “Assessing the Impact on Chronic Disease of Incorporating the Societal Cost of Greenhouse Gases into the Price of Food: An Econometric and Comparative Risk Assessment Modelling Study.” BMJ Open 3: 10, .
Paper not yet in RePEc: Add citation now
Chan, J. C., L. Jacobi, and D. Zhu. 2020. “Efficient Selection of Hyperparameters in Large Bayesian Vars Using Automatic Differentiation.” Journal of Forecasting 39 (6): 934−43. .
Chan, J. C., L. Jacobi, and D. Zhu. 2022. “An Automated Prior Robustness Analysis in Bayesian Model Comparison.” Journal of Applied Econometrics 37 (3): 583−602. .
Choi, T., and M. J. Schervish. 2007. “On Posterior Consistency in Nonparametric Regression Problems.” Journal of Multivariate Analysis 98 (10): 1969−87. .
Clark, T. E., F. Huber, G. Koop, and M. Marcellino. 2022. Forecasting Us Inflation Using Bayesian Nonparametric Models. arXiv preprint arXiv:2202.13793.
Clements, K. W., and J. Si. 2016. “Price Elasticities of Food Demand: Compensated vs Uncompensated.” Health Economics 25 (11): 1403−8. .
Cornelsen, L., R. Green, R. Turner, A. D. Dangour, B. Shankar, M. Mazzocchi, and R. D. Smith. 2015. “What Happens to Patterns of Food Consumption when Food Prices Change? Evidence from a Systematic Review and Meta-Analysis of Food Price Elasticities Globally.” Health Economics 24 (12): 1548−59. .
Deaton, A., and J. Muellbauer. 1980. “An Almost Ideal Demand System.” The American Economic Review 70 (3): 312−26.
Del Negro, M., and F. Schorfheide. 2008. “Forming Priors for Dsge Models (And How it Affects the Assessment of Nominal Rigidities).” Journal of Monetary Economics 55 (7): 1191−208. .
Gao, G. 2012. “World Food Demand.” American Journal of Agricultural Economics 94 (1): 25−51. .
- Gardner, J., G. Pleiss, R. Wu, K. Weinberger, and A. Wilson. 2018. “Product Kernel Interpolation for Scalable Gaussian Processes.” In International Conference on Artificial Intelligence and Statistics, 1407−16.
Paper not yet in RePEc: Add citation now
Garthwaite, P. H., J. B. Kadane, and A. O’Hagan. 2005. “Statistical Methods for Eliciting Probability Distributions.” Journal of the American Statistical Association 100 (470): 680−701. .
- Geweke, J. 1999. “Simulation Methods for Model Criticism and Robustness Analysis.” In Bayesian Statistics, Vol. 6, edited by J. Berger, J. Bernardo, A. Dawid, and A. Smith. Oxford: Oxford University Press.
Paper not yet in RePEc: Add citation now
Giacomini, R., T. Kitagawa, and M. Read. 2022. “Robust Bayesian Inference in Proxy Svars.” Journal of Econometrics 228 (1): 107−26. .
Giannone, D., M. Lenza, and G. E. Primiceri. 2015. “Prior Selection for Vector Autoregressions.” Review of Economics and Statistics 97 (2): 436−51. .
- Giordano, R., R. Liu, M. I. Jordan, and T. Broderick. 2022. “Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian Nonparametrics.” Bayesian Analysis 1 (1): 1−34. .
Paper not yet in RePEc: Add citation now
- Glasserman, P. 2013. Monte Carlo Methods in Financial Engineering, 53. New York: Springer Science & Business Media.
Paper not yet in RePEc: Add citation now
- Greenberg, E. 2012. Introduction to Bayesian Econometrics. New York: Cambridge University Press.
Paper not yet in RePEc: Add citation now
- Gustafson, P. 2000. “Local Robustness in Bayesian Analysis.” In Robust Bayesian Analysis, 71−88. New York: Springer.
Paper not yet in RePEc: Add citation now
- Hauzenberger, N., F. Huber, M. Marcellino, and N. Petz. 2021. Gaussian Process Vector Autoregressions and Macroeconomic Uncertainty.
Paper not yet in RePEc: Add citation now
- Jacobi, L., D. Zhu, and M. Joshi. 2022. “Estimating Posterior Sensitivities with Application to Structural Analysis of Bayesian Vector Autoregressions.” SSRN 3347399.
Paper not yet in RePEc: Add citation now
- Jacobi, L., N. Nghiem, A. Ramírez-Hassan, and T. Blakely. 2021. “Thomas Bayes Goes to the Virtual Supermarket: Combining Prior Food Price Elasticities and Experimental Data to Assess Price Elasticities and Food Price Policies in a Large Demand System.” Economic Record 97 (319), .
Paper not yet in RePEc: Add citation now
Jarociński, M., and A. Marcet. 2019. “Priors about Observables in Vector Autoregressions.” Journal of Econometrics 209 (2): 238−55. .
Karatzoglou, A., A. Smola, K. Hornik, and A. Zeileis. 2004. “Kernlab − An S4 Package for Kernel Methods in R.” Journal of Statistical Software 11 (9): 1−20. .
Kasteridis, P., S. T. Yen, and C. Fang. 2011. “Bayesian Estimation of a Censored Linear Almost Ideal Demand System: Food Demand in pakistan.” American Journal of Agricultural Economics 93 (5): 1374−90. .
- Kim, C.-J., and C. R. Nelson. 1999. “Has the US Economy Become More Stable? A Bayesian Approach Based on a Markov-Switching Model of the Business Cycle.” Review of Economics and Statistics 81 (4): 608−16. .
Paper not yet in RePEc: Add citation now
Klonaris, S., and D. Hallam. 2003. “Conditional and Unconditional Food Demand Elasticities in a Dynamic Multistage Demand System.” Applied Economics 35 (5): 503−14. .
- Kwok, C. F., D. Zhu, and L. Jacobi. 2020. ADtools: Automatic Differentiation Toolbox. R package version 0.5.4. Kwok, C. F., D. Zhu, and L. Jacobi. 2022. An Analysis of Vectorised Automatic Differentiation for Statistical Applications. Available at SSRN 4054947.
Paper not yet in RePEc: Add citation now
- L. Jacobi et al.: Posterior Manifolds over Prior Parameter Regions — 433 Briggs, A. D., O. T. Mytton, A. Kehlbacher, R. Tiffin, A. Elhussein, M. Rayner, S. A. Jebb, T. Blakely, and P. Scarborough. 2017. “Health Impact Assessment of the UK Soft Drinks Industry Levy: A Comparative Risk Assessment Modelling Study.” The Lancet Public Health 2 (1): e15−22. .
Paper not yet in RePEc: Add citation now
- Lancaster, T. 2004. An Introduction to Modern Bayesian Econometrics. Oxford: Blackwell.
Paper not yet in RePEc: Add citation now
- Müller, U. K. 2012. “Measuring Prior Sensitivity and Prior Informativeness in Large Bayesian Models.” Journal of Monetary Economics 59 (6): 581−97. .
Paper not yet in RePEc: Add citation now
- Naghavi, M., A. A. Abajobir, C. Abbafati, K. M. Abbas, F. Abd-Allah, S. F. Abera, V. Aboyans, et al. 2017. “Global, Regional, and National Age-Sex Specific Mortality for 264 Causes of Death, 1980−2016: A Systematic Analysis for the Global Burden of Disease Study 2016.” The Lancet 390 (10100): 1151−210. .
Paper not yet in RePEc: Add citation now
Nghiem, N., N. Wilson, M. Genç, and T. Blakely. 2013. “Understanding Price Elasticities to Inform Public Health Research and Intervention Studies: Key Issues.” American Journal of Public Health 103 (11): 1954−61. .
- Pérez, C., J. Martin, and M. Rufo. 2006. “MCMC-based Local Parametric Sensitivity Estimations.” Computational Statistics & Data Analysis 51 (2): 823−35. .
Paper not yet in RePEc: Add citation now
- Pleiss, G., J. Gardner, K. Weinberger, and A. G. Wilson. 2018. “Constant-Time Predictive Distributions for Gaussian Processes.” In International Conference on Machine Learning, 4111−20.
Paper not yet in RePEc: Add citation now
- Ramírez-Hassan, A., and R. Pericchi. 2018. “Effects of Prior Distributions: An Application to Pipedwater Demand.” Brazilian Journal of Probability and Statistics 32 (1): 1−19, .
Paper not yet in RePEc: Add citation now
- Rasmussen, C. E., and C. K. Williams. 2006. Gaussian Processes for Machine Learning. Cambridge, MA: The MIT Press.
Paper not yet in RePEc: Add citation now
Richardson, S., and P. J. Green. 1997. “On Bayesian Analysis of Mixtures with an Unknown Number of Components (With Discussion).” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 59 (4): 731−92. .
- Ríos Insua, D., F. Ruggeri, and J. Martín. 2000. “Bayesian Sensitivity Analysis.” In Sensitivity Analysis, edited by A. Saltelli, K. Chan, and E. M. Scott, 225−44. Chichester: John Wiley & Sons.
Paper not yet in RePEc: Add citation now
- Roos, M., T. G. Martins, L. Held, and H. Rue. 2015. “Sensitivity Analysis for Bayesian Hierarchical Models.” Bayesian Analysis 10 (2): 321−49, .
Paper not yet in RePEc: Add citation now
- Ruggeri, F. 2008. “Bayesian Robustness.” European Working Group, Multiple Criteria Decision Aiding 3 (17): 6−10.
Paper not yet in RePEc: Add citation now
- Settles, B. 2012. Active Learning. Pittsburgh: Morgan & Claypool Publishers.
Paper not yet in RePEc: Add citation now
- Solak, E., R. Murray-Smith, W. E. Leithead, D. J. Leith, and C. E. Rasmussen. 2002. Derivative Observations in Gaussian Process Models of Dynamic Systems. Advances in Neural Information Processing Systems, 15.
Paper not yet in RePEc: Add citation now
- Stuart, A., and A. Teckentrup. 2018. “Posterior Consistency for Gaussian Process Approximations of Bayesian Posterior Distributions.” Mathematics of Computation 87 (310): 721−53. .
Paper not yet in RePEc: Add citation now
- Supplementary Material: This article contains supplementary material (https://doi.org/10.1515/snde-2022-0116).
Paper not yet in RePEc: Add citation now
Tiffin, R., and M. Arnoult. 2010. “The Demand for a Healthy Diet: Estimating the Almost Ideal Demand System with Infrequency of Purchase.” European Review of Agricultural Economics 37 (4): 501−21. .
- Waterlander, W. E., T. Blakely, N. Nghiem, C. L. Cleghorn, H. Eyles, M. Genc, N. Wilson, et al. 2016. “Study Protocol: Combining Experimental Methods, Econometrics and Simulation Modelling to Determine Price Elasticities for Studying Food Taxes and Subsidies (The Price Exam Study).” BMC Public Health 16 (1): 601. .
Paper not yet in RePEc: Add citation now
- Wilson, A., and H. Nickisch. 2015. “Kernel Interpolation for Scalable Structured Gaussian Processes (Kiss-gp).” In International Conference on Machine Learning, 1775−84.
Paper not yet in RePEc: Add citation now
- Wilson, A., and R. Adams. 2013. “Gaussian Process Kernels for Pattern Discovery and Extrapolation.” In International Conference on Machine Learning, 1067−75.
Paper not yet in RePEc: Add citation now