- Anderson, C.W. ; Hittle, D.C. ; Katz, A.D. ; Kretchmar, R.M. Synthesis of reinforcement learning, neural networks and PI control applied to a simulated heating coil. 1997 Artific Intellig Eng. 11 421-429
Paper not yet in RePEc: Add citation now
Arroyo, J. ; Manna, C. ; Spiessens, F. ; Helsen, L. Reinforced model predictive control (RL-MPC) for building energy management. 2022 Appl Energy. 309 -
- Arroyo, J. ; Spiessens, F. ; Helsen, L. Comparison of optimal control techniques for building energy management. 2022 Front Built Environ. 8 -
Paper not yet in RePEc: Add citation now
- ASHRAE, Guideline 36, high-performance sequences of operation for HVAC systems. 2024 :
Paper not yet in RePEc: Add citation now
- Barrett, E. ; Linder, S. Autonomous HVAC control, a reinforcement learning approach. 2015 En : Lecture Notes in Computer Science. :
Paper not yet in RePEc: Add citation now
Biemann, M. ; Scheller, F. ; Liu, X. ; Huang, L. Experimental evaluation of model-free reinforcement learning algorithms for continuous HVAC control. 2021 Appl Energy. 298 -
- Blum, D. ; Arroyo, J. ; Huang, S. ; Drgoňa, J. ; Jorissen, F. ; Walnum, H.T. Building optimization testing framework (BOPTEST) for simulation-based benchmarking of control strategies in buildings. 2021 J Build Perform Simulat. 14 586-610
Paper not yet in RePEc: Add citation now
Blum, D. ; Wang, Z. ; Weyandt, C. ; Kim, D. ; Wetter, M. ; Hong, T. Field demonstration and implementation analysis of model predictive control in an office HVAC system. 2022 Appl Energy. 318 -
- Chen, B. ; Cai, Z. ; Bergés, M. GNU-RL: a practical and scalable reinforcement learning solution for building HVAC control using a differentiable MPC policy. 2020 Front Built Environ. 6 -
Paper not yet in RePEc: Add citation now
- Dalamagkidis, K. ; Κολοκότσα, Δ. ; Kalaitzakis, K. ; Stavrakakis, G. Reinforcement learning for energy conservation and comfort in buildings. 2007 Build Environ. 42 2686-2698
Paper not yet in RePEc: Add citation now
- De Coninck, R. ; Helsen, L. Practical implementation and evaluation of model predictive control for an office building in Brussels. 2016 Energ Buildings. 111 290-298
Paper not yet in RePEc: Add citation now
Di Natale, L. ; Svetozarevic, B. ; Heer, P. ; Jones, C.N. Towards scalable physically consistent neural networks: An application to data-driven multi-zone thermal building models. 2023 Appl Energy. 340 -
- Dong, B. ; Lam, K.P. A real-time model predictive control for building heating and cooling systems based on the occupancy behavior pattern detection and local weather forecasting. 2013 Build Simulat. 7 89-106
Paper not yet in RePEc: Add citation now
- Drgoňa, J. ; Arroyo, J. ; Figueroa, I.C. ; Blum, D. ; Arendt, K. ; Kim, D. All you need to know about model predictive control for buildings. 2020 Ann Rev Control. 50 190-232
Paper not yet in RePEc: Add citation now
- Drgoňa, J. ; Kiš, K. ; Tuor, A. ; Vrabie, D. ; Klaučo, M. Differentiable predictive control: deep learning alternative to explicit model predictive control for unknown nonlinear systems. 2022 J Process Control. 116 80-92
Paper not yet in RePEc: Add citation now
- Drgoňa, J. ; Picard, D. ; Helsen, L. Cloud-based implementation of white-box model predictive control for a GEOTABS office building: a field test demonstration. 2020 J Process Control. 88 63-77
Paper not yet in RePEc: Add citation now
Drgoňa, J. ; Picard, D. ; Kvasnica, M. ; Helsen, L. Approximate model predictive building control via machine learning. 2018 Appl Energy. 218 199-216
- Drgoňa, J. ; Tuor, A. ; Chandan, V. ; Vrabie, D. Physics-constrained deep learning of multi-zone building thermal dynamics. 2021 Energ Buildings. 243 -
Paper not yet in RePEc: Add citation now
- Drgoňa, J. ; Tuor, A. ; Skomski, E. ; Vasisht, S. ; Vrabie, D. Deep learning explicit differentiable predictive control laws for buildings. 2021 IFAC-PapersOnLine. 54 14-19
Paper not yet in RePEc: Add citation now
- Du, D. ; Fei, M. A two-layer networked learning control system using actor–critic neural network. 2008 Appl Math Comput. 205 26-36
Paper not yet in RePEc: Add citation now
- Dulac-Arnold, G. ; Levine, N. ; Mankowitz, D.J. ; Li, J. ; Păduraru, C. ; Gowal, S. Challenges of real-world reinforcement learning: definitions, benchmarks and analysis. 2021 Machine Learn. 110 2419-2468
Paper not yet in RePEc: Add citation now
- Han, X. ; Malkawi, A. Model-free reinforcement learning-based control for radiant floor heating systems. 2023 En : Environmental Science and Engineering. :
Paper not yet in RePEc: Add citation now
- Hao, H. ; Chen, L. ; Hu, E. A new model predictive control scheme for energy and cost savings in commercial buildings: An airport terminal building case study. 2015 Build Environ. 89 203-216
Paper not yet in RePEc: Add citation now
- Hilliard, T. ; Swan, L.G. ; Qin, Z. Experimental implementation of whole building MPC with zone based thermal comfort adjustments. 2017 Build Environ. 125 326-338
Paper not yet in RePEc: Add citation now
Jiang, Z. ; Deng, Z. ; Wang, X. ; Dong, B. PANDEMIC: occupancy driven predictive ventilation control to minimize energy consumption and infection risk. 2023 Appl Energy. 334 -
Joe, J. ; Karava, P. A model predictive control strategy to optimize the performance of radiant floor heating and cooling systems in office buildings. 2019 Appl Energy. 245 65-77
- Karniadakis, G.E. ; Kevrekidis, I.G. ; Lu, L. Physics-informed machine learning. 2021 Nat Rev Phys. 3 422-440
Paper not yet in RePEc: Add citation now
Kong, M. ; Dong, B. ; Zhang, R. ; O’Neill, Z. HVAC energy savings, thermal comfort and air quality for occupant-centric control through a side-by-side experimental study. 2022 Appl Energy. 306 -
- Kvasnica, M. Implicit vs explicit MPC — Similarities, differences, and a path towards a unified method. 2016 En : 2016 European Control Conference (ECC), Aalborg, Denmark. :
Paper not yet in RePEc: Add citation now
- Langevin, J. ; Harris, C. ; Satre-Meloy, A. ; Putra, H.C. ; Speake, A. ; Present, E. US building energy efficiency and flexibility as an electric grid resource. 2021 Joule. 5 2102-2128
Paper not yet in RePEc: Add citation now
Lei, Y. ; Song, Z. ; Ono, E. ; Peng, Y. ; Zhang, Z. ; Hasama, T. A practical deep reinforcement learning framework for multivariate occupant-centric control in buildings. 2022 Appl Energy. 324 -
- Li, P. ; Vrabie, D. ; Li, D. ; Bengea, S. ; Mijanovic, S. ; O’Neill, Z. Simulation and experimental demonstration of model predictive control in a building HVAC system. 2015 Sci Technol Built Environ. 21 721-732
Paper not yet in RePEc: Add citation now
- Liang, W. ; Li, H. ; Zhan, S. ; Chong, A. ; Hong, T. Energy flexibility quantification of a tropical net-zero office building using physically consistent neural network-based model predictive control. 2024 Adv Appl Energy. 100167 -
Paper not yet in RePEc: Add citation now
- Lindelöf, D. ; Afshari, H. ; Alisafaee, M. ; Biswas, J. ; Caban, M. ; Mocellin, X. Field tests of an adaptive, model-predictive heating controller for residential buildings. 2015 Energ Buildings. 99 292-302
Paper not yet in RePEc: Add citation now
- Mariano-Hernández, D. ; Hernández-Callejo, L. ; Zorita-Lamadrid, Á.L. ; Duque-Pérez, Ó. ; García, F.S. A review of strategies for building energy management system: model predictive control, demand side management, optimization, and fault detect & diagnosis. 2021 J Build Eng. 33 -
Paper not yet in RePEc: Add citation now
- Mehrotra, K. ; Mohan, C.K. ; Ranka, S. Elements of artificial neural networks. 1997 MIT Press:
Paper not yet in RePEc: Add citation now
- Park, J.Y. ; Dougherty, T. ; Fritz, H. ; Nagy, Z. LightLearn: An adaptive and occupant centered controller for lighting based on reinforcement learning. 2019 Build Environ. 147 397-414
Paper not yet in RePEc: Add citation now
Ruelens, F. ; Iacovella, S. ; Claessens, B. ; Belmans, R. Learning agent for a heat-pump thermostat with a set-Back strategy using model-free reinforcement learning. 2015 Energies. 8 8300-8318
- Song, Y. ; Romero, A. ; Müller, M. ; Koltun, V. ; Scaramuzza, D. Reaching the limit in autonomous racing: optimal control versus reinforcement learning. 2023 Sci Robot. 8 -
Paper not yet in RePEc: Add citation now
- Song, Z. ; Lei, Y. ; Chong, A. Comparing model predictive control and reinforcement learning for the optimal operation of building-PV-battery systems. 2023 E3S Web Conf. 396 04018-
Paper not yet in RePEc: Add citation now
- Stoffel, P. ; Maier, L. ; Kümpel, A. ; Schreiber, T. ; Müller, D. Evaluation of advanced control strategies for building energy systems. 2023 Energ Buildings. 280 -
Paper not yet in RePEc: Add citation now
- Sutton, R.S. ; Barto, A.G. Reinforcement learning. 2018 En : An Introduction. MIT Press:
Paper not yet in RePEc: Add citation now
Taniguchi, I. ; Watari, D. ; Ozawa, Y. ; Taniguchi, I. ; Suzuki, T. ; Shimoda, Y. Data-driven online energy management framework for HVAC systems: An experimental study. 2023 Appl Energy. 352 -
- Wang, D. ; Zheng, W. ; Wang, Z. ; Wang, Y. ; Pang, X. ; Wang, W. Comparison of reinforcement learning and model predictive control for building energy system optimization. 2023 Appl Therm Eng. 228 -
Paper not yet in RePEc: Add citation now
- Wang, X. ; Dong, B. Development of a data-driven predictive control based on a novel physics-informed neural network. 2023 En : Building Simulation Conference Proceedings. :
Paper not yet in RePEc: Add citation now
- Wang, X. ; Dong, B. Physics-informed hierarchical data-driven predictive control for building HVAC systems to achieve energy and health nexus. 2023 Energ Buildings. 291 -
Paper not yet in RePEc: Add citation now
- Wang, X. ; Kang, X. ; An, J. ; Chen, H. ; Yan, D. Reinforcement learning approach for optimal control of ice-based thermal energy storage (TES) systems in commercial buildings. 2023 Energ Buildings. 301 -
Paper not yet in RePEc: Add citation now
Wang, Z. ; Hong, T. Reinforcement learning for building controls: the opportunities and challenges. 2020 Appl Energy. 269 -
Xiao, T. ; You, F. Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization. 2023 Appl Energy. 342 -
Yang, L. ; Nagy, Z. ; Goffin, P. ; Schlueter, A. Reinforcement learning for optimal control of low exergy buildings. 2015 Appl Energy. 156 577-586
Yang, S. ; Wan, M.P. ; Chen, W. ; Ng, B.F. ; Dubey, S. Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization. 2020 Appl Energy. 271 -
Yang, S. ; Wan, M.P. ; Ng, B.F. ; Dubey, S. ; Henze, G.P. ; Chen, W. Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system. 2020 Appl Energy. 257 -
- Yang, Z. ; Gaidhane, A.D. ; Drgoňa, J. ; Chandan, V. ; Halappanavar, M. ; Liu, F. Physics-constrained graph modeling for building thermal dynamics. 2024 Energy AI. 16 -
Paper not yet in RePEc: Add citation now
- Yu, Z. ; Dexter, A. Online tuning of a supervisory fuzzy controller for low-energy building system using reinforcement learning. 2010 Control Eng Pract. 18 532-539
Paper not yet in RePEc: Add citation now
- Zhang, Z. ; Chong, A. ; Pan, Y. ; Zhang, C. ; Lam, K.P. Whole building energy model for HVAC optimal control: a practical framework based on deep reinforcement learning. 2019 Energ Buildings. 199 472-490
Paper not yet in RePEc: Add citation now
- Zou, Z. ; Yu, X. ; Ergan, S. Towards optimal control of air handling units using deep reinforcement learning and recurrent neural network. 2020 Build Environ. 168 -
Paper not yet in RePEc: Add citation now