create a website

Systematic Review on Deep Reinforcement Learning-Based Energy Management for Different Building Types. (2022). Shaqour, Ayas ; Hagishima, Aya.
In: Energies.
RePEc:gam:jeners:v:15:y:2022:i:22:p:8663-:d:976978.

Full description at Econpapers || Download paper

Cited: 2

Citations received by this document

Cites: 139

References cited by this document

Cocites: 37

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Reinforcement learning for data center energy efficiency optimization: A systematic literature review and research roadmap. (2025). Elmusrati, Mohammed ; Vlisuo, Petri ; Sharma, Shiva ; Kahil, Hussain.
    In: Applied Energy.
    RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004647.

    Full description at Econpapers || Download paper

  2. Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications. (2023). Michailidis, Panagiotis ; Kosmatopoulos, Elias ; Vamvakas, Dimitrios ; Korkas, Christos.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:14:p:5326-:d:1192246.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Achiam, J. Spinning up in Deep Reinforcement Learning. Available online: https://github.com/openai/spinningup (accessed on 15 July 2022).
    Paper not yet in RePEc: Add citation now
  2. Afram, A.; Janabi-Sharifi, F.; Fung, A.S.; Raahemifar, K. Artificial Neural Network (ANN) Based Model Predictive Control (MPC) and Optimization of HVAC Systems: A State of the Art Review and Case Study of a Residential HVAC System. Energy Build. 2017, 141, 96–113. [CrossRef]
    Paper not yet in RePEc: Add citation now
  3. Ahn, K.U.; Park, C.S. Application of Deep Q-Networks for Model-Free Optimal Control Balancing between Different HVAC Systems. Sci. Technol. Built Environ. 2020, 26, 61–74. [CrossRef]
    Paper not yet in RePEc: Add citation now
  4. Ahrarinouri, M.; Rastegar, M.; Karami, K.; Seifi, A.R. Distributed Reinforcement Learning Energy Management Approach in Multiple Residential Energy Hubs. Sustain. Energy Grids Netw. 2022, 32, 100795. [CrossRef]
    Paper not yet in RePEc: Add citation now
  5. Alanne, K.; Sierla, S. An Overview of Machine Learning Applications for Smart Buildings. Sustain. Cities Soc. 2022, 76, 103445. [CrossRef]
    Paper not yet in RePEc: Add citation now
  6. Alexandropoulos, G.C.; Stylianopoulos, K.; Huang, C.; Yuen, C.; Bennis, M.; Debbah, M. Pervasive Machine Learning for Smart Radio Environments Enabled by Reconfigurable Intelligent Surfaces. Proc. IEEE 2022, 110, 1494–1525. [CrossRef]
    Paper not yet in RePEc: Add citation now
  7. Amasyali, K.; Munk, J.; Kurte, K.; Kuruganti, T.; Zandi, H. Deep Reinforcement Learning for Autonomous Water Heater Control. Buildings 2021, 11, 548. [CrossRef]
    Paper not yet in RePEc: Add citation now
  8. An, Y.; Niu, Z.; Chen, C. Smart Control of Window and Air Cleaner for Mitigating Indoor PM2.5 with Reduced Energy Consumption Based on Deep Reinforcement Learning. Build. Environ. 2022, 224, 109583. [CrossRef]
    Paper not yet in RePEc: Add citation now
  9. Araya, D.B.; Grolinger, K.; ElYamany, H.F.; Capretz, M.A.M.; Bitsuamlak, G. An Ensemble Learning Framework for Anomaly Detection in Building Energy Consumption. Energy Build. 2017, 144, 191–206. [CrossRef] Energies 2022, 15, 8663 23 of 27
    Paper not yet in RePEc: Add citation now
  10. Arroyo, J.; Manna, C.; Spiessens, F.; Helsen, L. Reinforced Model Predictive Control (RL-MPC) for Building Energy Management. Appl. Energy 2022, 309, 118346. [CrossRef]

  11. Azuatalam, D.; Lee, W.L.; de Nijs, F.; Liebman, A. Reinforcement Learning for Whole-Building HVAC Control and Demand Response. Energy AI 2020, 2, 100020. [CrossRef] Energies 2022, 15, 8663 27 of 27
    Paper not yet in RePEc: Add citation now
  12. Baker, M. Is There a Reproducibility Crisis? Nature 2016, 533, 452–454. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  13. Ben Romdhane, S.; Amamou, A.; ben Khalifa, R.; Saïd, N.M.; Younsi, Z.; Jemni, A. A Review on Thermal Energy Storage Using Phase Change Materials in Passive Building Applications. J. Build. Eng. 2020, 32, 101563. [CrossRef]
    Paper not yet in RePEc: Add citation now
  14. Biemann, M.; Scheller, F.; Liu, X.; Huang, L. Experimental Evaluation of Model-Free Reinforcement Learning Algorithms for Continuous HVAC Control. Appl. Energy 2021, 298, 117164. [CrossRef]

  15. Bin Mahbod, M.H.; Chng, C.B.; Lee, P.S.; Chui, C.K. Energy Saving Evaluation of an Energy Efficient Data Center Using a Model-Free Reinforcement Learning Approach. Appl. Energy 2022, 322, 119392. [CrossRef]

  16. Blad, C.; Bøgh, S.; Kallesøe, C.S. Data-Driven Offline Reinforcement Learning for HVAC-Systems. Energy 2022, 261, 125290. [CrossRef]
    Paper not yet in RePEc: Add citation now
  17. Brandi, S.; Fiorentini, M.; Capozzoli, A. Comparison of Online and Offline Deep Reinforcement Learning with Model Predictive Control for Thermal Energy Management. Autom. Constr. 2022, 135, 104128. [CrossRef]
    Paper not yet in RePEc: Add citation now
  18. Brandi, S.; Gallo, A.; Capozzoli, A. A Predictive and Adaptive Control Strategy to Optimize the Management of Integrated Energy Systems in Buildings. Energy Rep. 2022, 8, 1550–1567. [CrossRef]
    Paper not yet in RePEc: Add citation now
  19. Brandi, S.; Piscitelli, M.S.; Martellacci, M.; Capozzoli, A. Deep Reinforcement Learning to Optimise Indoor Temperature Control and Heating Energy Consumption in Buildings. Energy Build. 2020, 224, 110225. [CrossRef]
    Paper not yet in RePEc: Add citation now
  20. Cao, X.; Dai, X.; Liu, J. Building Energy-Consumption Status Worldwide and the State-of-the-Art Technologies for Zero-Energy Buildings during the Past Decade. Energy Build. 2016, 128, 198–213. [CrossRef]
    Paper not yet in RePEc: Add citation now
  21. Carlucci, S.; de Simone, M.; Firth, S.K.; Kjærgaard, M.B.; Markovic, R.; Rahaman, M.S.; Annaqeeb, M.K.; Biandrate, S.; Das, A.; Dziedzic, J.W.; et al. Modeling Occupant Behavior in Buildings. Build. Environ. 2020, 174, 106768. [CrossRef]
    Paper not yet in RePEc: Add citation now
  22. Chemingui, Y.; Gastli, A.; Ellabban, O. Reinforcement Learning-Based School Energy Management System. Energies 2020, 13, 6354. [CrossRef]

  23. Chen, C.; Wang, J.; Heo, Y.; Kishore, S. MPC-Based Appliance Scheduling for Residential Building Energy Management Controller. IEEE Trans. Smart Grid 2013, 4, 1401–1410. [CrossRef]
    Paper not yet in RePEc: Add citation now
  24. Chu, Y.; Wei, Z.; Sun, G.; Zang, H.; Chen, S.; Zhou, Y. Optimal Home Energy Management Strategy: A Reinforcement Learning Method with Actor-Critic Using Kronecker-Factored Trust Region. Electr. Power Syst. Res. 2022, 212, 108617. [CrossRef]
    Paper not yet in RePEc: Add citation now
  25. Coraci, D.; Brandi, S.; Piscitelli, M.S.; Capozzoli, A. Online Implementation of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and Energy Efficiency in Buildings. Energies 2021, 14, 997. [CrossRef]

  26. Deep Mind. DeepMind AI Reduces Google Data Centre Cooling Bill by 40%. Available online: https://www.deepmind.com/ blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40 (accessed on 11 October 2022).
    Paper not yet in RePEc: Add citation now
  27. Deltetto, D.; Coraci, D.; Pinto, G.; Piscitelli, M.S.; Capozzoli, A. Exploring the Potentialities of Deep Reinforcement Learning for Incentive-Based Demand Response in a Cluster of Small Commercial Buildings. Energies 2021, 14, 2933. [CrossRef]

  28. Denyer, D.; Tranfield, D. Producing a systematic review. In The Sage Handbook of Organizational Research Methods; Hardcover; Sage Publications Ltd.: Thousand Oaks, CA, USA, 2009; pp. 671–689, ISBN 978-1-4129-3118-2.
    Paper not yet in RePEc: Add citation now
  29. Denyer, D.; Tranfield, D.; van Aken, J.E. Developing Design Propositions through Research Synthesis. Organ. Stud. 2008, 29, 393–413. [CrossRef]
    Paper not yet in RePEc: Add citation now
  30. Ding, X.; Du, W.; Cerpa, A. OCTOPUS: Deep reinforcement learning for holistic smart building control. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, New York, NY, USA, 13–14 November 2019; ACM: New York, NY, USA, 2019; pp. 326–335. Energies 2022, 15, 8663 26 of 27
    Paper not yet in RePEc: Add citation now
  31. Du, Y.; Li, F.; Kurte, K.; Munk, J.; Zandi, H. Demonstration of Intelligent HVAC Load Management with Deep Reinforcement Learning: Real-World Experience of Machine Learning in Demand Control. IEEE Power Energy Mag. 2022, 20, 42–53. [CrossRef] Energies 2022, 15, 8663 24 of 27
    Paper not yet in RePEc: Add citation now
  32. Fang, X.; Gong, G.; Li, G.; Chun, L.; Peng, P.; Li, W.; Shi, X.; Chen, X. Deep Reinforcement Learning Optimal Control Strategy for Temperature Setpoint Real-Time Reset in Multi-Zone Building HVAC System. Appl. Eng. 2022, 212, 118552. [CrossRef]
    Paper not yet in RePEc: Add citation now
  33. Forootani, A.; Rastegar, M.; Jooshaki, M. An Advanced Satisfaction-Based Home Energy Management System Using Deep Reinforcement Learning. IEEE Access 2022, 10, 47896–47905. [CrossRef]
    Paper not yet in RePEc: Add citation now
  34. Fridman, L. Introduction to Deep RL. Available online: https://deeplearning.mit.edu/ (accessed on 16 October 2022).
    Paper not yet in RePEc: Add citation now
  35. Fu, Q.; Chen, X.; Ma, S.; Fang, N.; Xing, B.; Chen, J. Optimal Control Method of HVAC Based on Multi-Agent Deep Reinforcement Learning. Energy Build. 2022, 270, 112284. [CrossRef]
    Paper not yet in RePEc: Add citation now
  36. Fu, Q.; Han, Z.; Chen, J.; Lu, Y.; Wu, H.; Wang, Y. Applications of Reinforcement Learning for Building Energy Efficiency Control: A Review. J. Build. Eng. 2022, 50, 104165. [CrossRef]
    Paper not yet in RePEc: Add citation now
  37. Gao, G.; Li, J.; Wen, Y. DeepComfort: Energy-Efficient Thermal Comfort Control in Buildings Via Reinforcement Learning. IEEE Internet Things J. 2020, 7, 8472–8484. [CrossRef]
    Paper not yet in RePEc: Add citation now
  38. Gao, Y.; Matsunami, Y.; Miyata, S.; Akashi, Y. Operational Optimization for Off-Grid Renewable Building Energy System Using Deep Reinforcement Learning. Appl. Energy 2022, 325, 119783. [CrossRef]

  39. Glatt, R.; da Silva, F.L.; Soper, B.; Dawson, W.A.; Rusu, E.; Goldhahn, R.A. Collaborative energy demand response with decentralized actor and centralized critic. In Proceedings of the 8th ACM International Conference on Systems for EnergyEfficient Buildings, Cities, and Transportation, Coimbra, Portugal, 17–18 November 2021; ACM: New York, NY, USA, 2021; pp. 333–337.
    Paper not yet in RePEc: Add citation now
  40. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
    Paper not yet in RePEc: Add citation now
  41. Gupta, A.; Badr, Y.; Negahban, A.; Qiu, R.G. Energy-Efficient Heating Control for Smart Buildings with Deep Reinforcement Learning. J. Build. Eng. 2021, 34, 101739. [CrossRef]
    Paper not yet in RePEc: Add citation now
  42. Ha, D.; Schmidhuber, J. World Models. Forecast. Bus. Econ. 2018, 201–209. [CrossRef]
    Paper not yet in RePEc: Add citation now
  43. Han, M.; May, R.; Zhang, X.; Wang, X.; Pan, S.; Yan, D.; Jin, Y.; Xu, L. A Review of Reinforcement Learning Methodologies for Controlling Occupant Comfort in Buildings. Sustain. Cities Soc. 2019, 51, 101748. [CrossRef]
    Paper not yet in RePEc: Add citation now
  44. Han, M.; Zhao, J.; Zhang, X.; Shen, J.; Li, Y. The Reinforcement Learning Method for Occupant Behavior in Building Control: A Review. Energy Built Environ. 2021, 2, 137–148. [CrossRef]
    Paper not yet in RePEc: Add citation now
  45. Hanumaiah, V.; Genc, S. Distributed Multi-Agent Deep Reinforcement Learning Framework for Whole-Building HVAC Control. arXiv 2021, arXiv:2110.13450.
    Paper not yet in RePEc: Add citation now
  46. Heidari, A.; Maréchal, F.; Khovalyg, D. An Occupant-Centric Control Framework for Balancing Comfort, Energy Use and Hygiene in Hot Water Systems: A Model-Free Reinforcement Learning Approach. Appl. Energy 2022, 312, 118833. [CrossRef]

  47. Heidari, A.; Maréchal, F.; Khovalyg, D. Reinforcement Learning for Proactive Operation of Residential Energy Systems by Learning Stochastic Occupant Behavior and Fluctuating Solar Energy: Balancing Comfort, Hygiene and Energy Use. Appl. Energy 2022, 318, 119206. [CrossRef]

  48. Huang, C.; Zhang, H.; Wang, L.; Luo, X.; Song, Y. Mixed Deep Reinforcement Learning Considering Discrete-Continuous Hybrid Action Space for Smart Home Energy Management. J. Mod. Power Syst. Clean Energy 2022, 10, 743–754. [CrossRef]
    Paper not yet in RePEc: Add citation now
  49. Jneid, K.; Ploix, S.; Reignier, P.; Jallon, P. Deep Q-network boosted with external knowledge for HVAC control. In Proceedings of the 8th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Coimbra, Portugal, 17–18 November 2021; ACM: New York, NY, USA, 2021; pp. 329–332.
    Paper not yet in RePEc: Add citation now
  50. Jung, S.; Jeoung, J.; Hong, T. Occupant-Centered Real-Time Control of Indoor Temperature Using Deep Learning Algorithms. Build. Environ. 2022, 208, 108633. [CrossRef]
    Paper not yet in RePEc: Add citation now
  51. Kamal, M.A. Material Characteristics and Building Physics for Energy Efficiency. Key Eng. Mater. 2015, 666, 77–87. [CrossRef]
    Paper not yet in RePEc: Add citation now
  52. Kanakadhurga, D.; Prabaharan, N. Demand Response-Based Peer-to-Peer Energy Trading among the Prosumers and Consumers. Energy Rep. 2021, 7, 7825–7834. [CrossRef]
    Paper not yet in RePEc: Add citation now
  53. Kathirgamanathan, A.; Mangina, E.; Finn, D.P. Development of a Soft Actor Critic Deep Reinforcement Learning Approach for Harnessing Energy Flexibility in a Large Office Building. Energy AI 2021, 5, 100101. [CrossRef]
    Paper not yet in RePEc: Add citation now
  54. Kathirgamanathan, A.; Twardowski, K.; Mangina, E.; Finn, D.P. A Centralised soft actor critic deep reinforcement learning approach to district demand side management through CityLearn. In Proceedings of the Proceedings of the 1st International Workshop on Reinforcement Learning for Energy Management in Buildings & Cities, Online, 17 November 2020; ACM: New York, NY, USA, 2020; pp. 11–14. Energies 2022, 15, 8663 25 of 27
    Paper not yet in RePEc: Add citation now
  55. Kurte, K.; Amasyali, K.; Munk, J.; Zandi, H. Comparative analysis of model-free and model-based HVAC control for residential demand response. In Proceedings of the 8th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Coimbra, Portugal, 17–18 November 2021; ACM: New York, NY, USA, 2021; pp. 309–313.
    Paper not yet in RePEc: Add citation now
  56. Kurte, K.; Munk, J.; Kotevska, O.; Amasyali, K.; Smith, R.; McKee, E.; Du, Y.; Cui, B.; Kuruganti, T.; Zandi, H. Evaluating the Adaptability of Reinforcement Learning Based HVAC Control for Residential Houses. Sustainability 2020, 12, 7727. [CrossRef]

  57. Lawal, K.; Rafsanjani, H.N. Trends, Benefits, Risks, and Challenges of IoT Implementation in Residential and Commercial Buildings. Energy Built Environ. 2022, 3, 251–266. [CrossRef]
    Paper not yet in RePEc: Add citation now
  58. Lee, J.Y.; Rahman, A.; Huang, S.; Smith, A.D.; Katipamula, S. On-Policy Learning-Based Deep Reinforcement Learning Assessment for Building Control Efficiency and Stability. Sci. Technol. Built Environ. 2022, 28, 1150–1165. [CrossRef]
    Paper not yet in RePEc: Add citation now
  59. Lee, S.; Choi, D.H. Federated Reinforcement Learning for Energy Management of Multiple Smart Homes with Distributed Energy Resources. IEEE Trans. Ind. Inf. 2022, 18, 488–497. [CrossRef]
    Paper not yet in RePEc: Add citation now
  60. Lei, Y.; Zhan, S.; Ono, E.; Peng, Y.; Zhang, Z.; Hasama, T.; Chong, A. A Practical Deep Reinforcement Learning Framework for Multivariate Occupant-Centric Control in Buildings. Appl. Energy 2022, 324, 119742. [CrossRef]

  61. Leitao, J.; Gil, P.; Ribeiro, B.; Cardoso, A. A Survey on Home Energy Management. IEEE Access 2020, 8, 5699–5722. [CrossRef]
    Paper not yet in RePEc: Add citation now
  62. Li, J.; Zhang, W.; Gao, G.; Wen, Y.; Jin, G.; Christopoulos, G. Toward Intelligent Multizone Thermal Control with Multiagent Deep Reinforcement Learning. IEEE Internet Things J. 2021, 8, 11150–11162. [CrossRef]
    Paper not yet in RePEc: Add citation now
  63. Li, T.; Dong, M. Residential Energy Storage Management with Bidirectional Energy Control. IEEE Trans. Smart Grid 2019, 10, 3596–3611. [CrossRef]
    Paper not yet in RePEc: Add citation now
  64. Li, Z.; Sun, Z.; Meng, Q.; Wang, Y.; Li, Y. Reinforcement Learning of Room Temperature Set-Point of Thermal Storage AirConditioning System with Demand Response. Energy Build. 2022, 259, 111903. [CrossRef]
    Paper not yet in RePEc: Add citation now
  65. Liang, Z.; Huang, C.; Su, W.; Duan, N.; Donde, V.; Wang, B.; Zhao, X. Safe Reinforcement Learning-Based Resilient Proactive Scheduling for a Commercial Building Considering Correlated Demand Response. IEEE Open Access J. Power Energy 2021, 8, 85–96. [CrossRef]
    Paper not yet in RePEc: Add citation now
  66. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [CrossRef]

  67. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous Control with Deep Reinforcement Learning. arXiv 2015, arXiv:1509.02971.
    Paper not yet in RePEc: Add citation now
  68. Liu, B.; Akcakaya, M.; McDermott, T.E. Automated Control of Transactive HVACs in Energy Distribution Systems. IEEE Trans. Smart Grid 2021, 12, 2462–2471. [CrossRef]
    Paper not yet in RePEc: Add citation now
  69. Liu, T.; Tan, Z.; Xu, C.; Chen, H.; Li, Z. Study on Deep Reinforcement Learning Techniques for Building Energy Consumption Forecasting. Energy Build. 2020, 208, 109675. [CrossRef]
    Paper not yet in RePEc: Add citation now
  70. Liu, T.; Xu, C.; Guo, Y.; Chen, H. A Novel Deep Reinforcement Learning Based Methodology for Short-Term HVAC System Energy Consumption Prediction. Int. J. Refrig. 2019, 107, 39–51. [CrossRef]
    Paper not yet in RePEc: Add citation now
  71. Lork, C.; Li, W.T.; Qin, Y.; Zhou, Y.; Yuen, C.; Tushar, W.; Saha, T.K. An Uncertainty-Aware Deep Reinforcement Learning Framework for Residential Air Conditioning Energy Management. Appl. Energy 2020, 276, 115426. [CrossRef]

  72. Lu, J.; Mannion, P.; Mason, K. A Multi-Objective Multi-Agent Deep Reinforcement Learning Approach to Residential Appliance Scheduling. IET Smart Grid 2022, 5, 260–280. [CrossRef]
    Paper not yet in RePEc: Add citation now
  73. Marzullo, T.; Dey, S.; Long, N.; Leiva Vilaplana, J.; Henze, G. A High-Fidelity Building Performance Simulation Test Bed for the Development and Evaluation of Advanced Controls. J. Build. Perform. Simul. 2022, 15, 379–397. [CrossRef]
    Paper not yet in RePEc: Add citation now
  74. Mason, K.; Grijalva, S. A Review of Reinforcement Learning for Autonomous Building Energy Management. Comput. Electr. Eng. 2019, 78, 300–312. [CrossRef]
    Paper not yet in RePEc: Add citation now
  75. Mathew, A.; Roy, A.; Mathew, J. Intelligent Residential Energy Management System Using Deep Reinforcement Learning. IEEE Syst. J. 2020, 14, 5362–5372. [CrossRef]
    Paper not yet in RePEc: Add citation now
  76. Mbuwir, B.v.; Vanmunster, L.; Thoelen, K.; Deconinck, G. A Hybrid Policy Gradient and Rule-Based Control Framework for Electric Vehicle Charging. Energy AI 2021, 4, 100059. [CrossRef]
    Paper not yet in RePEc: Add citation now
  77. McKee, E.; Du, Y.; Li, F.; Munk, J.; Johnston, T.; Kurte, K.; Kotevska, O.; Amasyali, K.; Zandi, H. Deep reinforcement learning for residential HVAC control with consideration of human occupancy. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020; pp. 1–5.
    Paper not yet in RePEc: Add citation now
  78. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep Reinforcement Learning. arXiv 2013, arXiv:1312.5602.
    Paper not yet in RePEc: Add citation now
  79. Mocanu, E.; Mocanu, D.C.; Nguyen, P.H.; Liotta, A.; Webber, M.E.; Gibescu, M.; Slootweg, J.G. On-Line Building Energy Optimization Using Deep Reinforcement Learning. IEEE Trans. Smart Grid 2019, 10, 3698–3708. [CrossRef]
    Paper not yet in RePEc: Add citation now
  80. Moerland, T.M.; Broekens, J.; Plaat, A.; Jonker, C.M. A0C: Alpha Zero in Continuous Action Space. arXiv 2018, arXiv:1805.09613.
    Paper not yet in RePEc: Add citation now
  81. Monie, S.; Nilsson, A.M.; Widén, J.; Åberg, M. A Residential Community-Level Virtual Power Plant to Balance Variable Renewable Power Generation in Sweden. Energy Convers. Manag. 2021, 228, 113597. [CrossRef]
    Paper not yet in RePEc: Add citation now
  82. Narantuya, J.; Shin, J.S.; Park, S.; Kim, J.W. Multi-Agent Deep Reinforcement Learning-Based Resource Allocation in HPC/AI Converged Cluster. Comput. Mater. Contin. 2022, 72, 4375–4395. [CrossRef]
    Paper not yet in RePEc: Add citation now
  83. Naug, A.; Quiñones-Grueiro, M.; Biswas, G. Continual adaptation in deep reinforcement learning-based control applied to non-stationary building environments. In Proceedings the 1st International Workshop on Reinforcement Learning for Energy Management in Buildings & Cities, Online, 17 November 2020; ACM: New York, NY, USA, 2020; pp. 24–28.
    Paper not yet in RePEc: Add citation now
  84. Park, B.; Rempel, A.R.; Lai, A.K.L.; Chiaramonte, J.; Mishra, S. Reinforcement Learning for Control of Passive Heating and Cooling in Buildings. IFAC-Papers 2021, 54, 907–912. [CrossRef]
    Paper not yet in RePEc: Add citation now
  85. Peng, R.D. Reproducible Research in Computational Science. Science 2011, 334, 1226–1227. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  86. Perera, A.T.D.; Kamalaruban, P. Applications of Reinforcement Learning in Energy Systems. Renew. Sustain. Energy Rev. 2021, 137, 110618. [CrossRef]

  87. Pigott, A.; Crozier, C.; Baker, K.; Nagy, Z. GridLearn: Multiagent Reinforcement Learning for Grid-Aware Building Energy Management. Electr. Power Syst. Res. 2021, 213, 108521. [CrossRef]
    Paper not yet in RePEc: Add citation now
  88. Pinto, G.; Deltetto, D.; Capozzoli, A. Data-Driven District Energy Management with Surrogate Models and Deep Reinforcement Learning. Appl. Energy 2021, 304, 117642. [CrossRef]

  89. Pinto, G.; Kathirgamanathan, A.; Mangina, E.; Finn, D.P.; Capozzoli, A. Enhancing Energy Management in Grid-Interactive Buildings: A Comparison among Cooperative and Coordinated Architectures. Appl. Energy 2022, 310, 118497. [CrossRef]

  90. Qin, Y.; Ke, J.; Wang, B.; Filaretov, G.F. Energy Optimization for Regional Buildings Based on Distributed Reinforcement Learning. Sustain. Cities Soc. 2022, 78, 103625. [CrossRef]
    Paper not yet in RePEc: Add citation now
  91. Racanière, S.; Weber, T.; Reichert, D.P.; Buesing, L.; Guez, A.; Rezende, D.; Badia, A.P.; Vinyals, O.; Heess, N.; Li, Y.; et al. Imagination-augmented agents for deep reinforcement learning. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5691–5702. [CrossRef]
    Paper not yet in RePEc: Add citation now
  92. Ramos, D.; Faria, P.; Gomes, L.; Vale, Z. A Contextual Reinforcement Learning Approach for Electricity Consumption Forecasting in Buildings. IEEE Access 2022, 10, 61366–61374. [CrossRef]
    Paper not yet in RePEc: Add citation now
  93. Schmidt, M.; Moreno, M.V.; Schülke, A.; Macek, K.; Mařík, K.; Pastor, A.G. Optimizing Legacy Building Operation: The Evolution into Data-Driven Predictive Cyber-Physical Systems. Energy Build. 2017, 148, 257–279. [CrossRef]
    Paper not yet in RePEc: Add citation now
  94. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Openai, O.K. Proximal Policy Optimization Algorithms. arXiv 2017, arXiv:1707.06347.
    Paper not yet in RePEc: Add citation now
  95. Serda, M.; Becker, F.G.; Cleary, M.; Team, R.M.; Holtermann, H.; The, D.; Agenda, N.; Science, P.; Sk, S.K.; Hinnebusch, R.; et al. Comparative Analysis of White-, Gray- and Black-Box Models for Thermal Simulation of Indoor Environment: Teaching Building Case Study. Uniw. Śl ˛ aski 2018, 7, 173–180. Available online: https://publications.ibpsa.org/conference/paper/?id=simbuild201 8_C025 (accessed on 18 October 2022).
    Paper not yet in RePEc: Add citation now
  96. Shaqour, A.; Farzaneh, H.; Almogdady, H. Day-Ahead Residential Electricity Demand Response Model Based on Deep Neural Networks for Peak Demand Reduction in the Jordanian Power Sector. Appl. Sci. 2021, 11, 6626. [CrossRef]
    Paper not yet in RePEc: Add citation now
  97. Shaqour, A.; Farzaneh, H.; Yoshida, Y.; Hinokuma, T. Power Control and Simulation of a Building Integrated Stand-Alone Hybrid PV-Wind-Battery System in Kasuga City, Japan. Energy Rep. 2020, 6, 1528–1544. [CrossRef]
    Paper not yet in RePEc: Add citation now
  98. Shaqour, A.; Ono, T.; Hagishima, A.; Farzaneh, H. Electrical Demand Aggregation Effects on the Performance of Deep LearningBased Short-Term Load Forecasting of a Residential Building. Energy AI 2022, 8, 100141. [CrossRef]
    Paper not yet in RePEc: Add citation now
  99. Shen, R.; Zhong, S.; Wen, X.; An, Q.; Zheng, R.; Li, Y.; Zhao, J. Multi-Agent Deep Reinforcement Learning Optimization Framework for Building Energy System with Renewable Energy. Appl. Energy 2022, 312, 118724. [CrossRef]

  100. Shuvo, S.S.; Yilmaz, Y. Home Energy Recommendation System (HERS): A Deep Reinforcement Learning Method Based on Residents’ Feedback and Activity. IEEE Trans. Smart Grid 2022, 13, 2812–2821. [CrossRef]
    Paper not yet in RePEc: Add citation now
  101. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al. Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm. arXiv 2017, arXiv:1712.01815.
    Paper not yet in RePEc: Add citation now
  102. Sun, Y.; Zhang, Y.; Guo, D.; Zhang, X.; Lai, Y.; Luo, D. Intelligent Distributed Temperature and Humidity Control Mechanism for Uniformity and Precision in the Indoor Environment. IEEE Internet Things J. 2022, 9, 19101–19115. [CrossRef]
    Paper not yet in RePEc: Add citation now
  103. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018; ISBN 0262352702.
    Paper not yet in RePEc: Add citation now
  104. Svetozarevic, B.; Baumann, C.; Muntwiler, S.; di Natale, L.; Zeilinger, M.N.; Heer, P. Data-Driven Control of Room Temperature and Bidirectional EV Charging Using Deep Reinforcement Learning: Simulations and Experiments. Appl. Energy 2022, 307, 118127. [CrossRef]

  105. Torriti, J.; Zhao, X.; Yuan, Y. The Risk of Residential Peak Electricity Demand: A Comparison of Five European Countries. Energies 2017, 10, 385. [CrossRef]

  106. Touzani, S.; Prakash, A.K.; Wang, Z.; Agarwal, S.; Pritoni, M.; Kiran, M.; Brown, R.; Granderson, J. Controlling Distributed Energy Resources via Deep Reinforcement Learning for Load Flexibility and Energy Efficiency. Appl. Energy 2021, 304, 117733. [CrossRef]

  107. United Nations Environment Programme. 2021 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector; United Nations Environment Programme: Nairobi, Kenya, 2021.
    Paper not yet in RePEc: Add citation now
  108. Van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-Learning. In Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI 2016), Phoenix, AZ, USA, 12–17 February 2015; pp. 2094–2100. [CrossRef]
    Paper not yet in RePEc: Add citation now
  109. Van Le, D.; Liu, Y.; Wang, R.; Tan, R.; Wong, Y.-W.; Wen, Y. Control of air free-cooled data centers in tropics via deep reinforcement learning. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, New York, NY, USA, 13–14 November 2019; ACM: New York, NY, USA, 2019; pp. 306–315.
    Paper not yet in RePEc: Add citation now
  110. Vázquez-Canteli, J.R.; Kämpf, J.; Henze, G.; Nagy, Z. CityLearn v1.0: An OpenAI Gym environment for demand response with deep reinforcement learning. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys 2019), New York, NY, USA, 13–14 November 2019; pp. 356–357. [CrossRef]
    Paper not yet in RePEc: Add citation now
  111. Verma, S.; Agrawal, S.; Venkatesh, R.; Shrotri, U.; Nagarathinam, S.; Jayaprakash, R.; Dutta, A. EImprove—Optimizing energy and comfort in buildings based on formal semantics and reinforcement learning. In Proceedings of the 58th ACM/IEEE Design Automation Conference (DAC), Online, 5–9 December 2021; pp. 157–162.
    Paper not yet in RePEc: Add citation now
  112. Wang, Z.; Hong, T. Reinforcement Learning for Building Controls: The Opportunities and Challenges. Appl. Energy 2020, 269, 115036. [CrossRef]

  113. Wei, T.; Wang, Y.; Zhu, Q. Deep reinforcement learning for building HVAC control. In Proceedings of the 54th Annual Design Automation Conference, Austin, TX, USA, 18–22 June 2017; Part 128280. [CrossRef]
    Paper not yet in RePEc: Add citation now
  114. Williams, R.J. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning. Mach. Learn. 1992, 8, 229–256. [CrossRef]
    Paper not yet in RePEc: Add citation now
  115. Xu, D. Learning Efficient Dynamic Controller for HVAC System. Mob. Inf. Syst. 2022, 2022, 4157511. [CrossRef]
    Paper not yet in RePEc: Add citation now
  116. Xu, Z.; Jia, Q.S.; Guan, X.; Xie, X. A new method to solve large-scale building energy management for energy saving. In Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE), New Taipei, Taiwan, 18–22 August 2014; pp. 940–945. [CrossRef]
    Paper not yet in RePEc: Add citation now
  117. Yang, T.; Zhao, L.; Li, W.; Wu, J.; Zomaya, A.Y. Towards Healthy and Cost-Effective Indoor Environment Management in Smart Homes: A Deep Reinforcement Learning Approach. Appl. Energy 2021, 300, 117335. [CrossRef]

  118. Ye, Y.; Qiu, D.; Wang, H.; Tang, Y.; Strbac, G. Real-Time Autonomous Residential Demand Response Management Based on Twin Delayed Deep Deterministic Policy Gradient Learning. Energy 2021, 14, 531. [CrossRef]

  119. Yoon, Y.R.; Moon, H.J. Performance Based Thermal Comfort Control (PTCC) Using Deep Reinforcement Learning for Space Cooling. Energy Build. 2019, 203, 109420. [CrossRef]
    Paper not yet in RePEc: Add citation now
  120. Yu, L.; Qin, S.; Zhang, M.; Shen, C.; Jiang, T.; Guan, X. A Review of Deep Reinforcement Learning for Smart Building Energy Management. IEEE Internet Things J. 2021, 8, 12046–12063. [CrossRef]
    Paper not yet in RePEc: Add citation now
  121. Yu, L.; Sun, Y.; Xu, Z.; Shen, C.; Yue, D.; Jiang, T.; Guan, X. Multi-Agent Deep Reinforcement Learning for HVAC Control in Commercial Buildings. IEEE Trans. Smart Grid 2021, 12, 407–419. [CrossRef]
    Paper not yet in RePEc: Add citation now
  122. Yu, L.; Xie, W.; Xie, D.; Zou, Y.; Zhang, D.; Sun, Z.; Zhang, L.; Zhang, Y.; Jiang, T. Deep Reinforcement Learning for Smart Home Energy Management. IEEE Internet Things J. 2020, 7, 2751–2762. [CrossRef]
    Paper not yet in RePEc: Add citation now
  123. Yu, L.; Xu, Z.; Zhang, T.; Guan, X.; Yue, D. Energy-Efficient Personalized Thermal Comfort Control in Office Buildings Based on Multi-Agent Deep Reinforcement Learning. Build. Environ. 2022, 223, 109458. [CrossRef]
    Paper not yet in RePEc: Add citation now
  124. Zenginis, I.; Vardakas, J.; Koltsaklis, N.E.; Verikoukis, C. Smart Home’s Energy Management Through a Clustering-Based Reinforcement Learning Approach. IEEE Internet Things J. 2022, 9, 16363–16371. [CrossRef]
    Paper not yet in RePEc: Add citation now
  125. Zhang, C.; Kuppannagari, S.R.; Kannan, R.; Prasanna, V.K. Building HVAC scheduling using reinforcement learning via neural network based model approximation. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, New York, NY, USA, 13–14 November 2019; ACM: New York, NY, USA, 2019; pp. 287–296.
    Paper not yet in RePEc: Add citation now
  126. Zhang, T.; Aakash Krishna, G.S.; Afshari, M.; Musilek, P.; Taylor, M.E.; Ardakanian, O. Diversity for transfer in learning-based control of buildings. In Proceedings of the Thirteenth ACM International Conference on Future Energy Systems, Online, 28 June–1 July 2022; ACM: New York, NY, USA, 2022; pp. 556–564.
    Paper not yet in RePEc: Add citation now
  127. Zhang, T.; Baasch, G.; Ardakanian, O.; Evins, R. On the joint control of multiple building systems with reinforcement learning. In Proceedings of the Twelfth ACM International Conference on Future Energy Systems, Online, 28 June–1 July 2021; ACM: New York, NY, USA, 2021; pp. 60–72.
    Paper not yet in RePEc: Add citation now
  128. Zhang, W.; Zhang, Z. Energy Efficient Operation Optimization of Building Air-Conditioners via Simulator-Assisted Asynchronous Reinforcement Learning. IOP Conf. Ser. Earth Environ. Sci 2022, 1048, 012006. [CrossRef]
    Paper not yet in RePEc: Add citation now
  129. Zhang, X.; Biagioni, D.; Cai, M.; Graf, P.; Rahman, S. An Edge-Cloud Integrated Solution for Buildings Demand Response Using Reinforcement Learning. IEEE Trans. Smart Grid 2021, 12, 420–431. [CrossRef]
    Paper not yet in RePEc: Add citation now
  130. Zhang, X.; Chintala, R.; Bernstein, A.; Graf, P.; Jin, X. Grid-interactive multi-zone building control using reinforcement learning with global-local policy search. In Proceedings of the American Control Conference (ACC), Online, 25–28 May 2021; pp. 4155–4162.
    Paper not yet in RePEc: Add citation now
  131. Zhang, Z.; Chong, A.; Pan, Y.; Zhang, C.; Lam, K.P. Whole Building Energy Model for HVAC Optimal Control: A Practical Framework Based on Deep Reinforcement Learning. Energy Build. 2019, 199, 472–490. [CrossRef]
    Paper not yet in RePEc: Add citation now
  132. Zhang, Z.; Chong, A.; Pan, Y.; Zhang, C.; Lu, S.; Lam, K. A Deep reinforcement learning approach to using whole building energy model for HVAC optimal control. In Proceedings of the ASHRAE/IBPSA-USA Building Performance Analysis Conference and SimBuild, Chicago, IL, USA, 26–28 September 2018.
    Paper not yet in RePEc: Add citation now
  133. Zhang, Z.; Lam, K.P. Practical implementation and evaluation of deep reinforcement learning control for a radiant heating system. In Proceedings of the 5th Conference on Systems for Built Environments, Shenzen, China, 7–8 November 2018; ACM: New York, NY, USA, 2018; pp. 148–157.
    Paper not yet in RePEc: Add citation now
  134. Zhang, Z.; Zhang, D.; Qiu, R.C. Deep Reinforcement Learning for Power System: An Overview. CSEE J. Power Energy Syst. 2019, 6, 213–225. [CrossRef]
    Paper not yet in RePEc: Add citation now
  135. Zhao, H.; Wang, B.; Liu, H.; Sun, H.; Pan, Z.; Guo, Q. Exploiting the Flexibility Inside Park-Level Commercial Buildings Considering Heat Transfer Time Delay: A Memory-Augmented Deep Reinforcement Learning Approach. IEEE Trans. Sustain. Energy 2022, 13, 207–219. [CrossRef]
    Paper not yet in RePEc: Add citation now
  136. Zhong, X.; Zhang, Z.; Zhang, R.; Zhang, C. End-to-End Deep Reinforcement Learning Control for HVAC Systems in Office Buildings. Designs 2022, 6, 52. [CrossRef]
    Paper not yet in RePEc: Add citation now
  137. Zhou, X.; Lin, W.; Kumar, R.; Cui, P.; Ma, Z. A Data-Driven Strategy Using Long Short Term Memory Models and Reinforcement Learning to Predict Building Electricity Consumption. Appl. Energy 2022, 306, 118078. [CrossRef]

  138. Zou, Z.; Yu, X.; Ergan, S. Towards Optimal Control of Air Handling Units Using Deep Reinforcement Learning and Recurrent Neural Network. Build. Environ. 2020, 168, 106535. [CrossRef]
    Paper not yet in RePEc: Add citation now
  139. Zsembinszki, G.; Fernández, C.; Vérez, D.; Cabeza, L.F.; Cannavale, A.; Martellotta, F.; Fiorito, F. Deep Learning Optimal Control for a Complex Hybrid Energy Storage System. Buildings 2021, 11, 194. [CrossRef]
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. An End-to-End Relearning Framework for Building Energy Optimization. (2025). Biswas, Gautam ; Quinones-Grueiro, Marcos ; Naug, Avisek.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:6:p:1408-:d:1610973.

    Full description at Econpapers || Download paper

  2. Research on Intelligent Vehicle Tracking Control and Energy Consumption Optimization Based on Dilated Convolutional Model Predictive Control. (2025). Li, Lanxin ; Pei, Wenhui ; Zhang, QI.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:10:p:2588-:d:1657616.

    Full description at Econpapers || Download paper

  3. Research on multi-objective optimization control of diesel engine combustion process based on model predictive control-guided reinforcement learning method. (2025). Wang, Zhe ; Ju, Peng ; Shi, Lei ; Deng, Kangyao ; Chen, Ziqiang.
    In: Energy.
    RePEc:eee:energy:v:325:y:2025:i:c:s0360544225018158.

    Full description at Econpapers || Download paper

  4. A review on electric vehicle charging station operation considering market dynamics and grid interaction. (2025). Li, LI ; Motlagh, Saheb Ghanbari ; Oladigbolu, Jamiu.
    In: Applied Energy.
    RePEc:eee:appene:v:392:y:2025:i:c:s0306261925007883.

    Full description at Econpapers || Download paper

  5. Improving the learning process of deep reinforcement learning agents operating in collective heating environments. (2025). Verhaert, Ivan ; Hellinckx, Peter ; Huybrechts, Thomas ; Kabbara, Zakarya ; Houben, Pieter Jan ; Ghane, Sara ; Jacobs, Stef.
    In: Applied Energy.
    RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001503.

    Full description at Econpapers || Download paper

  6. Unlocking predictive insights and interpretability in deep reinforcement learning for Building-Integrated Photovoltaic and Battery (BIPVB) systems. (2025). Shang, Juan ; Ruan, Yingjun ; Xu, Tingting ; Liu, Mingzhe ; Chen, Wei-An ; Otomo, Junichiro ; Yamate, Shun ; Hu, Zehuan ; Gao, Yuan.
    In: Applied Energy.
    RePEc:eee:appene:v:384:y:2025:i:c:s0306261925001175.

    Full description at Econpapers || Download paper

  7. Deep transfer learning strategy based on TimesBlock-CDAN for predicting thermal environment and air conditioner energy consumption in residential buildings. (2025). Hu, Zehuan ; Sun, Luning ; Imaizumi, Taiji ; Mae, Masayuki.
    In: Applied Energy.
    RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025728.

    Full description at Econpapers || Download paper

  8. AlphaDataCenterCooling: A virtual testbed for evaluating operational strategies in data center cooling plants. (2025). Zheng, Wanfu ; Wu, SI ; Li, Dingqian ; Yue, Shang ; Yang, PU ; Chen, Guanghao ; Wang, Zhe.
    In: Applied Energy.
    RePEc:eee:appene:v:380:y:2025:i:c:s030626192402484x.

    Full description at Econpapers || Download paper

  9. A systematic review of predictive, optimization, and smart control strategies for hydrogen-based building heating systems. (2025). Pozarlik, Artur ; Acar, Canan ; Kaabinejadian, Amirreza.
    In: Applied Energy.
    RePEc:eee:appene:v:379:y:2025:i:c:s030626192402378x.

    Full description at Econpapers || Download paper

  10. A dynamic coordination of microgrids. (2025). Adam, Ali A ; Elnady, A ; Naidoo, Raj M ; Bansal, Ramesh C ; Siti, Mukwanga W ; Mbungu, Nsilulu T ; Hamid, Abdul-Kadir ; Abokhali, Ahmed G.
    In: Applied Energy.
    RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924018695.

    Full description at Econpapers || Download paper

  11. Safe deep reinforcement learning for building energy management. (2025). Zhu, Xiuli ; Huang, Renke ; Wang, Peng ; Li, Ning ; Arroyo, Javier.
    In: Applied Energy.
    RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017112.

    Full description at Econpapers || Download paper

  12. Balancing Sustainability and Comfort: A Holistic Study of Building Control Strategies That Meet the Global Standards for Efficiency and Thermal Comfort. (2024). Tabaa, Mohamed ; Hachimi, Hanaa ; Chegari, Badr ; Azzi, Amal.
    In: Sustainability.
    RePEc:gam:jsusta:v:16:y:2024:i:5:p:2154-:d:1351521.

    Full description at Econpapers || Download paper

  13. A Review of Model Predictive Control for the Municipal Solid Waste Incineration Process. (2024). Wang, Tianzheng ; Tang, Jian ; Tian, Hao.
    In: Sustainability.
    RePEc:gam:jsusta:v:16:y:2024:i:17:p:7650-:d:1470554.

    Full description at Econpapers || Download paper

  14. Artificial Neural Network Applications for Energy Management in Buildings: Current Trends and Future Directions. (2024). Gkelios, Socratis ; Michailidis, Panagiotis ; Kosmatopoulos, Elias.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:3:p:570-:d:1325697.

    Full description at Econpapers || Download paper

  15. Reinforcement Learning Model-Based and Model-Free Paradigms for Optimal Control Problems in Power Systems: Comprehensive Review and Future Directions. (2024). Levron, Yoash ; Keren, Sarah ; Katzir, Liran ; Belikov, Juri ; MacHlev, Ram ; Naveh, Sivan Kaully ; Segev, Elior ; Balabanov, Alexander ; Ginzburg-Ganz, Elinor.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:21:p:5307-:d:1506486.

    Full description at Econpapers || Download paper

  16. Multi-Agent Reinforcement Learning for Smart Community Energy Management. (2024). Li, Jie ; Wang, Ning ; Wilk, Patrick.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:20:p:5211-:d:1502573.

    Full description at Econpapers || Download paper

  17. Validation of a Model Predictive Control Strategy on a High Fidelity Building Emulator. (2024). Capozzoli, Alfonso ; Yaghoubi, Ali Reza ; Fop, Davide.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:20:p:5117-:d:1498929.

    Full description at Econpapers || Download paper

  18. Multi-Layer Energy Management and Strategy Learning for Microgrids: A Proximal Policy Optimization Approach. (2024). Zhang, Yuhao ; Fang, Xiaohan ; He, Shuping ; Hong, Peng ; Tan, DI.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:16:p:3990-:d:1454689.

    Full description at Econpapers || Download paper

  19. Decision Tree Variations and Online Tuning for Real-Time Control of a Building in a Two-Stage Management Strategy. (2024). Rigo-Mariani, Remy ; Yakub, Alim.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:11:p:2730-:d:1408250.

    Full description at Econpapers || Download paper

  20. Real-time three-level energy management strategy for series hybrid wheel loaders based on WG-MPC. (2024). Gao, Renjing ; Wang, QI ; Zhou, Guangli.
    In: Energy.
    RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007837.

    Full description at Econpapers || Download paper

  21. An adaptive switching control model for air conditioning systems based on information completeness. (2024). Tian, Zhe ; Ding, Yan ; Yang, Xiaochen ; Zhang, Haozheng ; Huang, Chen.
    In: Applied Energy.
    RePEc:eee:appene:v:375:y:2024:i:c:s0306261924013874.

    Full description at Econpapers || Download paper

  22. Long-term experimental evaluation and comparison of advanced controls for HVAC systems. (2024). Wang, Xuezheng ; Dong, Bing.
    In: Applied Energy.
    RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010894.

    Full description at Econpapers || Download paper

  23. Improved robust model predictive control for residential building air conditioning and photovoltaic power generation with battery energy storage system under weather forecast uncertainty. (2024). Hu, Zehuan ; Gao, Yuan ; Imaizumi, Taiji ; Mae, Masayuki ; Sun, Luning.
    In: Applied Energy.
    RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010353.

    Full description at Econpapers || Download paper

  24. A novel joint energy and demand management system for smart houses based on model predictive control, hybrid storage system and quality of experience concepts. (2024). da Costa, Paulo Renato ; Normey-Rico, Julio Elias ; Forte, Jose Diogo ; Gouvea, Guilherme Nascimento ; Naspolini, Amir.
    In: Applied Energy.
    RePEc:eee:appene:v:369:y:2024:i:c:s0306261924008493.

    Full description at Econpapers || Download paper

  25. Establishment of LCZ-based urban building energy consumption dataset in hot and humid subtropical regions through a bottom-up method. (2024). Tian, Xiaoyu ; Liu, Liru ; Huang, Jiahao ; Zhang, Hanwen.
    In: Applied Energy.
    RePEc:eee:appene:v:368:y:2024:i:c:s0306261924008742.

    Full description at Econpapers || Download paper

  26. Scalable energy management approach of residential hybrid energy system using multi-agent deep reinforcement learning. (2024). Wang, Zixuan ; Ran, YI ; Li, Yanxue ; Xu, Yang ; Xiao, FU.
    In: Applied Energy.
    RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007979.

    Full description at Econpapers || Download paper

  27. Bi-level optimal operations for grid operator and low-carbon building prosumers with peer-to-peer energy sharing. (2024). Wang, Xiaoyu ; Jin, Xiaolong ; Yu, Xiaodan ; Wei, Wei ; Liang, Shuo ; Jia, Hongjie ; Mu, Yunfei.
    In: Applied Energy.
    RePEc:eee:appene:v:359:y:2024:i:c:s0306261924001065.

    Full description at Econpapers || Download paper

  28. Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads. (2024). Feng, Meili ; Shi, Linyu ; Zhao, Jing ; Wang, Hongbin ; Li, Haonan ; Liu, Dehan ; Yang, Zilan ; Mi, Yumiao ; Hutagaol, Timothy Joseph.
    In: Applied Energy.
    RePEc:eee:appene:v:356:y:2024:i:c:s0306261923017944.

    Full description at Econpapers || Download paper

  29. Energy optimization for HVAC systems in multi-VAV open offices: A deep reinforcement learning approach. (2024). Chen, Xiwen ; Vital, Natan ; Wang, Hao ; Duffy, Edward ; Razi, Abolfazl.
    In: Applied Energy.
    RePEc:eee:appene:v:356:y:2024:i:c:s030626192301718x.

    Full description at Econpapers || Download paper

  30. How good are learning-based control v.s. model-based control for load shifting? Investigations on a single zone building energy system. (2023). Oneill, Zheng ; Fu, Yangyang ; Adetola, Veronica ; Xu, Shichao ; Zhu, QI.
    In: Energy.
    RePEc:eee:energy:v:273:y:2023:i:c:s036054422300467x.

    Full description at Econpapers || Download paper

  31. Optimization of building demand flexibility using reinforcement learning and rule-based expert systems. (2023). Ma, Zhenjun ; Zhou, Xinlei ; Xue, Shan ; Du, Han.
    In: Applied Energy.
    RePEc:eee:appene:v:350:y:2023:i:c:s030626192301156x.

    Full description at Econpapers || Download paper

  32. MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities. (2023). Nagy, Zoltan ; Sankaranarayanan, Siva ; Nweye, Kingsley.
    In: Applied Energy.
    RePEc:eee:appene:v:346:y:2023:i:c:s0306261923006876.

    Full description at Econpapers || Download paper

  33. Energy saving and indoor temperature control for an office building using tube-based robust model predictive control. (2023). Gao, Yuan ; Akashi, Yasunori ; Miyata, Shohei.
    In: Applied Energy.
    RePEc:eee:appene:v:341:y:2023:i:c:s0306261923004701.

    Full description at Econpapers || Download paper

  34. The Impact of Thermo-Modernization and Forecast Regulation on the Reduction of Thermal Energy Consumption and Reduction of Pollutant Emissions into the Atmosphere on the Example of Prefabricated Buildings. (2022). Cieliski, Krzysztof ; Bielskus, Jonas ; Piotrowska-Woroniak, Joanna.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:8:p:2758-:d:790052.

    Full description at Econpapers || Download paper

  35. Systematic Review on Deep Reinforcement Learning-Based Energy Management for Different Building Types. (2022). Shaqour, Ayas ; Hagishima, Aya.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:22:p:8663-:d:976978.

    Full description at Econpapers || Download paper

  36. Multi-agent reinforcement learning dealing with hybrid action spaces: A case study for off-grid oriented renewable building energy system. (2022). Matsunami, Yuki ; Gao, Yuan ; Akashi, Yasunori ; Miyata, Shohei.
    In: Applied Energy.
    RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012788.

    Full description at Econpapers || Download paper

  37. A practical deep reinforcement learning framework for multivariate occupant-centric control in buildings. (2022). Peng, Yuzhen ; Lei, Yue ; Hasama, Takamasa ; Zhan, Sicheng ; Ono, Eikichi ; Chong, Adrian ; Zhang, Zhiang.
    In: Applied Energy.
    RePEc:eee:appene:v:324:y:2022:i:c:s0306261922010297.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-30 23:39:23 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.