- Achiam, J. Spinning up in Deep Reinforcement Learning. Available online: https://github.com/openai/spinningup (accessed on 15 July 2022).
Paper not yet in RePEc: Add citation now
- Afram, A.; Janabi-Sharifi, F.; Fung, A.S.; Raahemifar, K. Artificial Neural Network (ANN) Based Model Predictive Control (MPC) and Optimization of HVAC Systems: A State of the Art Review and Case Study of a Residential HVAC System. Energy Build. 2017, 141, 96–113. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ahn, K.U.; Park, C.S. Application of Deep Q-Networks for Model-Free Optimal Control Balancing between Different HVAC Systems. Sci. Technol. Built Environ. 2020, 26, 61–74. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ahrarinouri, M.; Rastegar, M.; Karami, K.; Seifi, A.R. Distributed Reinforcement Learning Energy Management Approach in Multiple Residential Energy Hubs. Sustain. Energy Grids Netw. 2022, 32, 100795. [CrossRef]
Paper not yet in RePEc: Add citation now
- Alanne, K.; Sierla, S. An Overview of Machine Learning Applications for Smart Buildings. Sustain. Cities Soc. 2022, 76, 103445. [CrossRef]
Paper not yet in RePEc: Add citation now
- Alexandropoulos, G.C.; Stylianopoulos, K.; Huang, C.; Yuen, C.; Bennis, M.; Debbah, M. Pervasive Machine Learning for Smart Radio Environments Enabled by Reconfigurable Intelligent Surfaces. Proc. IEEE 2022, 110, 1494–1525. [CrossRef]
Paper not yet in RePEc: Add citation now
- Amasyali, K.; Munk, J.; Kurte, K.; Kuruganti, T.; Zandi, H. Deep Reinforcement Learning for Autonomous Water Heater Control. Buildings 2021, 11, 548. [CrossRef]
Paper not yet in RePEc: Add citation now
- An, Y.; Niu, Z.; Chen, C. Smart Control of Window and Air Cleaner for Mitigating Indoor PM2.5 with Reduced Energy Consumption Based on Deep Reinforcement Learning. Build. Environ. 2022, 224, 109583. [CrossRef]
Paper not yet in RePEc: Add citation now
- Araya, D.B.; Grolinger, K.; ElYamany, H.F.; Capretz, M.A.M.; Bitsuamlak, G. An Ensemble Learning Framework for Anomaly Detection in Building Energy Consumption. Energy Build. 2017, 144, 191–206. [CrossRef] Energies 2022, 15, 8663 23 of 27
Paper not yet in RePEc: Add citation now
Arroyo, J.; Manna, C.; Spiessens, F.; Helsen, L. Reinforced Model Predictive Control (RL-MPC) for Building Energy Management. Appl. Energy 2022, 309, 118346. [CrossRef]
- Azuatalam, D.; Lee, W.L.; de Nijs, F.; Liebman, A. Reinforcement Learning for Whole-Building HVAC Control and Demand Response. Energy AI 2020, 2, 100020. [CrossRef] Energies 2022, 15, 8663 27 of 27
Paper not yet in RePEc: Add citation now
- Baker, M. Is There a Reproducibility Crisis? Nature 2016, 533, 452–454. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Ben Romdhane, S.; Amamou, A.; ben Khalifa, R.; Saïd, N.M.; Younsi, Z.; Jemni, A. A Review on Thermal Energy Storage Using Phase Change Materials in Passive Building Applications. J. Build. Eng. 2020, 32, 101563. [CrossRef]
Paper not yet in RePEc: Add citation now
Biemann, M.; Scheller, F.; Liu, X.; Huang, L. Experimental Evaluation of Model-Free Reinforcement Learning Algorithms for Continuous HVAC Control. Appl. Energy 2021, 298, 117164. [CrossRef]
Bin Mahbod, M.H.; Chng, C.B.; Lee, P.S.; Chui, C.K. Energy Saving Evaluation of an Energy Efficient Data Center Using a Model-Free Reinforcement Learning Approach. Appl. Energy 2022, 322, 119392. [CrossRef]
- Blad, C.; Bøgh, S.; Kallesøe, C.S. Data-Driven Offline Reinforcement Learning for HVAC-Systems. Energy 2022, 261, 125290. [CrossRef]
Paper not yet in RePEc: Add citation now
- Brandi, S.; Fiorentini, M.; Capozzoli, A. Comparison of Online and Offline Deep Reinforcement Learning with Model Predictive Control for Thermal Energy Management. Autom. Constr. 2022, 135, 104128. [CrossRef]
Paper not yet in RePEc: Add citation now
- Brandi, S.; Gallo, A.; Capozzoli, A. A Predictive and Adaptive Control Strategy to Optimize the Management of Integrated Energy Systems in Buildings. Energy Rep. 2022, 8, 1550–1567. [CrossRef]
Paper not yet in RePEc: Add citation now
- Brandi, S.; Piscitelli, M.S.; Martellacci, M.; Capozzoli, A. Deep Reinforcement Learning to Optimise Indoor Temperature Control and Heating Energy Consumption in Buildings. Energy Build. 2020, 224, 110225. [CrossRef]
Paper not yet in RePEc: Add citation now
- Cao, X.; Dai, X.; Liu, J. Building Energy-Consumption Status Worldwide and the State-of-the-Art Technologies for Zero-Energy Buildings during the Past Decade. Energy Build. 2016, 128, 198–213. [CrossRef]
Paper not yet in RePEc: Add citation now
- Carlucci, S.; de Simone, M.; Firth, S.K.; Kjærgaard, M.B.; Markovic, R.; Rahaman, M.S.; Annaqeeb, M.K.; Biandrate, S.; Das, A.; Dziedzic, J.W.; et al. Modeling Occupant Behavior in Buildings. Build. Environ. 2020, 174, 106768. [CrossRef]
Paper not yet in RePEc: Add citation now
Chemingui, Y.; Gastli, A.; Ellabban, O. Reinforcement Learning-Based School Energy Management System. Energies 2020, 13, 6354. [CrossRef]
- Chen, C.; Wang, J.; Heo, Y.; Kishore, S. MPC-Based Appliance Scheduling for Residential Building Energy Management Controller. IEEE Trans. Smart Grid 2013, 4, 1401–1410. [CrossRef]
Paper not yet in RePEc: Add citation now
- Chu, Y.; Wei, Z.; Sun, G.; Zang, H.; Chen, S.; Zhou, Y. Optimal Home Energy Management Strategy: A Reinforcement Learning Method with Actor-Critic Using Kronecker-Factored Trust Region. Electr. Power Syst. Res. 2022, 212, 108617. [CrossRef]
Paper not yet in RePEc: Add citation now
Coraci, D.; Brandi, S.; Piscitelli, M.S.; Capozzoli, A. Online Implementation of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and Energy Efficiency in Buildings. Energies 2021, 14, 997. [CrossRef]
- Deep Mind. DeepMind AI Reduces Google Data Centre Cooling Bill by 40%. Available online: https://www.deepmind.com/ blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40 (accessed on 11 October 2022).
Paper not yet in RePEc: Add citation now
Deltetto, D.; Coraci, D.; Pinto, G.; Piscitelli, M.S.; Capozzoli, A. Exploring the Potentialities of Deep Reinforcement Learning for Incentive-Based Demand Response in a Cluster of Small Commercial Buildings. Energies 2021, 14, 2933. [CrossRef]
- Denyer, D.; Tranfield, D. Producing a systematic review. In The Sage Handbook of Organizational Research Methods; Hardcover; Sage Publications Ltd.: Thousand Oaks, CA, USA, 2009; pp. 671–689, ISBN 978-1-4129-3118-2.
Paper not yet in RePEc: Add citation now
- Denyer, D.; Tranfield, D.; van Aken, J.E. Developing Design Propositions through Research Synthesis. Organ. Stud. 2008, 29, 393–413. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ding, X.; Du, W.; Cerpa, A. OCTOPUS: Deep reinforcement learning for holistic smart building control. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, New York, NY, USA, 13–14 November 2019; ACM: New York, NY, USA, 2019; pp. 326–335. Energies 2022, 15, 8663 26 of 27
Paper not yet in RePEc: Add citation now
- Du, Y.; Li, F.; Kurte, K.; Munk, J.; Zandi, H. Demonstration of Intelligent HVAC Load Management with Deep Reinforcement Learning: Real-World Experience of Machine Learning in Demand Control. IEEE Power Energy Mag. 2022, 20, 42–53. [CrossRef] Energies 2022, 15, 8663 24 of 27
Paper not yet in RePEc: Add citation now
- Fang, X.; Gong, G.; Li, G.; Chun, L.; Peng, P.; Li, W.; Shi, X.; Chen, X. Deep Reinforcement Learning Optimal Control Strategy for Temperature Setpoint Real-Time Reset in Multi-Zone Building HVAC System. Appl. Eng. 2022, 212, 118552. [CrossRef]
Paper not yet in RePEc: Add citation now
- Forootani, A.; Rastegar, M.; Jooshaki, M. An Advanced Satisfaction-Based Home Energy Management System Using Deep Reinforcement Learning. IEEE Access 2022, 10, 47896–47905. [CrossRef]
Paper not yet in RePEc: Add citation now
- Fridman, L. Introduction to Deep RL. Available online: https://deeplearning.mit.edu/ (accessed on 16 October 2022).
Paper not yet in RePEc: Add citation now
- Fu, Q.; Chen, X.; Ma, S.; Fang, N.; Xing, B.; Chen, J. Optimal Control Method of HVAC Based on Multi-Agent Deep Reinforcement Learning. Energy Build. 2022, 270, 112284. [CrossRef]
Paper not yet in RePEc: Add citation now
- Fu, Q.; Han, Z.; Chen, J.; Lu, Y.; Wu, H.; Wang, Y. Applications of Reinforcement Learning for Building Energy Efficiency Control: A Review. J. Build. Eng. 2022, 50, 104165. [CrossRef]
Paper not yet in RePEc: Add citation now
- Gao, G.; Li, J.; Wen, Y. DeepComfort: Energy-Efficient Thermal Comfort Control in Buildings Via Reinforcement Learning. IEEE Internet Things J. 2020, 7, 8472–8484. [CrossRef]
Paper not yet in RePEc: Add citation now
Gao, Y.; Matsunami, Y.; Miyata, S.; Akashi, Y. Operational Optimization for Off-Grid Renewable Building Energy System Using Deep Reinforcement Learning. Appl. Energy 2022, 325, 119783. [CrossRef]
- Glatt, R.; da Silva, F.L.; Soper, B.; Dawson, W.A.; Rusu, E.; Goldhahn, R.A. Collaborative energy demand response with decentralized actor and centralized critic. In Proceedings of the 8th ACM International Conference on Systems for EnergyEfficient Buildings, Cities, and Transportation, Coimbra, Portugal, 17–18 November 2021; ACM: New York, NY, USA, 2021; pp. 333–337.
Paper not yet in RePEc: Add citation now
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
Paper not yet in RePEc: Add citation now
- Gupta, A.; Badr, Y.; Negahban, A.; Qiu, R.G. Energy-Efficient Heating Control for Smart Buildings with Deep Reinforcement Learning. J. Build. Eng. 2021, 34, 101739. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ha, D.; Schmidhuber, J. World Models. Forecast. Bus. Econ. 2018, 201–209. [CrossRef]
Paper not yet in RePEc: Add citation now
- Han, M.; May, R.; Zhang, X.; Wang, X.; Pan, S.; Yan, D.; Jin, Y.; Xu, L. A Review of Reinforcement Learning Methodologies for Controlling Occupant Comfort in Buildings. Sustain. Cities Soc. 2019, 51, 101748. [CrossRef]
Paper not yet in RePEc: Add citation now
- Han, M.; Zhao, J.; Zhang, X.; Shen, J.; Li, Y. The Reinforcement Learning Method for Occupant Behavior in Building Control: A Review. Energy Built Environ. 2021, 2, 137–148. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hanumaiah, V.; Genc, S. Distributed Multi-Agent Deep Reinforcement Learning Framework for Whole-Building HVAC Control. arXiv 2021, arXiv:2110.13450.
Paper not yet in RePEc: Add citation now
Heidari, A.; Maréchal, F.; Khovalyg, D. An Occupant-Centric Control Framework for Balancing Comfort, Energy Use and Hygiene in Hot Water Systems: A Model-Free Reinforcement Learning Approach. Appl. Energy 2022, 312, 118833. [CrossRef]
Heidari, A.; Maréchal, F.; Khovalyg, D. Reinforcement Learning for Proactive Operation of Residential Energy Systems by Learning Stochastic Occupant Behavior and Fluctuating Solar Energy: Balancing Comfort, Hygiene and Energy Use. Appl. Energy 2022, 318, 119206. [CrossRef]
- Huang, C.; Zhang, H.; Wang, L.; Luo, X.; Song, Y. Mixed Deep Reinforcement Learning Considering Discrete-Continuous Hybrid Action Space for Smart Home Energy Management. J. Mod. Power Syst. Clean Energy 2022, 10, 743–754. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jneid, K.; Ploix, S.; Reignier, P.; Jallon, P. Deep Q-network boosted with external knowledge for HVAC control. In Proceedings of the 8th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Coimbra, Portugal, 17–18 November 2021; ACM: New York, NY, USA, 2021; pp. 329–332.
Paper not yet in RePEc: Add citation now
- Jung, S.; Jeoung, J.; Hong, T. Occupant-Centered Real-Time Control of Indoor Temperature Using Deep Learning Algorithms. Build. Environ. 2022, 208, 108633. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kamal, M.A. Material Characteristics and Building Physics for Energy Efficiency. Key Eng. Mater. 2015, 666, 77–87. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kanakadhurga, D.; Prabaharan, N. Demand Response-Based Peer-to-Peer Energy Trading among the Prosumers and Consumers. Energy Rep. 2021, 7, 7825–7834. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kathirgamanathan, A.; Mangina, E.; Finn, D.P. Development of a Soft Actor Critic Deep Reinforcement Learning Approach for Harnessing Energy Flexibility in a Large Office Building. Energy AI 2021, 5, 100101. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kathirgamanathan, A.; Twardowski, K.; Mangina, E.; Finn, D.P. A Centralised soft actor critic deep reinforcement learning approach to district demand side management through CityLearn. In Proceedings of the Proceedings of the 1st International Workshop on Reinforcement Learning for Energy Management in Buildings & Cities, Online, 17 November 2020; ACM: New York, NY, USA, 2020; pp. 11–14. Energies 2022, 15, 8663 25 of 27
Paper not yet in RePEc: Add citation now
- Kurte, K.; Amasyali, K.; Munk, J.; Zandi, H. Comparative analysis of model-free and model-based HVAC control for residential demand response. In Proceedings of the 8th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Coimbra, Portugal, 17–18 November 2021; ACM: New York, NY, USA, 2021; pp. 309–313.
Paper not yet in RePEc: Add citation now
Kurte, K.; Munk, J.; Kotevska, O.; Amasyali, K.; Smith, R.; McKee, E.; Du, Y.; Cui, B.; Kuruganti, T.; Zandi, H. Evaluating the Adaptability of Reinforcement Learning Based HVAC Control for Residential Houses. Sustainability 2020, 12, 7727. [CrossRef]
- Lawal, K.; Rafsanjani, H.N. Trends, Benefits, Risks, and Challenges of IoT Implementation in Residential and Commercial Buildings. Energy Built Environ. 2022, 3, 251–266. [CrossRef]
Paper not yet in RePEc: Add citation now
- Lee, J.Y.; Rahman, A.; Huang, S.; Smith, A.D.; Katipamula, S. On-Policy Learning-Based Deep Reinforcement Learning Assessment for Building Control Efficiency and Stability. Sci. Technol. Built Environ. 2022, 28, 1150–1165. [CrossRef]
Paper not yet in RePEc: Add citation now
- Lee, S.; Choi, D.H. Federated Reinforcement Learning for Energy Management of Multiple Smart Homes with Distributed Energy Resources. IEEE Trans. Ind. Inf. 2022, 18, 488–497. [CrossRef]
Paper not yet in RePEc: Add citation now
Lei, Y.; Zhan, S.; Ono, E.; Peng, Y.; Zhang, Z.; Hasama, T.; Chong, A. A Practical Deep Reinforcement Learning Framework for Multivariate Occupant-Centric Control in Buildings. Appl. Energy 2022, 324, 119742. [CrossRef]
- Leitao, J.; Gil, P.; Ribeiro, B.; Cardoso, A. A Survey on Home Energy Management. IEEE Access 2020, 8, 5699–5722. [CrossRef]
Paper not yet in RePEc: Add citation now
- Li, J.; Zhang, W.; Gao, G.; Wen, Y.; Jin, G.; Christopoulos, G. Toward Intelligent Multizone Thermal Control with Multiagent Deep Reinforcement Learning. IEEE Internet Things J. 2021, 8, 11150–11162. [CrossRef]
Paper not yet in RePEc: Add citation now
- Li, T.; Dong, M. Residential Energy Storage Management with Bidirectional Energy Control. IEEE Trans. Smart Grid 2019, 10, 3596–3611. [CrossRef]
Paper not yet in RePEc: Add citation now
- Li, Z.; Sun, Z.; Meng, Q.; Wang, Y.; Li, Y. Reinforcement Learning of Room Temperature Set-Point of Thermal Storage AirConditioning System with Demand Response. Energy Build. 2022, 259, 111903. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liang, Z.; Huang, C.; Su, W.; Duan, N.; Donde, V.; Wang, B.; Zhao, X. Safe Reinforcement Learning-Based Resilient Proactive Scheduling for a Commercial Building Considering Correlated Demand Response. IEEE Open Access J. Power Energy 2021, 8, 85–96. [CrossRef]
Paper not yet in RePEc: Add citation now
Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [CrossRef]
- Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous Control with Deep Reinforcement Learning. arXiv 2015, arXiv:1509.02971.
Paper not yet in RePEc: Add citation now
- Liu, B.; Akcakaya, M.; McDermott, T.E. Automated Control of Transactive HVACs in Energy Distribution Systems. IEEE Trans. Smart Grid 2021, 12, 2462–2471. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, T.; Tan, Z.; Xu, C.; Chen, H.; Li, Z. Study on Deep Reinforcement Learning Techniques for Building Energy Consumption Forecasting. Energy Build. 2020, 208, 109675. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, T.; Xu, C.; Guo, Y.; Chen, H. A Novel Deep Reinforcement Learning Based Methodology for Short-Term HVAC System Energy Consumption Prediction. Int. J. Refrig. 2019, 107, 39–51. [CrossRef]
Paper not yet in RePEc: Add citation now
Lork, C.; Li, W.T.; Qin, Y.; Zhou, Y.; Yuen, C.; Tushar, W.; Saha, T.K. An Uncertainty-Aware Deep Reinforcement Learning Framework for Residential Air Conditioning Energy Management. Appl. Energy 2020, 276, 115426. [CrossRef]
- Lu, J.; Mannion, P.; Mason, K. A Multi-Objective Multi-Agent Deep Reinforcement Learning Approach to Residential Appliance Scheduling. IET Smart Grid 2022, 5, 260–280. [CrossRef]
Paper not yet in RePEc: Add citation now
- Marzullo, T.; Dey, S.; Long, N.; Leiva Vilaplana, J.; Henze, G. A High-Fidelity Building Performance Simulation Test Bed for the Development and Evaluation of Advanced Controls. J. Build. Perform. Simul. 2022, 15, 379–397. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mason, K.; Grijalva, S. A Review of Reinforcement Learning for Autonomous Building Energy Management. Comput. Electr. Eng. 2019, 78, 300–312. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mathew, A.; Roy, A.; Mathew, J. Intelligent Residential Energy Management System Using Deep Reinforcement Learning. IEEE Syst. J. 2020, 14, 5362–5372. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mbuwir, B.v.; Vanmunster, L.; Thoelen, K.; Deconinck, G. A Hybrid Policy Gradient and Rule-Based Control Framework for Electric Vehicle Charging. Energy AI 2021, 4, 100059. [CrossRef]
Paper not yet in RePEc: Add citation now
- McKee, E.; Du, Y.; Li, F.; Munk, J.; Johnston, T.; Kurte, K.; Kotevska, O.; Amasyali, K.; Zandi, H. Deep reinforcement learning for residential HVAC control with consideration of human occupancy. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020; pp. 1–5.
Paper not yet in RePEc: Add citation now
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep Reinforcement Learning. arXiv 2013, arXiv:1312.5602.
Paper not yet in RePEc: Add citation now
- Mocanu, E.; Mocanu, D.C.; Nguyen, P.H.; Liotta, A.; Webber, M.E.; Gibescu, M.; Slootweg, J.G. On-Line Building Energy Optimization Using Deep Reinforcement Learning. IEEE Trans. Smart Grid 2019, 10, 3698–3708. [CrossRef]
Paper not yet in RePEc: Add citation now
- Moerland, T.M.; Broekens, J.; Plaat, A.; Jonker, C.M. A0C: Alpha Zero in Continuous Action Space. arXiv 2018, arXiv:1805.09613.
Paper not yet in RePEc: Add citation now
- Monie, S.; Nilsson, A.M.; Widén, J.; Åberg, M. A Residential Community-Level Virtual Power Plant to Balance Variable Renewable Power Generation in Sweden. Energy Convers. Manag. 2021, 228, 113597. [CrossRef]
Paper not yet in RePEc: Add citation now
- Narantuya, J.; Shin, J.S.; Park, S.; Kim, J.W. Multi-Agent Deep Reinforcement Learning-Based Resource Allocation in HPC/AI Converged Cluster. Comput. Mater. Contin. 2022, 72, 4375–4395. [CrossRef]
Paper not yet in RePEc: Add citation now
- Naug, A.; Quiñones-Grueiro, M.; Biswas, G. Continual adaptation in deep reinforcement learning-based control applied to non-stationary building environments. In Proceedings the 1st International Workshop on Reinforcement Learning for Energy Management in Buildings & Cities, Online, 17 November 2020; ACM: New York, NY, USA, 2020; pp. 24–28.
Paper not yet in RePEc: Add citation now
- Park, B.; Rempel, A.R.; Lai, A.K.L.; Chiaramonte, J.; Mishra, S. Reinforcement Learning for Control of Passive Heating and Cooling in Buildings. IFAC-Papers 2021, 54, 907–912. [CrossRef]
Paper not yet in RePEc: Add citation now
- Peng, R.D. Reproducible Research in Computational Science. Science 2011, 334, 1226–1227. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
Perera, A.T.D.; Kamalaruban, P. Applications of Reinforcement Learning in Energy Systems. Renew. Sustain. Energy Rev. 2021, 137, 110618. [CrossRef]
- Pigott, A.; Crozier, C.; Baker, K.; Nagy, Z. GridLearn: Multiagent Reinforcement Learning for Grid-Aware Building Energy Management. Electr. Power Syst. Res. 2021, 213, 108521. [CrossRef]
Paper not yet in RePEc: Add citation now
Pinto, G.; Deltetto, D.; Capozzoli, A. Data-Driven District Energy Management with Surrogate Models and Deep Reinforcement Learning. Appl. Energy 2021, 304, 117642. [CrossRef]
Pinto, G.; Kathirgamanathan, A.; Mangina, E.; Finn, D.P.; Capozzoli, A. Enhancing Energy Management in Grid-Interactive Buildings: A Comparison among Cooperative and Coordinated Architectures. Appl. Energy 2022, 310, 118497. [CrossRef]
- Qin, Y.; Ke, J.; Wang, B.; Filaretov, G.F. Energy Optimization for Regional Buildings Based on Distributed Reinforcement Learning. Sustain. Cities Soc. 2022, 78, 103625. [CrossRef]
Paper not yet in RePEc: Add citation now
- Racanière, S.; Weber, T.; Reichert, D.P.; Buesing, L.; Guez, A.; Rezende, D.; Badia, A.P.; Vinyals, O.; Heess, N.; Li, Y.; et al. Imagination-augmented agents for deep reinforcement learning. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5691–5702. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ramos, D.; Faria, P.; Gomes, L.; Vale, Z. A Contextual Reinforcement Learning Approach for Electricity Consumption Forecasting in Buildings. IEEE Access 2022, 10, 61366–61374. [CrossRef]
Paper not yet in RePEc: Add citation now
- Schmidt, M.; Moreno, M.V.; Schülke, A.; Macek, K.; Mařík, K.; Pastor, A.G. Optimizing Legacy Building Operation: The Evolution into Data-Driven Predictive Cyber-Physical Systems. Energy Build. 2017, 148, 257–279. [CrossRef]
Paper not yet in RePEc: Add citation now
- Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Openai, O.K. Proximal Policy Optimization Algorithms. arXiv 2017, arXiv:1707.06347.
Paper not yet in RePEc: Add citation now
- Serda, M.; Becker, F.G.; Cleary, M.; Team, R.M.; Holtermann, H.; The, D.; Agenda, N.; Science, P.; Sk, S.K.; Hinnebusch, R.; et al. Comparative Analysis of White-, Gray- and Black-Box Models for Thermal Simulation of Indoor Environment: Teaching Building Case Study. Uniw. Śl ˛ aski 2018, 7, 173–180. Available online: https://publications.ibpsa.org/conference/paper/?id=simbuild201 8_C025 (accessed on 18 October 2022).
Paper not yet in RePEc: Add citation now
- Shaqour, A.; Farzaneh, H.; Almogdady, H. Day-Ahead Residential Electricity Demand Response Model Based on Deep Neural Networks for Peak Demand Reduction in the Jordanian Power Sector. Appl. Sci. 2021, 11, 6626. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shaqour, A.; Farzaneh, H.; Yoshida, Y.; Hinokuma, T. Power Control and Simulation of a Building Integrated Stand-Alone Hybrid PV-Wind-Battery System in Kasuga City, Japan. Energy Rep. 2020, 6, 1528–1544. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shaqour, A.; Ono, T.; Hagishima, A.; Farzaneh, H. Electrical Demand Aggregation Effects on the Performance of Deep LearningBased Short-Term Load Forecasting of a Residential Building. Energy AI 2022, 8, 100141. [CrossRef]
Paper not yet in RePEc: Add citation now
Shen, R.; Zhong, S.; Wen, X.; An, Q.; Zheng, R.; Li, Y.; Zhao, J. Multi-Agent Deep Reinforcement Learning Optimization Framework for Building Energy System with Renewable Energy. Appl. Energy 2022, 312, 118724. [CrossRef]
- Shuvo, S.S.; Yilmaz, Y. Home Energy Recommendation System (HERS): A Deep Reinforcement Learning Method Based on Residents’ Feedback and Activity. IEEE Trans. Smart Grid 2022, 13, 2812–2821. [CrossRef]
Paper not yet in RePEc: Add citation now
- Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al. Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm. arXiv 2017, arXiv:1712.01815.
Paper not yet in RePEc: Add citation now
- Sun, Y.; Zhang, Y.; Guo, D.; Zhang, X.; Lai, Y.; Luo, D. Intelligent Distributed Temperature and Humidity Control Mechanism for Uniformity and Precision in the Indoor Environment. IEEE Internet Things J. 2022, 9, 19101–19115. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018; ISBN 0262352702.
Paper not yet in RePEc: Add citation now
Svetozarevic, B.; Baumann, C.; Muntwiler, S.; di Natale, L.; Zeilinger, M.N.; Heer, P. Data-Driven Control of Room Temperature and Bidirectional EV Charging Using Deep Reinforcement Learning: Simulations and Experiments. Appl. Energy 2022, 307, 118127. [CrossRef]
Torriti, J.; Zhao, X.; Yuan, Y. The Risk of Residential Peak Electricity Demand: A Comparison of Five European Countries. Energies 2017, 10, 385. [CrossRef]
Touzani, S.; Prakash, A.K.; Wang, Z.; Agarwal, S.; Pritoni, M.; Kiran, M.; Brown, R.; Granderson, J. Controlling Distributed Energy Resources via Deep Reinforcement Learning for Load Flexibility and Energy Efficiency. Appl. Energy 2021, 304, 117733. [CrossRef]
- United Nations Environment Programme. 2021 Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector; United Nations Environment Programme: Nairobi, Kenya, 2021.
Paper not yet in RePEc: Add citation now
- Van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-Learning. In Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI 2016), Phoenix, AZ, USA, 12–17 February 2015; pp. 2094–2100. [CrossRef]
Paper not yet in RePEc: Add citation now
- Van Le, D.; Liu, Y.; Wang, R.; Tan, R.; Wong, Y.-W.; Wen, Y. Control of air free-cooled data centers in tropics via deep reinforcement learning. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, New York, NY, USA, 13–14 November 2019; ACM: New York, NY, USA, 2019; pp. 306–315.
Paper not yet in RePEc: Add citation now
- Vázquez-Canteli, J.R.; Kämpf, J.; Henze, G.; Nagy, Z. CityLearn v1.0: An OpenAI Gym environment for demand response with deep reinforcement learning. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys 2019), New York, NY, USA, 13–14 November 2019; pp. 356–357. [CrossRef]
Paper not yet in RePEc: Add citation now
- Verma, S.; Agrawal, S.; Venkatesh, R.; Shrotri, U.; Nagarathinam, S.; Jayaprakash, R.; Dutta, A. EImprove—Optimizing energy and comfort in buildings based on formal semantics and reinforcement learning. In Proceedings of the 58th ACM/IEEE Design Automation Conference (DAC), Online, 5–9 December 2021; pp. 157–162.
Paper not yet in RePEc: Add citation now
Wang, Z.; Hong, T. Reinforcement Learning for Building Controls: The Opportunities and Challenges. Appl. Energy 2020, 269, 115036. [CrossRef]
- Wei, T.; Wang, Y.; Zhu, Q. Deep reinforcement learning for building HVAC control. In Proceedings of the 54th Annual Design Automation Conference, Austin, TX, USA, 18–22 June 2017; Part 128280. [CrossRef]
Paper not yet in RePEc: Add citation now
- Williams, R.J. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning. Mach. Learn. 1992, 8, 229–256. [CrossRef]
Paper not yet in RePEc: Add citation now
- Xu, D. Learning Efficient Dynamic Controller for HVAC System. Mob. Inf. Syst. 2022, 2022, 4157511. [CrossRef]
Paper not yet in RePEc: Add citation now
- Xu, Z.; Jia, Q.S.; Guan, X.; Xie, X. A new method to solve large-scale building energy management for energy saving. In Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE), New Taipei, Taiwan, 18–22 August 2014; pp. 940–945. [CrossRef]
Paper not yet in RePEc: Add citation now
Yang, T.; Zhao, L.; Li, W.; Wu, J.; Zomaya, A.Y. Towards Healthy and Cost-Effective Indoor Environment Management in Smart Homes: A Deep Reinforcement Learning Approach. Appl. Energy 2021, 300, 117335. [CrossRef]
Ye, Y.; Qiu, D.; Wang, H.; Tang, Y.; Strbac, G. Real-Time Autonomous Residential Demand Response Management Based on Twin Delayed Deep Deterministic Policy Gradient Learning. Energy 2021, 14, 531. [CrossRef]
- Yoon, Y.R.; Moon, H.J. Performance Based Thermal Comfort Control (PTCC) Using Deep Reinforcement Learning for Space Cooling. Energy Build. 2019, 203, 109420. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yu, L.; Qin, S.; Zhang, M.; Shen, C.; Jiang, T.; Guan, X. A Review of Deep Reinforcement Learning for Smart Building Energy Management. IEEE Internet Things J. 2021, 8, 12046–12063. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yu, L.; Sun, Y.; Xu, Z.; Shen, C.; Yue, D.; Jiang, T.; Guan, X. Multi-Agent Deep Reinforcement Learning for HVAC Control in Commercial Buildings. IEEE Trans. Smart Grid 2021, 12, 407–419. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yu, L.; Xie, W.; Xie, D.; Zou, Y.; Zhang, D.; Sun, Z.; Zhang, L.; Zhang, Y.; Jiang, T. Deep Reinforcement Learning for Smart Home Energy Management. IEEE Internet Things J. 2020, 7, 2751–2762. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yu, L.; Xu, Z.; Zhang, T.; Guan, X.; Yue, D. Energy-Efficient Personalized Thermal Comfort Control in Office Buildings Based on Multi-Agent Deep Reinforcement Learning. Build. Environ. 2022, 223, 109458. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zenginis, I.; Vardakas, J.; Koltsaklis, N.E.; Verikoukis, C. Smart Home’s Energy Management Through a Clustering-Based Reinforcement Learning Approach. IEEE Internet Things J. 2022, 9, 16363–16371. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, C.; Kuppannagari, S.R.; Kannan, R.; Prasanna, V.K. Building HVAC scheduling using reinforcement learning via neural network based model approximation. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, New York, NY, USA, 13–14 November 2019; ACM: New York, NY, USA, 2019; pp. 287–296.
Paper not yet in RePEc: Add citation now
- Zhang, T.; Aakash Krishna, G.S.; Afshari, M.; Musilek, P.; Taylor, M.E.; Ardakanian, O. Diversity for transfer in learning-based control of buildings. In Proceedings of the Thirteenth ACM International Conference on Future Energy Systems, Online, 28 June–1 July 2022; ACM: New York, NY, USA, 2022; pp. 556–564.
Paper not yet in RePEc: Add citation now
- Zhang, T.; Baasch, G.; Ardakanian, O.; Evins, R. On the joint control of multiple building systems with reinforcement learning. In Proceedings of the Twelfth ACM International Conference on Future Energy Systems, Online, 28 June–1 July 2021; ACM: New York, NY, USA, 2021; pp. 60–72.
Paper not yet in RePEc: Add citation now
- Zhang, W.; Zhang, Z. Energy Efficient Operation Optimization of Building Air-Conditioners via Simulator-Assisted Asynchronous Reinforcement Learning. IOP Conf. Ser. Earth Environ. Sci 2022, 1048, 012006. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, X.; Biagioni, D.; Cai, M.; Graf, P.; Rahman, S. An Edge-Cloud Integrated Solution for Buildings Demand Response Using Reinforcement Learning. IEEE Trans. Smart Grid 2021, 12, 420–431. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, X.; Chintala, R.; Bernstein, A.; Graf, P.; Jin, X. Grid-interactive multi-zone building control using reinforcement learning with global-local policy search. In Proceedings of the American Control Conference (ACC), Online, 25–28 May 2021; pp. 4155–4162.
Paper not yet in RePEc: Add citation now
- Zhang, Z.; Chong, A.; Pan, Y.; Zhang, C.; Lam, K.P. Whole Building Energy Model for HVAC Optimal Control: A Practical Framework Based on Deep Reinforcement Learning. Energy Build. 2019, 199, 472–490. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, Z.; Chong, A.; Pan, Y.; Zhang, C.; Lu, S.; Lam, K. A Deep reinforcement learning approach to using whole building energy model for HVAC optimal control. In Proceedings of the ASHRAE/IBPSA-USA Building Performance Analysis Conference and SimBuild, Chicago, IL, USA, 26–28 September 2018.
Paper not yet in RePEc: Add citation now
- Zhang, Z.; Lam, K.P. Practical implementation and evaluation of deep reinforcement learning control for a radiant heating system. In Proceedings of the 5th Conference on Systems for Built Environments, Shenzen, China, 7–8 November 2018; ACM: New York, NY, USA, 2018; pp. 148–157.
Paper not yet in RePEc: Add citation now
- Zhang, Z.; Zhang, D.; Qiu, R.C. Deep Reinforcement Learning for Power System: An Overview. CSEE J. Power Energy Syst. 2019, 6, 213–225. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhao, H.; Wang, B.; Liu, H.; Sun, H.; Pan, Z.; Guo, Q. Exploiting the Flexibility Inside Park-Level Commercial Buildings Considering Heat Transfer Time Delay: A Memory-Augmented Deep Reinforcement Learning Approach. IEEE Trans. Sustain. Energy 2022, 13, 207–219. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhong, X.; Zhang, Z.; Zhang, R.; Zhang, C. End-to-End Deep Reinforcement Learning Control for HVAC Systems in Office Buildings. Designs 2022, 6, 52. [CrossRef]
Paper not yet in RePEc: Add citation now
Zhou, X.; Lin, W.; Kumar, R.; Cui, P.; Ma, Z. A Data-Driven Strategy Using Long Short Term Memory Models and Reinforcement Learning to Predict Building Electricity Consumption. Appl. Energy 2022, 306, 118078. [CrossRef]
- Zou, Z.; Yu, X.; Ergan, S. Towards Optimal Control of Air Handling Units Using Deep Reinforcement Learning and Recurrent Neural Network. Build. Environ. 2020, 168, 106535. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zsembinszki, G.; Fernández, C.; Vérez, D.; Cabeza, L.F.; Cannavale, A.; Martellotta, F.; Fiorito, F. Deep Learning Optimal Control for a Complex Hybrid Energy Storage System. Buildings 2021, 11, 194. [CrossRef]
Paper not yet in RePEc: Add citation now