Acheampong, A.O. ; Amponsah, M. ; Boateng, E. Does financial development mitigate carbon emissions? Evidence from heterogeneous financial economies. 2020 Energy Econ.. 88 -
- Amendola, A. ; Candila, V. ; Gallo, G.M. On the asymmetric impact of macro–variables on volatility. 2019 Econ. Model.. 76 135-152
Paper not yet in RePEc: Add citation now
Andersen, T.G. ; Bollerslev, T. ; Diebold, F.X. Roughing it up: including jump components in the measurement, modeling, and forecasting of return volatility. 2007 Rev. Econ. Stat.. 89 701-720
Ardia, D. ; Bluteau, K. ; Boudt, K. ; Catania, L. Forecasting risk with Markov-switching GARCH models: a large-scale performance study. 2018 Int. J. Forecast.. 34 733-747
Asgharian, H. ; Hou, A.J. ; Javed, F. The importance of the macroeconomic variables in forecasting stock return variance: a GARCH-MIDAS approach. 2013 J. Forecast.. 32 600-612
Azar, J. ; Duro, M. ; Kadach, I. ; Ormazabal, G. The big three and corporate carbon emissions around the world. 2021 J. Financ. Econ.. 142 674-696
Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. 1986 J. Econ.. 31 307-327
Bollerslev, T. ; Hood, B. ; Huss, J. ; Pedersen, L.H. Risk everywhere: modeling and managing volatility. 2018 Rev. Financ. Stud.. 31 2729-2773
Bolton, P. ; Kacperczyk, M. Do investors care about carbon risk?. 2021 J. Financ. Econ.. 142 517-549
Chang, C.L. ; McAleer, M. The fiction of full BEKK: pricing fossil fuels and carbon emissions. 2019 Financ. Res. Lett.. 28 11-19
Clark, T.E. ; West, K.D. Approximately normal tests for equal predictive accuracy in nested models. 2007 J. Econ.. 138 291-311
Corbet, S. ; Goodell, J.W. ; Günay, S. Co-movements and spillovers of oil and renewable firms under extreme conditions: new evidence from negative WTI prices during COVID-19. 2020 Energy Econ.. 92 -
Degiannakis, S. ; Filis, G. Forecasting oil price realized volatility using information channels from other asset classes. 2017 J. Int. Money Financ.. 76 28-49
Diebold, F.X. ; Lopez, J.A. 8 forecast evaluation and combination. 1996 Handb. Stat.. 14 241-268
Ding, Y. ; Kambouroudis, D. ; McMillan, D.G. Forecasting realised volatility: does the LASSO approach outperform HAR?. 2021 J. Int. Financ. Mark. Inst. Money. 74 -
Engle, R.F. ; Rangel, J.G. The spline-GARCH model for low-frequency volatility and its global macroeconomic causes. 2008 Rev. Financ. Stud.. 21 1187-1222
Fang, L. ; Chen, B. ; Yu, H. ; Qian, Y. The importance of global economic policy uncertainty in predicting gold futures market volatility: a GARCH-MIDAS approach. 2018 J. Futur. Mark.. 38 413-422
Fang, T. ; Lee, T.-H. ; Su, Z. Predicting the long-term stock market volatility: a GARCH-MIDAS model with variable selection. 2020 J. Empir. Financ.. 58 36-49
Gong, X. ; Lin, B. The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market. 2018 Energy Econ.. 74 370-386
Gong, X. ; Liu, Y. ; Wang, X. Dynamic volatility spillovers across oil and natural gas futures markets based on a time-varying spillover method. 2021 Int. Rev. Financ. Anal.. 76 -
Hammoudeh, S. ; Mokni, K. ; Ben-Salha, O. ; Ajmi, A.N. Distributional predictability between oil prices and renewable energy stocks: is there a role for the COVID-19 pandemic?. 2021 Energy Econ.. 103 -
Hansen, P.R. ; Lunde, A. ; Nason, J.M. The model confidence set. 2011 Econometrica. 79 453-497
Herrera, R. ; Rodriguez, A. ; Pino, G. Modeling and forecasting extreme commodity prices: a Markov-switching based extreme value model. 2017 Energy Econ.. 63 129-143
Hou, A. ; Suardi, S. A nonparametric GARCH model of crude oil price return volatility. 2012 Energy Econ.. 34 618-626
- Jebabli, I. ; Kouaissah, N. ; Arouri, M. Volatility spillovers between stock and energy markets during crises: A comparative assessment between the 2008 global financial crisis and the COVID-19 pandemic crisis. 2021 Financ. Res. Lett.. 102363-
Paper not yet in RePEc: Add citation now
Ji, Q. ; Guo, J.-F. Oil price volatility and oil-related events: an internet concern study perspective. 2015 Appl. Energy. 137 256-264
Kanamura, T. Role of carbon swap trading and energy prices in price correlations and volatilities between carbon markets. 2016 Energy Econ.. 54 204-212
Klein, T. ; Walther, T. Oil price volatility forecast with mixture memory GARCH. 2016 Energy Econ.. 58 46-58
Koch, N. Tail events: a new approach to understanding extreme energy commodity prices. 2014 Energy Econ.. 43 195-205
Landis, F. ; Fredriksson, G. ; Rausch, S. Between-and within-country distributional impacts from harmonizing carbon prices in the EU. 2021 Energy Econ.. 103 -
Li, X. ; Li, D. ; Zhang, X. ; Wei, G. ; Bai, L. ; Wei, Y. Forecasting regular and extreme gold price volatility: the roles of asymmetry, extreme event, and jump. 2021 J. Forecast.. 40 1501-1523
Lutz, B.J. ; Pigorsch, U. ; Rotfuß, W. Nonlinearity in cap-and-trade systems: the EUA price and its fundamentals. 2013 Energy Econ.. 40 222-232
- Lyócsa, Š. ; Molnár, P. ; Výrost, T. Stock market volatility forecasting: do we need high-frequency data?. 2021 Int. J. Forecast.. 37 1092-1110
Paper not yet in RePEc: Add citation now
Ma, F. ; Liao, Y. ; Zhang, Y. ; Cao, Y. Harnessing jump component for crude oil volatility forecasting in the presence of extreme shocks. 2019 J. Empir. Financ.. 52 40-55
Ma, F. ; Wei, Y. ; Liu, L. ; Huang, D. Forecasting realized volatility of oil futures market: a new insight. 2018 J. Forecast.. 37 419-436
Marchese, M. ; Kyriakou, I. ; Tamvakis, M. ; Di Iorio, F. Forecasting crude oil and refined products volatilities and correlations: new evidence from fractionally integrated multivariate GARCH models. 2020 Energy Econ.. 88 -
Mazza, P. ; Petitjean, M. How integrated is the European carbon derivatives market?. 2015 Financ. Res. Lett.. 15 18-30
McAlinn, K. ; Ushio, A. ; Nakatsuma, T. Volatility forecasts using stochastic volatility models with nonlinear leverage effects. 2020 J. Forecast.. 39 143-154
Mohsin, M. ; Taghizadeh-Hesary, F. ; Panthamit, N. ; Anwar, S. ; Abbas, Q. ; Vo, X.V. Developing low carbon finance index: evidence from developed and developing economies. 2021 Financ. Res. Lett.. 43 -
Oestreich, A.M. ; Tsiakas, I. Carbon emissions and stock returns: evidence from the EU emissions trading scheme. 2015 J. Bank. Financ.. 58 294-308
Painter, M. An inconvenient cost: the effects of climate change on municipal bonds. 2020 J. Financ. Econ.. 135 468-482
Pan, Z. ; Wang, Y. ; Wu, C. ; Yin, L. Oil price volatility and macroeconomic fundamentals: a regime switching GARCH-MIDAS model. 2017 J. Empir. Financ.. 43 130-142
Patton, A.J. ; Sheppard, K. Good volatility, bad volatility: signed jumps and the persistence of volatility. 2015 Rev. Econ. Stat.. 97 683-697
Pesaran, M.H. ; Timmermann, A. A simple nonparametric test of predictive performance. 1992 J. Bus. Econ. Stat.. 10 461-465
Philip, D. ; Shi, Y. Impact of allowance submissions in European carbon emission markets. 2015 Int. Rev. Financ. Anal.. 40 27-37
Prokopczuk, M. ; Symeonidis, L. ; Wese Simen, C. Do jumps matter for volatility forecasting? Evidence from energy markets. 2016 J. Futur. Mark.. 36 758-792
Qiao, G. ; Yang, J. ; Li, W. VIX forecasting based on GARCH-type model with observable dynamic jumps: a new perspective. 2020 North Am. J. Econ. Financ.. 53 -
Rossi, B. ; Inoue, A. Out-of-sample forecast tests robust to the choice of window size. 2012 J. Bus. Econ. Stat.. 30 432-453
Schlenker, W. ; Taylor, C.A. Market expectations of a warming climate. 2021 J. Financ. Econ.. 142 627-640
Siddique, M.A. ; Akhtaruzzaman, M. ; Rashid, A. ; Hammami, H. Carbon disclosure, carbon performance and financial performance: international evidence. 2021 Int. Rev. Financ. Anal.. 75 -
Smith, L.V. ; Tarui, N. ; Yamagata, T. Assessing the impact of COVID-19 on global fossil fuel consumption and CO2 emissions. 2021 Energy Econ.. 97 -
Stroebel, J. ; Wurgler, J. What do you think about climate finance?. 2021 J. Financ. Econ.. 142 487-498
Vlaar, P.J.G. ; Palm, F.C. The message in weekly exchange rates in the European monetary system: mean reversion, conditional heteroscedasticity, and jumps. 1993 J. Bus. Econ. Stat.. 11 351-360
Wang, L. ; Ma, F. ; Liu, J. ; Yang, L. Forecasting stock price volatility: new evidence from the GARCH-MIDAS model. 2020 Int. J. Forecast.. 36 684-694
Wang, L. ; Ma, F. ; Niu, T. ; Liang, C. The importance of extreme shock: examining the effect of investor sentiment on the crude oil futures market. 2021 Energy Econ.. 99 -
Wang, Y. ; Ma, F. ; Wei, Y. ; Wu, C. Forecasting realized volatility in a changing world: a dynamic model averaging approach. 2016 J. Bank. Financ.. 64 136-149
Ye, J. ; Xue, M. Influences of sentiment from news articles on EU carbon prices. 2021 Energy Econ.. 101 -
Zhang, Y. ; Ma, F. ; Liao, Y. Forecasting global equity market volatilities. 2020 Int. J. Forecast.. 36 1454-1475
Zhang, Y. ; Ma, F. ; Wei, Y. Out-of-sample prediction of the oil futures market volatility: a comparison of new and traditional combination approaches. 2019 Energy Econ.. 81 1109-1120