- Aghdam, F.H. ; Ghaemi, S. ; Kalantari, N.T. Evaluation of loss minimization on the energy management of multi-microgrid based smart distribution network in the presence of emission constraints and clean productions. 2018 J Clean Prod. 196 185-201
Paper not yet in RePEc: Add citation now
Alabi, T.M. ; Lawrence, N.P. ; Lu, L. ; Yang, Z. ; Gopaluni, R.B. Automated deep reinforcement learning for real-time scheduling strategy of multi-energy system integrated with post-carbon and direct-air carbon captured system. 2023 Appl Energy. 333 -
- Alomoush, M.I. Microgrid combined power-heat economic-emission dispatch considering stochastic renewable energy resources, power purchase and emission tax. 2019 Energy Convers Manage. 200 -
Paper not yet in RePEc: Add citation now
Anvari-Moghaddam, A. ; Rahimi-Kian, A. ; Mirian, M.S. ; Guerrero, J.M. A multi-agent based energy management solution for integrated buildings and microgrid system. 2017 Appl Energy. 203 41-56
- Brockman, G. ; Cheung, V. ; Pettersson, L. ; Schneider, J. ; Schulman, J. ; Tang, J. Openai gym. 2016 :
Paper not yet in RePEc: Add citation now
- Chen, T. ; Bu, S. ; Liu, X. ; Kang, J. ; Yu, F.R. ; Han, Z. Peer-to-peer energy trading and energy conversion in interconnected multi-energy microgrids using multi-agent deep reinforcement learning. 2021 IEEE Trans Smart Grid. 13 715-727
Paper not yet in RePEc: Add citation now
- Chen, X. ; Kang, C. ; O’Malley, M. ; Xia, Q. ; Bai, J. ; Liu, C. Increasing the flexibility of combined heat and power for wind power integration in China: Modeling and implications. 2014 IEEE Trans Power Syst. 30 1848-1857
Paper not yet in RePEc: Add citation now
- Chung, H.-M. ; Maharjan, S. ; Zhang, Y. ; Eliassen, F. Distributed deep reinforcement learning for intelligent load scheduling in residential smart grids. 2020 IEEE Trans Ind Inf. 17 2752-2763
Paper not yet in RePEc: Add citation now
Gharibpour, H. ; Aminifar, F. ; Rahmati, I. ; Keshavarz, A. Dual variable decomposition to discriminate the cost imposed by inflexible units in electricity markets. 2021 Appl Energy. 287 -
- Guo, C. ; Wang, X. ; Zheng, Y. ; Zhang, F. Optimal energy management of multi-microgrids connected to distribution system based on deep reinforcement learning. 2021 Int J Electr Power Energy Syst. 131 -
Paper not yet in RePEc: Add citation now
- Hou, H. ; Ge, X. ; Chen, Y. ; Tang, J. ; Hou, T. ; Fang, R. Model-free dynamic management strategy for low-carbon home energy based on deep reinforcement learning accommodating stochastic environments. 2023 Energy Build. 278 -
Paper not yet in RePEc: Add citation now
Javadi, M.S. ; Nezhad, A.E. ; Jordehi, A.R. ; Gough, M. ; Santos, S.F. ; Catalão, J.P. Transactive energy framework in multi-carrier energy hubs: A fully decentralized model. 2022 Energy. 238 -
Li, J. ; Yu, T. ; Zhang, X. Coordinated load frequency control of multi-area integrated energy system using multi-agent deep reinforcement learning. 2022 Appl Energy. 306 -
Li, Y. ; Bu, F. ; Li, Y. ; Long, C. Optimal scheduling of island integrated energy systems considering multi-uncertainties and hydrothermal simultaneous transmission: A deep reinforcement learning approach. 2023 Appl Energy. 333 -
Li, Y. ; Sun, Y. ; Liu, J. ; Liu, C. ; Zhang, F. A data driven robust optimization model for scheduling near-zero carbon emission power plant considering the wind power output uncertainties and electricity-carbon market. 2023 Energy. -
- Lowe, R. ; Wu, Y.I. ; Tamar, A. ; Harb, J. ; Pieter Abbeel, O. ; Mordatch, I. Multi-agent actor-critic for mixed cooperative-competitive environments. 2017 En : Advances in neural information processing systems. Vol. 30. :
Paper not yet in RePEc: Add citation now
Lu, R. ; Li, Y.-C. ; Li, Y. ; Jiang, J. ; Ding, Y. Multi-agent deep reinforcement learning based demand response for discrete manufacturing systems energy management. 2020 Appl Energy. 276 -
- Niu, Z. ; Zhong, G. ; Yu, H. A review on the attention mechanism of deep learning. 2021 Neurocomputing. 452 48-62
Paper not yet in RePEc: Add citation now
Park, K. ; Moon, I. Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid. 2022 Appl Energy. 328 -
Qiu, D. ; Dong, Z. ; Zhang, X. ; Wang, Y. ; Strbac, G. Safe reinforcement learning for real-time automatic control in a smart energy-hub. 2022 Appl Energy. 309 -
Qiu, D. ; Xue, J. ; Zhang, T. ; Wang, J. ; Sun, M. Federated reinforcement learning for smart building joint peer-to-peer energy and carbon allowance trading. 2023 Appl Energy. 333 -
Qiu, D. ; Ye, Y. ; Papadaskalopoulos, D. ; Strbac, G. Scalable coordinated management of peer-to-peer energy trading: A multi-cluster deep reinforcement learning approach. 2021 Appl Energy. 292 -
Rezaei, N. ; Pezhmani, Y. ; Khazali, A. Economic-environmental risk-averse optimal heat and power energy management of a grid-connected multi microgrid system considering demand response and bidding strategy. 2022 Energy. 240 -
- Ruan, Y. ; Liang, Z. ; Qian, F. ; Meng, H. ; Gao, Y. Operation strategy optimization of combined cooling, heating, and power systems with energy storage and renewable energy based on deep reinforcement learning. 2023 J Build Eng. 65 -
Paper not yet in RePEc: Add citation now
Sun, Q. ; Wang, X. ; Liu, Z. ; Mirsaeidi, S. ; He, J. ; Pei, W. Multi-agent energy management optimization for integrated energy systems under the energy and carbon co-trading market. 2022 Appl Energy. 324 -
Wang, Y. ; Huang, F. ; Tao, S. ; Ma, Y. ; Ma, Y. ; Liu, L. Multi-objective planning of regional integrated energy system aiming at exergy efficiency and economy. 2022 Appl Energy. 306 -
- Wang, Y. ; Qiu, D. ; Wang, Y. ; Sun, M. ; Strbac, G. Graph learning-based voltage regulation in distribution networks with multi-microgrids. 2023 IEEE Trans Power Syst. -
Paper not yet in RePEc: Add citation now
- Wu, X. ; Tian, Z. ; Guo, J. A review of the theoretical research and practical progress of carbon neutrality. 2022 Sustain Opera Comput. 3 54-66
Paper not yet in RePEc: Add citation now
- Yan, L. ; Chen, X. ; Chen, Y. ; Wen, J. A hierarchical deep reinforcement learning-based community energy trading scheme for a neighborhood of smart households. 2022 IEEE Trans Smart Grid. 13 4747-4758
Paper not yet in RePEc: Add citation now
- Yang, T. ; Zhao, L. ; Li, W. ; Zomaya, A.Y. Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning. 2021 Energy. 235 -
Paper not yet in RePEc: Add citation now
- Ye, Y. ; Tang, Y. ; Wang, H. ; Zhang, X.-P. ; Strbac, G. A scalable privacy-preserving multi-agent deep reinforcement learning approach for large-scale peer-to-peer transactive energy trading. 2021 IEEE Trans Smart Grid. 12 5185-5200
Paper not yet in RePEc: Add citation now
Yi, Z. ; Luo, Y. ; Westover, T. ; Katikaneni, S. ; Ponkiya, B. ; Sah, S. Deep reinforcement learning based optimization for a tightly coupled nuclear renewable integrated energy system. 2022 Appl Energy. 328 -
- Yi, Z. ; Xu, Y. ; Hu, J. ; Chow, M.-Y. ; Sun, H. Distributed, neurodynamic-based approach for economic dispatch in an integrated energy system. 2019 IEEE Trans Ind Inf. 16 2245-2257
Paper not yet in RePEc: Add citation now
- Zhang, B. ; Hu, W. ; Ghias, A.M. ; Xu, X. ; Chen, Z. Multi-agent deep reinforcement learning based distributed control architecture for interconnected multi-energy microgrid energy management and optimization. 2023 Energy Convers Manage. 277 -
Paper not yet in RePEc: Add citation now
Zhang, B. ; Hu, W. ; Ghias, A.M. ; Xu, X. ; Chen, Z. Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings. 2022 Appl Energy. 328 -
- Zhang, C. ; Kuppannagari, S.R. ; Xiong, C. ; Kannan, R. ; Prasanna, V.K. A cooperative multi-agent deep reinforcement learning framework for real-time residential load scheduling. 2019 En : Proceedings of the international conference on internet of things design and implementation. :
Paper not yet in RePEc: Add citation now
- Zhang, G. ; Hu, W. ; Cao, D. ; Zhang, Z. ; Huang, Q. ; Chen, Z. A multi-agent deep reinforcement learning approach enabled distributed energy management schedule for the coordinate control of multi-energy hub with gas, electricity, and freshwater. 2022 Energy Convers Manage. 255 -
Paper not yet in RePEc: Add citation now
Zhang, Y. ; Zhu, N. ; Zhao, X. ; Luo, Z. ; Hu, P. ; Lei, F. Energy performance and enviroeconomic analysis of a novel PV-MCHP-TEG system. 2023 Energy. 274 -
Zhong, X. ; Zhong, W. ; Liu, Y. ; Yang, C. ; Xie, S. Optimal energy management for multi-energy multi-microgrid networks considering carbon emission limitations. 2022 Energy. 246 -
Zhou, X. ; Ma, Z. ; Zou, S. ; Zhang, J. Consensus-based distributed economic dispatch for multi micro energy grid systems under coupled carbon emissions. 2022 Appl Energy. 324 -
Zhu, D. ; Yang, B. ; Liu, Y. ; Wang, Z. ; Ma, K. ; Guan, X. Energy management based on multi-agent deep reinforcement learning for a multi-energy industrial park. 2022 Appl Energy. 311 -
Zhu, J. ; Hu, W. ; Xu, X. ; Liu, H. ; Pan, L. ; Fan, H. Optimal scheduling of a wind energy dominated distribution network via a deep reinforcement learning approach. 2022 Renew Energy. 201 792-801