- Abedinia, O. ; Lotfi, M. ; Bagheri, M. ; Sobhani, B. ; Shafie-khah, M. ; Catalão, J.P.S. Improved EMD-based complex prediction model for wind power forecasting. 2020 IEEE Trans Sustain Energy. 11 2790-2802
Paper not yet in RePEc: Add citation now
- Altan, A. ; Karasu, S. ; Zio, E. A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. 2021 Appl Soft Comput. 100 -
Paper not yet in RePEc: Add citation now
- Barjasteh, A. ; Ghafouri, S.H. ; Hashemi, M. A hybrid model based on discrete wavelet transform (DWT) and bidirectional recurrent neural networks for wind speed prediction. 2024 Eng Appl Artif Intell. 127 -
Paper not yet in RePEc: Add citation now
- Breiman, L. Random forests. 2001 Mach Learn. 45 5-32
Paper not yet in RePEc: Add citation now
- Chen, J. ; Zeng, G.-Q. ; Zhou, W. ; Du, W. ; Lu, K.-D. Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization. 2018 Energy Convers Manag. 165 681-695
Paper not yet in RePEc: Add citation now
- Cherkassky, V. The Nature Of Statistical Learning Theory. 1997 IEEE Transactions on Neural Networks. 8 -
Paper not yet in RePEc: Add citation now
- Colominas, M.A. ; Schlotthauer, G. ; Torres, M.E. Improved complete ensemble EMD: a suitable tool for biomedical signal processing. 2014 Biomed Signal Process Control. 14 19-29
Paper not yet in RePEc: Add citation now
- Cover, T. ; Hart, P. Nearest neighbor pattern classification. 1967 IEEE Trans Inform Theory. 13 21-27
Paper not yet in RePEc: Add citation now
Ding, Y. ; Chen, Z. ; Zhang, H. ; Wang, X. ; Guo, Y. A short-term wind power prediction model based on CEEMD and WOA-KELM. 2022 Renew Energy. 189 188-198
- Dragomiretskiy, K. ; Zosso, D. Variational mode decomposition. 2014 IEEE Trans Signal Process. 62 531-544
Paper not yet in RePEc: Add citation now
Duan, J. ; Zuo, H. ; Bai, Y. ; Duan, J. ; Chang, M. ; Chen, B. Short-term wind speed forecasting using recurrent neural networks with error correction. 2021 Energy. 217 -
- Eberhart, R. ; Kennedy, J. A new optimizer using particle swarm theory. MHS’95. 1995 IEEE: Nagoya, Japan
Paper not yet in RePEc: Add citation now
Foley, A.M. ; Leahy, P.G. ; Marvuglia, A. ; McKeogh, E.J. Current methods and advances in forecasting of wind power generation. 2012 Renew Energy. 37 1-8
- Fu, Z.N. ; Xie, H.W. Wind speed forecasting based on FNN in wind farm. 2014 Appl Mech Mater. 651–653 1117-1122
Paper not yet in RePEc: Add citation now
- Gan, Z. ; Li, C. ; Zhou, J. ; Tang, G. Temporal convolutional networks interval prediction model for wind speed forecasting. 2021 Elec Power Syst Res. 191 -
Paper not yet in RePEc: Add citation now
- Hao, Y. ; Yang, W. ; Yin, K. Novel wind speed forecasting model based on a deep learning combined strategy in urban energy systems. 2023 Expert Syst Appl. 219 -
Paper not yet in RePEc: Add citation now
- Harbola, S. ; Coors, V. One dimensional convolutional neural network architectures for wind prediction. 2019 Energy Convers Manag. 195 70-75
Paper not yet in RePEc: Add citation now
Hu, H. ; Wang, L. ; Tao, R. Wind speed forecasting based on variational mode decomposition and improved echo state network. 2021 Renew Energy. 164 729-751
- Huang, N.E. ; Shen, Z. ; Long, S.R. ; Wu, M.C. ; Shih, H.H. ; Zheng, Q. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. 1998 Proceedings of the Royal Society of London Series A. 454 903-998
Paper not yet in RePEc: Add citation now
- Jaseena, K.U. ; Kovoor, B.C. Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks. 2021 Energy Convers Manag. 234 -
Paper not yet in RePEc: Add citation now
- Jiang, P. ; Li, R. ; Zhang, K. Two combined forecasting models based on singular spectrum analysis and intelligent optimized algorithm for short-term wind speed. 2018 Neural Comput & Applic. 30 1-19
Paper not yet in RePEc: Add citation now
Jiang, P. ; Liu, Z. ; Niu, X. ; Zhang, L. A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting. 2021 Energy. 217 -
- Jiang, P. ; Liu, Z. ; Wang, J. ; Zhang, L. Decomposition-selection-ensemble prediction system for short-term wind speed forecasting. 2022 Elec Power Syst Res. 211 -
Paper not yet in RePEc: Add citation now
Jiang, Z. ; Che, J. ; He, M. ; Yuan, F. A CGRU multi-step wind speed forecasting model based on multi-label specific XGBoost feature selection and secondary decomposition. 2023 Renew Energy. 203 802-827
- Jones, D. Global Electricity Review 2022. 2022 EMBER:
Paper not yet in RePEc: Add citation now
Joseph, L.P. ; Deo, R.C. ; Prasad, R. ; Salcedo-Sanz, S. ; Raj, N. ; Soar, J. Near real-time wind speed forecast model with bidirectional LSTM networks. 2023 Renew Energy. 204 39-58
- Ju, Y. ; Sun, G. ; Chen, Q. ; Zhang, M. ; Zhu, H. ; Rehman, M.U. A model combining convolutional neural network and LightGBM algorithm for ultra-short-term wind power forecasting. 2019 IEEE Access. 7 28309-28318
Paper not yet in RePEc: Add citation now
- Khodayar, M. ; Wang, J. Spatio-temporal graph deep neural network for short-term wind speed forecasting. 2019 IEEE Trans Sustain Energy. 10 670-681
Paper not yet in RePEc: Add citation now
- Li, C. ; Tang, G. ; Xue, X. ; Saeed, A. ; Hu, X. Short-term wind speed interval prediction based on ensemble GRU model. 2020 IEEE Trans Sustain Energy. 11 1370-1380
Paper not yet in RePEc: Add citation now
Li, D. ; Jiang, F. ; Chen, M. ; Qian, T. Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks. 2022 Energy. 238 -
- Li, H. Short-term wind power prediction via spatial temporal analysis and deep residual networks. 2022 Front Energy Res. 10 -
Paper not yet in RePEc: Add citation now
Li, J. ; Song, Z. ; Wang, X. ; Wang, Y. ; Jia, Y. A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD. 2022 Energy. 251 -
Li, K. ; Shen, R. ; Wang, Z. ; Yan, B. ; Yang, Q. ; Zhou, X. An efficient wind speed prediction method based on a deep neural network without future information leakage. 2023 Energy. 267 -
- Li, M. ; Yang, M. ; Yu, Y. ; Lee, W.-J. A wind speed correction method based on modified hidden markov model for enhancing wind power forecast. 2022 IEEE Trans on Ind Applicat. 58 656-666
Paper not yet in RePEc: Add citation now
Li, Y. ; Sun, K. ; Yao, Q. ; Wang, L. A dual-optimization wind speed forecasting model based on deep learning and improved dung beetle optimization algorithm. 2024 Energy. 286 -
Liu, H. ; Chen, C. Data processing strategies in wind energy forecasting models and applications: a comprehensive review. 2019 Appl Energy. 249 392-408
- Liu, H. ; Mi, X. ; Li, Y. Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network. 2018 Energy Convers Manag. 166 120-131
Paper not yet in RePEc: Add citation now
- Liu, H. ; Mi, X. ; Li, Y. Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network. 2018 Energy Convers Manag. 156 498-514
Paper not yet in RePEc: Add citation now
Liu, Z. ; Jiang, P. ; Zhang, L. ; Niu, X. A combined forecasting model for time series: application to short-term wind speed forecasting. 2020 Appl Energy. 259 -
- Lv, S.-X. ; Peng, L. ; Hu, H. ; Wang, L. Effective machine learning model combination based on selective ensemble strategy for time series forecasting. 2022 Inf Sci. 612 994-1023
Paper not yet in RePEc: Add citation now
Lv, S.-X. ; Wang, L. Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization. 2022 Appl Energy. 311 -
- Ma, Z. ; Chen, H. ; Wang, J. ; Yang, X. ; Yan, R. ; Jia, J. Application of hybrid model based on double decomposition, error correction and deep learning in short-term wind speed prediction. 2020 Energy Convers Manag. 205 -
Paper not yet in RePEc: Add citation now
- Memarzadeh, G. ; Keynia, F. A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets. 2020 Energy Convers Manag. 213 -
Paper not yet in RePEc: Add citation now
- Mi, X. ; Liu, H. ; Li, Y. Wind speed prediction model using singular spectrum analysis, empirical mode decomposition and convolutional support vector machine. 2019 Energy Convers Manag. 180 196-205
Paper not yet in RePEc: Add citation now
- Naik, J. ; Satapathy, P. ; Dash, P.K. Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression. 2018 Appl Soft Comput. 70 1167-1188
Paper not yet in RePEc: Add citation now
Parri, S. ; Teeparthi, K. ; Kosana, V. A hybrid methodology using VMD and disentangled features for wind speed forecasting. 2024 Energy. 288 -
Peng, L. ; Lv, S.-X. ; Wang, L. Explainable machine learning techniques based on attention gate recurrent unit and local interpretable model-agnostic explanations for multivariate wind speed forecasting. 2024 J Forecast. 43 2064-2087
- Ren, Y. ; Suganthan, P.N. ; Srikanth, N. A novel empirical mode decomposition with support vector regression for wind speed forecasting. 2016 IEEE Transact Neural Networks Learn Syst. 27 1793-1798
Paper not yet in RePEc: Add citation now
- Rodrigues Moreno, S. ; Gomes da Silva, R. ; Cocco Mariani, V. ; dos Santos Coelho, L. Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network. 2020 Energy Convers Manag. 213 -
Paper not yet in RePEc: Add citation now
Shahid, F. ; Zameer, A. ; Muneeb, M. A novel genetic LSTM model for wind power forecast. 2021 Energy. 223 -
- Shang, T. ; Li, W.-Q. ; Wu, L. Regional forecasting of wind speed in large scale wind plants. 2023 Int J Green Energy. 20 486-496
Paper not yet in RePEc: Add citation now
- Shang, Z. ; Chen, Y. ; Chen, Y. ; Guo, Z. ; Yang, Y. Decomposition-based wind speed forecasting model using causal convolutional network and attention mechanism. 2023 Expert Syst Appl. 223 -
Paper not yet in RePEc: Add citation now
- Shi, Y. ; Eberhart, R. A modified particle swarm optimizer. 1998 :
Paper not yet in RePEc: Add citation now
- Sibtain, M. ; Bashir, H. ; Nawaz, M. ; Hameed, S. ; Imran Azam, M. ; Li, X. A multivariate ultra-short-term wind speed forecasting model by employing multistage signal decomposition approaches and a deep learning network. 2022 Energy Convers Manag. 263 -
Paper not yet in RePEc: Add citation now
Song, J. ; Wang, J. ; Lu, H. A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting. 2018 Appl Energy. 215 643-658
Sun, Z. ; Zhao, M. ; Zhao, G. Hybrid model based on VMD decomposition, clustering analysis, long short memory network, ensemble learning and error complementation for short-term wind speed forecasting assisted by Flink platform. 2022 Energy. 261 -
- Tao, Y. ; Chen, H. ; Qiu, C. Wind power prediction and pattern feature based on deep learning method. 2014 APPEEC):
Paper not yet in RePEc: Add citation now
- Torres, M.E. ; Colominas, M.A. ; Schlotthauer, G. ; Flandrin, P. A complete ensemble empirical mode decomposition with adaptive noise. 2011 :
Paper not yet in RePEc: Add citation now
Wang, C. ; Zhang, S. ; Liao, P. ; Fu, T. Wind speed forecasting based on hybrid model with model selection and wind energy conversion. 2022 Renew Energy. 196 763-781
- Wang, J. ; Gao, D. ; Chen, Y. A novel discriminated deep learning ensemble paradigm based on joint feature contribution for wind speed forecasting. 2022 Energy Convers Manag. 270 -
Paper not yet in RePEc: Add citation now
- Wang, J. ; Wang, Y. ; Li, Z. ; Li, H. ; Yang, H. A combined framework based on data preprocessing, neural networks and multi-tracker optimizer for wind speed prediction. 2020 Sustain Energy Technol Assessments. 40 -
Paper not yet in RePEc: Add citation now
Wang, K. ; Qi, X. ; Liu, H. ; Song, J. Deep belief network based k-means cluster approach for short-term wind power forecasting. 2018 Energy. 165 840-852
- Wang, Z. ; Wang, L. ; Revanesh, M. ; Huang, C. ; Luo, X. Short-term wind speed and power forecasting for smart city power grid with a hybrid machine learning framework. 2023 IEEE Internet Things J. 10 18754-18765
Paper not yet in RePEc: Add citation now
Wei, D. ; Wang, J. ; Niu, X. ; Li, Z. Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks. 2021 Appl Energy. 292 -
Wu, B. ; Wang, L. Two-stage decomposition and temporal fusion transformers for interpretable wind speed forecasting. 2024 Energy. 288 -
Wu, B. ; Wang, L. ; Zeng, Y.-R. Interpretable wind speed prediction with multivariate time series and temporal fusion transformers. 2022 Energy. 252 -
Wu, B. ; Yu, S. ; Peng, L. ; Wang, L. Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition. 2024 Energy. 294 -
Wu, C. ; Wang, J. ; Chen, X. ; Du, P. ; Yang, W. A novel hybrid system based on multi-objective optimization for wind speed forecasting. 2020 Renew Energy. 146 149-165
Wu, H. ; Meng, K. ; Fan, D. ; Zhang, Z. ; Liu, Q. Multistep short-term wind speed forecasting using transformer. 2022 Energy. 261 -
Wu, J. ; Li, N. ; Zhao, Y. ; Wang, J. Usage of correlation analysis and hypothesis test in optimizing the gated recurrent unit network for wind speed forecasting. 2022 Energy. 242 -
Wu, Q. ; Zheng, H. ; Guo, X. ; Liu, G. Promoting wind energy for sustainable development by precise wind speed prediction based on graph neural networks. 2022 Renew Energy. 199 977-992
- Wu, Z. ; Huang, N.E. Ensemble empirical mode decomposition: a noise-assisted data analysis method. 2009 Adv Adapt Data Anal. 1 1-41
Paper not yet in RePEc: Add citation now
Yan, B. ; Shen, R. ; Li, K. ; Wang, Z. ; Yang, Q. ; Zhou, X. Spatio-temporal correlation for simultaneous ultra-short-term wind speed prediction at multiple locations. 2023 Energy. 284 -
Yang, Q. ; Deng, C. ; Chang, X. Ultra-short-term/short-term wind speed prediction based on improved singular spectrum analysis. 2022 Renew Energy. 184 36-44
- Yeh, J.-R. ; Shieh, J.-S. ; Huang, N.E. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. 2010 Adv Adapt Data Anal. 2 135-156
Paper not yet in RePEc: Add citation now
- Yu, R. ; Gao, J. ; Yu, M. ; Lu, W. ; Xu, T. ; Zhao, M. LSTM-EFG for wind power forecasting based on sequential correlation features. 2019 Future Generat Comput Syst. 93 33-42
Paper not yet in RePEc: Add citation now
Zhang, C. ; Li, Z. ; Ge, Y. ; Liu, Q. ; Suo, L. ; Song, S. Enhancing short-term wind speed prediction based on an outlier-robust ensemble deep random vector functional link network with AOA-optimized VMD. 2024 Energy. 296 -
- Zhang, C. ; Peng, T. ; Nazir, M.S. A novel hybrid approach based on variational heteroscedastic Gaussian process regression for multi-step ahead wind speed forecasting. 2022 Int J Electr Power Energy Syst. 136 -
Paper not yet in RePEc: Add citation now
- Zhang, D. ; Peng, X. ; Pan, K. ; Liu, Y. A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine. 2019 Energy Convers Manag. 180 338-357
Paper not yet in RePEc: Add citation now
- Zhang, G. ; Liu, D. Causal convolutional gated recurrent unit network with multiple decomposition methods for short-term wind speed forecasting. 2020 Energy Convers Manag. 226 -
Paper not yet in RePEc: Add citation now
Zhang, J. ; Wei, Y. ; Tan, Z. An adaptive hybrid model for short term wind speed forecasting. 2020 Energy. 190 -
Zhang, J. ; Yan, J. ; Infield, D. ; Liu, Y. ; Lien, F. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. 2019 Appl Energy. 241 229-244
Zhang, S. ; Chen, Y. ; Xiao, J. ; Zhang, W. ; Feng, R. Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism. 2021 Renew Energy. 174 688-704
- Zhang, W. ; Qu, Z. ; Zhang, K. ; Mao, W. ; Ma, Y. ; Fan, X. A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting. 2017 Energy Convers Manag. 136 439-451
Paper not yet in RePEc: Add citation now
- Zhang, X. ; Zhao, D. ; Wang, T. ; Wu, X. Industrial water consumption forecasting based on combined CEEMD-ARIMA model for Henan province, central chain: a case study. 2022 Environ Monit Assess. 194 471-
Paper not yet in RePEc: Add citation now
Zhang, Z. ; Ye, L. ; Qin, H. ; Liu, Y. ; Wang, C. ; Yu, X. Wind speed prediction method using shared weight long short-term memory network and Gaussian process regression. 2019 Appl Energy. 247 270-284
Zhu, X. ; Liu, R. ; Chen, Y. ; Gao, X. ; Wang, Y. ; Xu, Z. Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN. 2021 Energy. 236 -