create a website

A state-of-the-art analysis on decomposition method for short-term wind speed forecasting using LSTM and a novel hybrid deep learning model. (2024). Hu, Gang ; Zhang, Jize ; Liang, Yang.
In: Energy.
RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036041.

Full description at Econpapers || Download paper

Cited: 3

Citations received by this document

Cites: 87

References cited by this document

Cocites: 31

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Economic Optimization of Hybrid Energy Storage Capacity for Wind Power Based on Coordinated SGMD and PSO. (2025). Zhao, Fengwei ; Meng, Xiangdong ; Qi, Kai.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:10:p:2417-:d:1651605.

    Full description at Econpapers || Download paper

  2. A novel deep learning approach for regional high-resolution spatio-temporal wind speed forecasting for energy applications. (2025). Resifi, Sofien ; al Aawar, Elissar ; Dasari, Hari Prasad ; Jebari, Hatem ; Hoteit, Ibrahim.
    In: Energy.
    RePEc:eee:energy:v:328:y:2025:i:c:s036054422501998x.

    Full description at Econpapers || Download paper

  3. Interpretable wind speed forecasting through two-stage decomposition with comprehensive relative importance analysis. (2025). Zeng, Huanze ; Wu, Binrong ; Lin, Jiacheng ; Fang, Haoyu.
    In: Applied Energy.
    RePEc:eee:appene:v:392:y:2025:i:c:s0306261925007457.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abedinia, O. ; Lotfi, M. ; Bagheri, M. ; Sobhani, B. ; Shafie-khah, M. ; Catalão, J.P.S. Improved EMD-based complex prediction model for wind power forecasting. 2020 IEEE Trans Sustain Energy. 11 2790-2802
    Paper not yet in RePEc: Add citation now
  2. Altan, A. ; Karasu, S. ; Zio, E. A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. 2021 Appl Soft Comput. 100 -
    Paper not yet in RePEc: Add citation now
  3. Barjasteh, A. ; Ghafouri, S.H. ; Hashemi, M. A hybrid model based on discrete wavelet transform (DWT) and bidirectional recurrent neural networks for wind speed prediction. 2024 Eng Appl Artif Intell. 127 -
    Paper not yet in RePEc: Add citation now
  4. Breiman, L. Random forests. 2001 Mach Learn. 45 5-32
    Paper not yet in RePEc: Add citation now
  5. Chen, J. ; Zeng, G.-Q. ; Zhou, W. ; Du, W. ; Lu, K.-D. Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization. 2018 Energy Convers Manag. 165 681-695
    Paper not yet in RePEc: Add citation now
  6. Cherkassky, V. The Nature Of Statistical Learning Theory. 1997 IEEE Transactions on Neural Networks. 8 -
    Paper not yet in RePEc: Add citation now
  7. Colominas, M.A. ; Schlotthauer, G. ; Torres, M.E. Improved complete ensemble EMD: a suitable tool for biomedical signal processing. 2014 Biomed Signal Process Control. 14 19-29
    Paper not yet in RePEc: Add citation now
  8. Cover, T. ; Hart, P. Nearest neighbor pattern classification. 1967 IEEE Trans Inform Theory. 13 21-27
    Paper not yet in RePEc: Add citation now
  9. Ding, Y. ; Chen, Z. ; Zhang, H. ; Wang, X. ; Guo, Y. A short-term wind power prediction model based on CEEMD and WOA-KELM. 2022 Renew Energy. 189 188-198

  10. Dragomiretskiy, K. ; Zosso, D. Variational mode decomposition. 2014 IEEE Trans Signal Process. 62 531-544
    Paper not yet in RePEc: Add citation now
  11. Duan, J. ; Zuo, H. ; Bai, Y. ; Duan, J. ; Chang, M. ; Chen, B. Short-term wind speed forecasting using recurrent neural networks with error correction. 2021 Energy. 217 -

  12. Eberhart, R. ; Kennedy, J. A new optimizer using particle swarm theory. MHS’95. 1995 IEEE: Nagoya, Japan
    Paper not yet in RePEc: Add citation now
  13. Foley, A.M. ; Leahy, P.G. ; Marvuglia, A. ; McKeogh, E.J. Current methods and advances in forecasting of wind power generation. 2012 Renew Energy. 37 1-8

  14. Fu, Z.N. ; Xie, H.W. Wind speed forecasting based on FNN in wind farm. 2014 Appl Mech Mater. 651–653 1117-1122
    Paper not yet in RePEc: Add citation now
  15. Gan, Z. ; Li, C. ; Zhou, J. ; Tang, G. Temporal convolutional networks interval prediction model for wind speed forecasting. 2021 Elec Power Syst Res. 191 -
    Paper not yet in RePEc: Add citation now
  16. Hao, Y. ; Yang, W. ; Yin, K. Novel wind speed forecasting model based on a deep learning combined strategy in urban energy systems. 2023 Expert Syst Appl. 219 -
    Paper not yet in RePEc: Add citation now
  17. Harbola, S. ; Coors, V. One dimensional convolutional neural network architectures for wind prediction. 2019 Energy Convers Manag. 195 70-75
    Paper not yet in RePEc: Add citation now
  18. Hu, H. ; Wang, L. ; Tao, R. Wind speed forecasting based on variational mode decomposition and improved echo state network. 2021 Renew Energy. 164 729-751

  19. Huang, N.E. ; Shen, Z. ; Long, S.R. ; Wu, M.C. ; Shih, H.H. ; Zheng, Q. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. 1998 Proceedings of the Royal Society of London Series A. 454 903-998
    Paper not yet in RePEc: Add citation now
  20. Jaseena, K.U. ; Kovoor, B.C. Decomposition-based hybrid wind speed forecasting model using deep bidirectional LSTM networks. 2021 Energy Convers Manag. 234 -
    Paper not yet in RePEc: Add citation now
  21. Jiang, P. ; Li, R. ; Zhang, K. Two combined forecasting models based on singular spectrum analysis and intelligent optimized algorithm for short-term wind speed. 2018 Neural Comput & Applic. 30 1-19
    Paper not yet in RePEc: Add citation now
  22. Jiang, P. ; Liu, Z. ; Niu, X. ; Zhang, L. A combined forecasting system based on statistical method, artificial neural networks, and deep learning methods for short-term wind speed forecasting. 2021 Energy. 217 -

  23. Jiang, P. ; Liu, Z. ; Wang, J. ; Zhang, L. Decomposition-selection-ensemble prediction system for short-term wind speed forecasting. 2022 Elec Power Syst Res. 211 -
    Paper not yet in RePEc: Add citation now
  24. Jiang, Z. ; Che, J. ; He, M. ; Yuan, F. A CGRU multi-step wind speed forecasting model based on multi-label specific XGBoost feature selection and secondary decomposition. 2023 Renew Energy. 203 802-827

  25. Jones, D. Global Electricity Review 2022. 2022 EMBER:
    Paper not yet in RePEc: Add citation now
  26. Joseph, L.P. ; Deo, R.C. ; Prasad, R. ; Salcedo-Sanz, S. ; Raj, N. ; Soar, J. Near real-time wind speed forecast model with bidirectional LSTM networks. 2023 Renew Energy. 204 39-58

  27. Ju, Y. ; Sun, G. ; Chen, Q. ; Zhang, M. ; Zhu, H. ; Rehman, M.U. A model combining convolutional neural network and LightGBM algorithm for ultra-short-term wind power forecasting. 2019 IEEE Access. 7 28309-28318
    Paper not yet in RePEc: Add citation now
  28. Khodayar, M. ; Wang, J. Spatio-temporal graph deep neural network for short-term wind speed forecasting. 2019 IEEE Trans Sustain Energy. 10 670-681
    Paper not yet in RePEc: Add citation now
  29. Li, C. ; Tang, G. ; Xue, X. ; Saeed, A. ; Hu, X. Short-term wind speed interval prediction based on ensemble GRU model. 2020 IEEE Trans Sustain Energy. 11 1370-1380
    Paper not yet in RePEc: Add citation now
  30. Li, D. ; Jiang, F. ; Chen, M. ; Qian, T. Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks. 2022 Energy. 238 -

  31. Li, H. Short-term wind power prediction via spatial temporal analysis and deep residual networks. 2022 Front Energy Res. 10 -
    Paper not yet in RePEc: Add citation now
  32. Li, J. ; Song, Z. ; Wang, X. ; Wang, Y. ; Jia, Y. A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD. 2022 Energy. 251 -

  33. Li, K. ; Shen, R. ; Wang, Z. ; Yan, B. ; Yang, Q. ; Zhou, X. An efficient wind speed prediction method based on a deep neural network without future information leakage. 2023 Energy. 267 -

  34. Li, M. ; Yang, M. ; Yu, Y. ; Lee, W.-J. A wind speed correction method based on modified hidden markov model for enhancing wind power forecast. 2022 IEEE Trans on Ind Applicat. 58 656-666
    Paper not yet in RePEc: Add citation now
  35. Li, Y. ; Sun, K. ; Yao, Q. ; Wang, L. A dual-optimization wind speed forecasting model based on deep learning and improved dung beetle optimization algorithm. 2024 Energy. 286 -

  36. Liu, H. ; Chen, C. Data processing strategies in wind energy forecasting models and applications: a comprehensive review. 2019 Appl Energy. 249 392-408

  37. Liu, H. ; Mi, X. ; Li, Y. Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network. 2018 Energy Convers Manag. 166 120-131
    Paper not yet in RePEc: Add citation now
  38. Liu, H. ; Mi, X. ; Li, Y. Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network. 2018 Energy Convers Manag. 156 498-514
    Paper not yet in RePEc: Add citation now
  39. Liu, Z. ; Jiang, P. ; Zhang, L. ; Niu, X. A combined forecasting model for time series: application to short-term wind speed forecasting. 2020 Appl Energy. 259 -

  40. Lv, S.-X. ; Peng, L. ; Hu, H. ; Wang, L. Effective machine learning model combination based on selective ensemble strategy for time series forecasting. 2022 Inf Sci. 612 994-1023
    Paper not yet in RePEc: Add citation now
  41. Lv, S.-X. ; Wang, L. Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization. 2022 Appl Energy. 311 -

  42. Ma, Z. ; Chen, H. ; Wang, J. ; Yang, X. ; Yan, R. ; Jia, J. Application of hybrid model based on double decomposition, error correction and deep learning in short-term wind speed prediction. 2020 Energy Convers Manag. 205 -
    Paper not yet in RePEc: Add citation now
  43. Memarzadeh, G. ; Keynia, F. A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets. 2020 Energy Convers Manag. 213 -
    Paper not yet in RePEc: Add citation now
  44. Mi, X. ; Liu, H. ; Li, Y. Wind speed prediction model using singular spectrum analysis, empirical mode decomposition and convolutional support vector machine. 2019 Energy Convers Manag. 180 196-205
    Paper not yet in RePEc: Add citation now
  45. Naik, J. ; Satapathy, P. ; Dash, P.K. Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression. 2018 Appl Soft Comput. 70 1167-1188
    Paper not yet in RePEc: Add citation now
  46. Parri, S. ; Teeparthi, K. ; Kosana, V. A hybrid methodology using VMD and disentangled features for wind speed forecasting. 2024 Energy. 288 -

  47. Peng, L. ; Lv, S.-X. ; Wang, L. Explainable machine learning techniques based on attention gate recurrent unit and local interpretable model-agnostic explanations for multivariate wind speed forecasting. 2024 J Forecast. 43 2064-2087

  48. Ren, Y. ; Suganthan, P.N. ; Srikanth, N. A novel empirical mode decomposition with support vector regression for wind speed forecasting. 2016 IEEE Transact Neural Networks Learn Syst. 27 1793-1798
    Paper not yet in RePEc: Add citation now
  49. Rodrigues Moreno, S. ; Gomes da Silva, R. ; Cocco Mariani, V. ; dos Santos Coelho, L. Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network. 2020 Energy Convers Manag. 213 -
    Paper not yet in RePEc: Add citation now
  50. Shahid, F. ; Zameer, A. ; Muneeb, M. A novel genetic LSTM model for wind power forecast. 2021 Energy. 223 -

  51. Shang, T. ; Li, W.-Q. ; Wu, L. Regional forecasting of wind speed in large scale wind plants. 2023 Int J Green Energy. 20 486-496
    Paper not yet in RePEc: Add citation now
  52. Shang, Z. ; Chen, Y. ; Chen, Y. ; Guo, Z. ; Yang, Y. Decomposition-based wind speed forecasting model using causal convolutional network and attention mechanism. 2023 Expert Syst Appl. 223 -
    Paper not yet in RePEc: Add citation now
  53. Shi, Y. ; Eberhart, R. A modified particle swarm optimizer. 1998 :
    Paper not yet in RePEc: Add citation now
  54. Sibtain, M. ; Bashir, H. ; Nawaz, M. ; Hameed, S. ; Imran Azam, M. ; Li, X. A multivariate ultra-short-term wind speed forecasting model by employing multistage signal decomposition approaches and a deep learning network. 2022 Energy Convers Manag. 263 -
    Paper not yet in RePEc: Add citation now
  55. Song, J. ; Wang, J. ; Lu, H. A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting. 2018 Appl Energy. 215 643-658

  56. Sun, Z. ; Zhao, M. ; Zhao, G. Hybrid model based on VMD decomposition, clustering analysis, long short memory network, ensemble learning and error complementation for short-term wind speed forecasting assisted by Flink platform. 2022 Energy. 261 -

  57. Tao, Y. ; Chen, H. ; Qiu, C. Wind power prediction and pattern feature based on deep learning method. 2014 APPEEC):
    Paper not yet in RePEc: Add citation now
  58. Torres, M.E. ; Colominas, M.A. ; Schlotthauer, G. ; Flandrin, P. A complete ensemble empirical mode decomposition with adaptive noise. 2011 :
    Paper not yet in RePEc: Add citation now
  59. Wang, C. ; Zhang, S. ; Liao, P. ; Fu, T. Wind speed forecasting based on hybrid model with model selection and wind energy conversion. 2022 Renew Energy. 196 763-781

  60. Wang, J. ; Gao, D. ; Chen, Y. A novel discriminated deep learning ensemble paradigm based on joint feature contribution for wind speed forecasting. 2022 Energy Convers Manag. 270 -
    Paper not yet in RePEc: Add citation now
  61. Wang, J. ; Wang, Y. ; Li, Z. ; Li, H. ; Yang, H. A combined framework based on data preprocessing, neural networks and multi-tracker optimizer for wind speed prediction. 2020 Sustain Energy Technol Assessments. 40 -
    Paper not yet in RePEc: Add citation now
  62. Wang, K. ; Qi, X. ; Liu, H. ; Song, J. Deep belief network based k-means cluster approach for short-term wind power forecasting. 2018 Energy. 165 840-852

  63. Wang, Z. ; Wang, L. ; Revanesh, M. ; Huang, C. ; Luo, X. Short-term wind speed and power forecasting for smart city power grid with a hybrid machine learning framework. 2023 IEEE Internet Things J. 10 18754-18765
    Paper not yet in RePEc: Add citation now
  64. Wei, D. ; Wang, J. ; Niu, X. ; Li, Z. Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks. 2021 Appl Energy. 292 -

  65. Wu, B. ; Wang, L. Two-stage decomposition and temporal fusion transformers for interpretable wind speed forecasting. 2024 Energy. 288 -

  66. Wu, B. ; Wang, L. ; Zeng, Y.-R. Interpretable wind speed prediction with multivariate time series and temporal fusion transformers. 2022 Energy. 252 -

  67. Wu, B. ; Yu, S. ; Peng, L. ; Wang, L. Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition. 2024 Energy. 294 -

  68. Wu, C. ; Wang, J. ; Chen, X. ; Du, P. ; Yang, W. A novel hybrid system based on multi-objective optimization for wind speed forecasting. 2020 Renew Energy. 146 149-165

  69. Wu, H. ; Meng, K. ; Fan, D. ; Zhang, Z. ; Liu, Q. Multistep short-term wind speed forecasting using transformer. 2022 Energy. 261 -

  70. Wu, J. ; Li, N. ; Zhao, Y. ; Wang, J. Usage of correlation analysis and hypothesis test in optimizing the gated recurrent unit network for wind speed forecasting. 2022 Energy. 242 -

  71. Wu, Q. ; Zheng, H. ; Guo, X. ; Liu, G. Promoting wind energy for sustainable development by precise wind speed prediction based on graph neural networks. 2022 Renew Energy. 199 977-992

  72. Wu, Z. ; Huang, N.E. Ensemble empirical mode decomposition: a noise-assisted data analysis method. 2009 Adv Adapt Data Anal. 1 1-41
    Paper not yet in RePEc: Add citation now
  73. Yan, B. ; Shen, R. ; Li, K. ; Wang, Z. ; Yang, Q. ; Zhou, X. Spatio-temporal correlation for simultaneous ultra-short-term wind speed prediction at multiple locations. 2023 Energy. 284 -

  74. Yang, Q. ; Deng, C. ; Chang, X. Ultra-short-term/short-term wind speed prediction based on improved singular spectrum analysis. 2022 Renew Energy. 184 36-44

  75. Yeh, J.-R. ; Shieh, J.-S. ; Huang, N.E. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. 2010 Adv Adapt Data Anal. 2 135-156
    Paper not yet in RePEc: Add citation now
  76. Yu, R. ; Gao, J. ; Yu, M. ; Lu, W. ; Xu, T. ; Zhao, M. LSTM-EFG for wind power forecasting based on sequential correlation features. 2019 Future Generat Comput Syst. 93 33-42
    Paper not yet in RePEc: Add citation now
  77. Zhang, C. ; Li, Z. ; Ge, Y. ; Liu, Q. ; Suo, L. ; Song, S. Enhancing short-term wind speed prediction based on an outlier-robust ensemble deep random vector functional link network with AOA-optimized VMD. 2024 Energy. 296 -

  78. Zhang, C. ; Peng, T. ; Nazir, M.S. A novel hybrid approach based on variational heteroscedastic Gaussian process regression for multi-step ahead wind speed forecasting. 2022 Int J Electr Power Energy Syst. 136 -
    Paper not yet in RePEc: Add citation now
  79. Zhang, D. ; Peng, X. ; Pan, K. ; Liu, Y. A novel wind speed forecasting based on hybrid decomposition and online sequential outlier robust extreme learning machine. 2019 Energy Convers Manag. 180 338-357
    Paper not yet in RePEc: Add citation now
  80. Zhang, G. ; Liu, D. Causal convolutional gated recurrent unit network with multiple decomposition methods for short-term wind speed forecasting. 2020 Energy Convers Manag. 226 -
    Paper not yet in RePEc: Add citation now
  81. Zhang, J. ; Wei, Y. ; Tan, Z. An adaptive hybrid model for short term wind speed forecasting. 2020 Energy. 190 -

  82. Zhang, J. ; Yan, J. ; Infield, D. ; Liu, Y. ; Lien, F. Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. 2019 Appl Energy. 241 229-244

  83. Zhang, S. ; Chen, Y. ; Xiao, J. ; Zhang, W. ; Feng, R. Hybrid wind speed forecasting model based on multivariate data secondary decomposition approach and deep learning algorithm with attention mechanism. 2021 Renew Energy. 174 688-704

  84. Zhang, W. ; Qu, Z. ; Zhang, K. ; Mao, W. ; Ma, Y. ; Fan, X. A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting. 2017 Energy Convers Manag. 136 439-451
    Paper not yet in RePEc: Add citation now
  85. Zhang, X. ; Zhao, D. ; Wang, T. ; Wu, X. Industrial water consumption forecasting based on combined CEEMD-ARIMA model for Henan province, central chain: a case study. 2022 Environ Monit Assess. 194 471-
    Paper not yet in RePEc: Add citation now
  86. Zhang, Z. ; Ye, L. ; Qin, H. ; Liu, Y. ; Wang, C. ; Yu, X. Wind speed prediction method using shared weight long short-term memory network and Gaussian process regression. 2019 Appl Energy. 247 270-284

  87. Zhu, X. ; Liu, R. ; Chen, Y. ; Gao, X. ; Wang, Y. ; Xu, Z. Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN. 2021 Energy. 236 -

Cocites

Documents in RePEc which have cited the same bibliography

  1. Optimizing Kernel Extreme Learning Machine based on a Enhanced Adaptive Whale Optimization Algorithm for classification task. (2025). Lin, Zesheng.
    In: PLOS ONE.
    RePEc:plo:pone00:0309741.

    Full description at Econpapers || Download paper

  2. The influence of variational mode decomposition on LSTM prediction accuracy - A case study with wind turbine power signals. (2025). Xiao, Ruofu ; Tao, Ran ; Zhu, DI ; Zhang, Fangfang ; Fang, Mingkun.
    In: Renewable Energy.
    RePEc:eee:renene:v:245:y:2025:i:c:s0960148125005257.

    Full description at Econpapers || Download paper

  3. A comprehensive wind power prediction system based on correct multiscale clustering ensemble, similarity matching, and improved whale optimization algorithm—A case study in China. (2025). Yu, Chunsheng.
    In: Renewable Energy.
    RePEc:eee:renene:v:243:y:2025:i:c:s0960148125001910.

    Full description at Econpapers || Download paper

  4. A short-term wind power prediction based on MCOOT optimized deep learning networks and attention-weighted environmental factors for error correction. (2025). Xiao, Yiping ; Wei, Honghao ; Shi, Ying ; Zhang, Haiyang ; Shen, Zongtao ; Jiao, Hongjian.
    In: Energy.
    RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016962.

    Full description at Econpapers || Download paper

  5. Wind power prediction based on improved self-attention mechanism combined with Bi-directional Temporal Convolutional Network. (2025). Lai, Ching-Ming ; Teh, Jiashen ; Shi, Jian.
    In: Energy.
    RePEc:eee:energy:v:322:y:2025:i:c:s0360544225013088.

    Full description at Econpapers || Download paper

  6. Performance analysis of wind-hydrogen energy storage system using composite objective optimization proactive scheduling strategy coordinated with wind power prediction. (2025). Yu, Lijun ; Liu, Shanke ; Xu, Jialing ; Miao, Yihe ; Wang, Zitao.
    In: Energy.
    RePEc:eee:energy:v:321:y:2025:i:c:s0360544225010588.

    Full description at Econpapers || Download paper

  7. Probabilistic wind speed forecasting via Bayesian DLMs and its application in green hydrogen production. (2025). Costa, Paulo Alexandre ; Pitombeira-Neto, Anselmo Ramalho ; Leal, Jairon Isaias ; Bueno, Andr Valente ; de Andrade, Carla Freitas.
    In: Applied Energy.
    RePEc:eee:appene:v:382:y:2025:i:c:s0306261925000169.

    Full description at Econpapers || Download paper

  8. Decomposition prediction fractional-order active disturbance rejection control deep Q network for generation control of integrated energy systems. (2025). Yin, Linfei ; Huang, Wenxuan ; Lu, Quan.
    In: Applied Energy.
    RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924021561.

    Full description at Econpapers || Download paper

  9. A state-of-the-art analysis on decomposition method for short-term wind speed forecasting using LSTM and a novel hybrid deep learning model. (2024). Hu, Gang ; Zhang, Jize ; Liang, Yang.
    In: Energy.
    RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036041.

    Full description at Econpapers || Download paper

  10. A drift-aware dynamic ensemble model with two-stage member selection for carbon price forecasting. (2024). Hu, Huanling ; Zeng, Liling ; Zhang, Dabin ; Lin, Ruibin ; Song, Qingkui.
    In: Energy.
    RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034777.

    Full description at Econpapers || Download paper

  11. Multivariate short-term wind speed prediction based on PSO-VMD-SE-ICEEMDAN two-stage decomposition and Att-S2S. (2024). Sun, Xiaoying ; Liu, Haizhong.
    In: Energy.
    RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020024.

    Full description at Econpapers || Download paper

  12. Novel hybrid data-driven modeling integrating variational modal decomposition and dual-stage self-attention model: Applied to industrial petrochemical process. (2024). Wan, Lei ; Deng, Kai ; Long, Jian ; Hu, Guihua ; Zhang, Feng ; Huang, Cheng.
    In: Energy.
    RePEc:eee:energy:v:304:y:2024:i:c:s0360544224016682.

    Full description at Econpapers || Download paper

  13. Two-stage correction prediction of wind power based on numerical weather prediction wind speed superposition correction and improved clustering. (2024). Guo, Yunfeng ; Huang, Tao ; Yang, Mao ; Fan, Fulin.
    In: Energy.
    RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015706.

    Full description at Econpapers || Download paper

  14. Load forecasting for regional integrated energy system based on two-phase decomposition and mixture prediction model. (2024). Teh, Jiashen ; Shi, Jian ; Lai, Ching-Ming ; Alharbi, Bader.
    In: Energy.
    RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010090.

    Full description at Econpapers || Download paper

  15. Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system. (2024). Zhao, Zheng ; Zhang, Yagang ; Cheng, Xiaodan ; Wang, Tong.
    In: Energy.
    RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002639.

    Full description at Econpapers || Download paper

  16. High and low frequency wind power prediction based on Transformer and BiGRU-Attention. (2024). Yang, Wei ; Wang, Shuangxin ; Yin, Qingyan ; Shi, Jiarong.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s036054422303147x.

    Full description at Econpapers || Download paper

  17. A novel ultra-short-term wind power prediction model jointly driven by multiple algorithm optimization and adaptive selection. (2024). Li, Xuefeng ; Lin, Qingcheng ; Xiao, Hui ; Cai, Huiling ; Liu, Hanwei.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031183.

    Full description at Econpapers || Download paper

  18. The ultra-short-term wind power point-interval forecasting model based on improved variational mode decomposition and bidirectional gated recurrent unit improved by improved sparrow search algorithm and attention mechanism. (2024). Cui, Xiwen ; Yu, Xiaoyu ; Niu, Dongxiao.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031079.

    Full description at Econpapers || Download paper

  19. A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination. (2024). Zeng, Ziyang ; Zheng, Xidong ; Jin, Tao ; Bai, Feifei.
    In: Energy.
    RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030323.

    Full description at Econpapers || Download paper

  20. A novel chaotic time series wind power point and interval prediction method based on data denoising strategy and improved coati optimization algorithm. (2024). Wang, Zewei ; Yuan, Yue ; Fu, Xiaoling ; Yang, Ming ; Lin, Hong.
    In: Chaos, Solitons & Fractals.
    RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009949.

    Full description at Econpapers || Download paper

  21. Interpretable feature-temporal transformer for short-term wind power forecasting with multivariate time series. (2024). Dong, Xue ; Wang, Xinyu ; Chen, Qiuju ; Liu, Lei.
    In: Applied Energy.
    RePEc:eee:appene:v:374:y:2024:i:c:s0306261924014181.

    Full description at Econpapers || Download paper

  22. Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method. (2023). Chou, Shuo-Yan ; Karijadi, Irene ; Dewabharata, Anindhita.
    In: Renewable Energy.
    RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012727.

    Full description at Econpapers || Download paper

  23. A new demand response management strategy considering renewable energy prediction and filtering technology. (2023). Chen, Zixing ; Zhuang, Zhiyuan ; Zheng, Xidong ; Jin, Tao ; Bai, Feifei.
    In: Renewable Energy.
    RePEc:eee:renene:v:211:y:2023:i:c:p:656-668.

    Full description at Econpapers || Download paper

  24. A multi-step probability density prediction model based on gaussian approximation of quantiles for offshore wind power. (2023). He, Yaoyao ; Zhang, Wanying ; Yang, Shanlin.
    In: Renewable Energy.
    RePEc:eee:renene:v:202:y:2023:i:c:p:992-1011.

    Full description at Econpapers || Download paper

  25. A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN. (2023). Luo, Jianqiang ; Yin, Hao ; Zhang, Haitao ; Xian, Zikang ; Li, Chen ; Zhu, Zibin ; Wang, Chenen ; Meng, Anbo ; Wu, Zhenbo ; Deng, Weisi ; Chen, Shu ; Rong, Jiayu.
    In: Energy.
    RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025331.

    Full description at Econpapers || Download paper

  26. Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm. (2023). Fu, Yongyan ; Peng, Tian ; Song, Shihao ; Nazir, Muhammad Shahzad ; Suo, Leiming ; Zhang, Chu ; Wang, Yuhan.
    In: Energy.
    RePEc:eee:energy:v:276:y:2023:i:c:s0360544223009209.

    Full description at Econpapers || Download paper

  27. A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction. (2023). Tao, Zihan ; Peng, Tian ; Song, Shihao ; Nazir, Muhammad Shahzad ; Xiong, Jinlin ; Zhang, Chu.
    In: Energy.
    RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033059.

    Full description at Econpapers || Download paper

  28. Wind turbine output power prediction and optimization based on a novel adaptive neuro-fuzzy inference system with the moving window. (2023). Ouassaid, Mohammed ; Adjallah, Kondo Hloindo ; Yetilmezsoy, Kaan ; Bilal, Boudy ; Sava, Alexandre.
    In: Energy.
    RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222030456.

    Full description at Econpapers || Download paper

  29. Spatiotemporal wind power forecasting approach based on multi-factor extraction method and an indirect strategy. (2023). Du, Zongjuan ; Wang, Shouyang ; Sun, Shaolong ; Jin, Kun ; Li, Hongtao.
    In: Applied Energy.
    RePEc:eee:appene:v:350:y:2023:i:c:s0306261923011133.

    Full description at Econpapers || Download paper

  30. Mid-term electricity demand forecasting using improved variational mode decomposition and extreme learning machine optimized by sparrow search algorithm. (2022). Ji, Zhengsen ; Gao, Tian ; Sun, Lijie ; Niu, Dongxiao.
    In: Energy.
    RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222022125.

    Full description at Econpapers || Download paper

  31. Lightweight actor-critic generative adversarial networks for real-time smart generation control of microgrids. (2022). Yin, Linfei ; Han, Kunlun ; Yang, Kai.
    In: Applied Energy.
    RePEc:eee:appene:v:317:y:2022:i:c:s0306261922005359.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-04 13:52:37 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.