create a website

Super learner ensemble model: A novel approach for predicting monthly copper price in future. (2023). Hosseini, Shahab ; Chen, Qinyang ; Zhao, Jue ; Armaghani, Danial Jahed.
In: Resources Policy.
RePEc:eee:jrpoli:v:85:y:2023:i:pb:s0301420723006141.

Full description at Econpapers || Download paper

Cited: 1

Citations received by this document

Cites: 46

References cited by this document

Cocites: 38

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Enhancing the exploitation of natural resources for green energy: An application of LSTM-based meta-model for aluminum prices forecasting. (2024). Fissha, Yewuhalashet ; Hosseini, Shahab ; Esangbedo, Moses Olabhele ; Sazid, Mohammed ; Abbas, Hawraa H ; Taiwo, Blessing Olamide.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:92:y:2024:i:c:s0301420724003817.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abdel Sabour, S.A. ; Poulin, R. Valuing real capital investments using the least-squares Monte Carlo method. 2006 Eng. Econ.. -
    Paper not yet in RePEc: Add citation now
  2. Alameer, Z. ; Fathalla, A. ; Li, K. ; Ye, H. ; Jianhua, Z. Multistep-ahead forecasting of coal prices using a hybrid deep learning model. 2020 Res. Pol.. 65 -

  3. Angus, A. ; Casado, M.R. ; Fitzsimons, D. Exploring the usefulness of a simple linear regression model for understanding price movements of selected recycled materials in the UK. 2012 Resour. Conserv. Recycl.. -

  4. Bakhtavar, E. ; Hosseini, S. ; Hewage, K. ; Sadiq, R. Air pollution risk assessment using a hybrid fuzzy intelligent probability-based approach: mine blasting dust impacts. 2021 Nat. Resour. Res.. -
    Paper not yet in RePEc: Add citation now
  5. Bakhtavar, E. ; Hosseini, S. ; Hewage, K. ; Sadiq, R. Green blasting policy: simultaneous forecast of vertical and horizontal distribution of dust emissions using artificial causality-weighted neural network. 2021 J. Clean. Prod.. 283 -
    Paper not yet in RePEc: Add citation now
  6. Behmiri, N.B. ; Manera, M. The role of outliers and oil price shocks on volatility of metal prices. 2015 Res. Pol.. -

  7. Bodart, V. ; Candelon, B. ; Carpantier, J.F. Real exchanges rates, commodity prices and structural factors in developing countries. 2015 J. Int. Money Finance. -

  8. Charlot, P. ; Marimoutou, V. On the relationship between the prices of oil and the precious metals: revisiting with a multivariate regime-switching decision tree. 2014 Energy Econ.. 44 456-467

  9. Chen, T. ; He, T. ; Benesty, M. ; Khotilovich, V. ; Tang, Y. ; Cho, H. Xgboost: extreme gradient boosting. 2015 R Packag. version 0.. 4–2 1 1-4
    Paper not yet in RePEc: Add citation now
  10. Chen, Y.C. ; Rogoff, K.S. ; Rossi, B. Can exchange rates forecast commodity prices?. 2010 Q. J. Econ.. -

  11. Cologni, A. ; Manera, M. Oil prices, inflation and interest rates in a structural cointegrated VAR model for the G-7 countries. 2008 Energy Econ.. -

  12. Dehghani, H. ; Bogdanovic, D. Copper price estimation using bat algorithm. 2018 Res. Pol.. -

  13. Dooley, G. ; Lenihan, H. An assessment of time series methods in metal price forecasting. 2005 Res. Pol.. 30 208-217

  14. Duan, J. ; Asteris, P.G. ; Nguyen, H. ; Bui, X.-N. ; Moayedi, H. A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model. 2020 Eng. Comput.. 1-18
    Paper not yet in RePEc: Add citation now
  15. Ediger, V.Ş. ; Akar, S. ARIMA forecasting of primary energy demand by fuel in Turkey. 2007 Energy Pol.. 35 1701-1708

  16. Faruto, Y.L. LIBSVM-farutoUltimateVersion-a Toolbox with Implements for Support Vector Machines Based on Libsvm. 2009 :
    Paper not yet in RePEc: Add citation now
  17. Garnaut, R. Principles and practice of resource rent taxation. 2010 Aust. Econ. Rev.. -

  18. Hasanipanah, M. ; Monjezi, M. ; Shahnazar, A. ; Jahed Armaghani, D. ; Farazmand, A. Feasibility of indirect determination of blast induced ground vibration based on support vector machine. 2015 Meas. J. Int. Meas. Confed.. -
    Paper not yet in RePEc: Add citation now
  19. He, Y. ; Wang, S. ; Lai, K.K. Global Economic Activity and Crude Oil Prices: A Cointegration Analysis. 2010 Energy Econ:

  20. Hosseini, S. ; Monjezi, M. ; Bakhtavar, E. Minimization of blast-induced dust emission using gene-expression programming and grasshopper optimization algorithm: a smart mining solution based on blasting plan optimization. 2022 Clean Technol. Environ. Policy. 1-16
    Paper not yet in RePEc: Add citation now
  21. Hosseini, S. ; Monjezi, M. ; Bakhtavar, E. ; Mousavi, A. Prediction of dust emission due to open pit mine blasting using a hybrid artificial neural network. 2021 Nat. Resour. Res.. -
    Paper not yet in RePEc: Add citation now
  22. Hosseini, S. ; Mousavi, A. ; Monjezi, M. Prediction of blast-induced dust emissions in surface mines using integration of dimensional analysis and multivariate regression analysis. 2022 Arabian J. Geosci.. 15 163-
    Paper not yet in RePEc: Add citation now
  23. Hosseini, S. ; Mousavi, A. ; Monjezi, M. ; Khandelwal, M. Mine-to-crusher policy: planning of mine blasting patterns for environmentally friendly and optimum fragmentation using Monte Carlo simulation-based multi-objective grey wolf optimization approach. 2022 Res. Pol.. 79 -

  24. Hosseini, S. ; Poormirzaee, R. ; Hajihassani, M. Application of reliability-based back-propagation causality-weighted neural networks to estimate air-overpressure due to mine blasting. 2022 Eng. Appl. Artif. Intell.. 115 -
    Paper not yet in RePEc: Add citation now
  25. Hosseini, S. ; Poormirzaee, R. ; Hajihassani, M. ; Kalatehjari, R. An ANN-fuzzy cognitive map-based Z-number theory to predict flyrock induced by blasting in open-pit mines. 2022 Rock Mech. Rock Eng.. 1–18 -
    Paper not yet in RePEc: Add citation now
  26. Khashei, M. ; Bijari, M. A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. 2011 En : Applied Soft Computing Journal. :
    Paper not yet in RePEc: Add citation now
  27. Khashei, M. ; Bijari, M. An artificial neural network (p, d,q) model for timeseries forecasting. 2010 Expert Syst. Appl.. 37 479-489
    Paper not yet in RePEc: Add citation now
  28. Khoshalan, H.A. ; Shakeri, J. ; Najmoddini, I. ; Asadizadeh, M. Forecasting copper price by application of robust artificial intelligence techniques. 2021 Res. Pol.. 73 -

  29. Kriechbaumer, T. ; Angus, A. ; Parsons, D. ; Casado, M.R. An improved wavelet–ARIMA approach for forecasting metal prices. 2014 Res. Pol.. 39 32-41

  30. Kundig, K.J.A. ; Joseph, G. Copper: its Trade Manufacture, Use, and Environmental Status. 1998 :
    Paper not yet in RePEc: Add citation now
  31. Lineesh, M.C. ; Minu, K.K. ; John, C.J. Analysis of nonstationary nonlinear economic time series of gold price: a comparative study. 2010 En : International Mathematical Forum. :
    Paper not yet in RePEc: Add citation now
  32. Liu, C. ; Hu, Z. ; Li, Y. ; Liu, S. Forecasting copper prices by decision tree learning. 2017 Res. Pol.. -

  33. Nguyen, H. ; Bui, X.-N. ; Bui, H.-B. ; Cuong, D.T. Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study. 2019 Acta Geophys.. 67 477-490
    Paper not yet in RePEc: Add citation now
  34. Nieto, P.J.G. ; García-Gonzalo, E. ; Fernández, J.R.A. ; Muñiz, C.D. A hybrid PSO optimized SVM-based model for predicting a successful growth cycle of the Spirulina platensis from raceway experiments data. 2016 J. Comput. Appl. Math.. 291 293-303
    Paper not yet in RePEc: Add citation now
  35. Orlowski, L.T. Volatility of commodity futures prices and market-implied inflation expectations. 2017 J. Int. Financ. Mark. Inst. Money. -

  36. Parisi, A. ; Parisi, F. ; Díaz, D. Forecasting gold price changes: rolling and recursive neural network models. 2008 J. Multinatl. Financ. Manag.. 18 477-487

  37. Quinlan, J.R. Data Mining Tools See5 and C5. 0. 2004 :
    Paper not yet in RePEc: Add citation now
  38. Quinlan, J.R. Learning with continuous classes. 1992 En : 5th Australian Joint Conference on Artificial Intelligence. World Scientific:
    Paper not yet in RePEc: Add citation now
  39. Rulequest, Data Mining with Cubist. 2016 :
    Paper not yet in RePEc: Add citation now
  40. Shafiee, S. ; Topal, E. An overview of global gold market and gold price forecasting. 2010 Resour. Pol.. -

  41. VN, V. The Nature of Statistical Learning Theory. 1995 Springer: New York
    Paper not yet in RePEc: Add citation now
  42. Wang, T. ; Wang, C. The spillover effects of China's industrial growth on price changes of base metal. 2019 Res. Pol.. 61 375-384

  43. Wang, X. ; Hosseini, S. ; Jahed Armaghani, D. ; Tonnizam Mohamad, E. Data-driven optimized artificial neural network technique for prediction of flyrock induced by boulder blasting. 2023 Mathematics. 11 2358-

  44. Wang, Y. ; Witten, I.H. Induction of Model Trees for Predicting Continuous Classes. 1996 :
    Paper not yet in RePEc: Add citation now
  45. Wets, R.J.B. ; Rios, I. Modeling and estimating commodity prices: copper prices. 2015 Math. Financ. Econ. -
    Paper not yet in RePEc: Add citation now
  46. Zhang, C. ; Tu, X. The effect of global oil price shocks on China's metal markets. 2016 Energy Pol.. 90 131-139

Cocites

Documents in RePEc which have cited the same bibliography

  1. Interval Forecasting of Carbon Price With a Novel Hybrid Multiscale Decomposition and Bootstrap Approach. (2025). Zhu, Bangzhu ; Wang, Ping ; Chevallier, Julien.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:44:y:2025:i:2:p:376-390.

    Full description at Econpapers || Download paper

  2. Forecasts of coking coal futures price indices through Gaussian process regressions. (2025). Jin, Bingzi ; Xu, Xiaojie.
    In: Mineral Economics.
    RePEc:spr:minecn:v:38:y:2025:i:1:d:10.1007_s13563-024-00472-9.

    Full description at Econpapers || Download paper

  3. Machine learning price index forecasts of flat steel products. (2025). Xu, Xiaojie ; Jin, Bingzi.
    In: Mineral Economics.
    RePEc:spr:minecn:v:38:y:2025:i:1:d:10.1007_s13563-024-00457-8.

    Full description at Econpapers || Download paper

  4. Hybrid Method for Oil Price Prediction Based on Feature Selection and XGBOOST-LSTM. (2025). Lin, Shucheng ; Wang, Yue ; Wei, Haocheng.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:9:p:2246-:d:1644703.

    Full description at Econpapers || Download paper

  5. ESG stock markets and clean energy prices prediction: Insights from advanced machine learning. (2025). Souissi, Bilel ; Ghallabi, Fahmi ; Ali, Shoaib ; Du, Anna Min.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:97:y:2025:i:c:s1057521924008214.

    Full description at Econpapers || Download paper

  6. Forecasting commodity prices: empirical evidence using deep learning tools. (2024). Ftiti, Zied ; Louhichi, Wael ; Boubaker, Sahbi ; Tissaoui, Kais ; ben Ameur, Hachmi.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-05076-6.

    Full description at Econpapers || Download paper

  7. Predicting Chinas thermal coal price: Does multivariate decomposition-integrated forecasting model with window rolling work?. (2024). Shao, Qihui ; Duan, Hongbo ; Zhu, Zhipeng ; Xu, Xue ; Jia, Zhenxin ; Yang, Zhiyuan ; Xue, Wenxuan.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:99:y:2024:i:c:s0301420724007773.

    Full description at Econpapers || Download paper

  8. Fossil energy market price prediction by using machine learning with optimal hyper-parameters: A comparative study. (2024). Lahmiri, Salim.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:92:y:2024:i:c:s0301420724003751.

    Full description at Econpapers || Download paper

  9. Reliable novel hybrid extreme gradient boosting for forecasting copper prices using meta-heuristic algorithms: A thirty-year analysis. (2024). Nabavi, Zohre ; Mirzehi, Mohammad ; Dehghani, Hesam.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:90:y:2024:i:c:s030142072400151x.

    Full description at Econpapers || Download paper

  10. Interval price predictions for coal using a new multi-scale ensemble model. (2024). Liu, Junjie ; Wu, Siping.
    In: Energy.
    RePEc:eee:energy:v:313:y:2024:i:c:s036054422403456x.

    Full description at Econpapers || Download paper

  11. Forecast of coal consumption in salt lake enterprises based on temporal gated recurrent unit network with squeeze-and-excitation attention. (2024). Qiu, Zhifeng ; Wang, Yalin ; Xie, Wufei ; Luo, Jiang ; Deconinck, Geert ; Liu, Chenliang.
    In: Energy.
    RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011782.

    Full description at Econpapers || Download paper

  12. Predicting energy prices based on a novel hybrid machine learning: Comprehensive study of multi-step price forecasting. (2024). Zhang, XI ; Hou, Xianping ; Yu, Liang ; Yang, Kailing ; Wu, Jingyu ; Luo, Haojia ; Lin, YU.
    In: Energy.
    RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010946.

    Full description at Econpapers || Download paper

  13. LNBi-GRU model for coal price prediction and pattern recognition analysis. (2024). Sun, Chuanwang ; Li, Xiang ; Xu, Mengjie.
    In: Applied Energy.
    RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006858.

    Full description at Econpapers || Download paper

  14. Steel price index forecasting through neural networks: the composite index, long products, flat products, and rolled products. (2023). Zhang, Yun ; Xu, Xiaojie.
    In: Mineral Economics.
    RePEc:spr:minecn:v:36:y:2023:i:4:d:10.1007_s13563-022-00357-9.

    Full description at Econpapers || Download paper

  15. Coking coal futures price index forecasting with the neural network. (2023). Zhang, Yun ; Xu, Xiaojie.
    In: Mineral Economics.
    RePEc:spr:minecn:v:36:y:2023:i:2:d:10.1007_s13563-022-00311-9.

    Full description at Econpapers || Download paper

  16. Forecasting mid-price movement of Bitcoin futures using machine learning. (2023). Uddin, Gazi ; Corbet, Shaen ; Cepni, Oguzhan ; Akyildirim, Erdinc.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:330:y:2023:i:1:d:10.1007_s10479-021-04205-x.

    Full description at Econpapers || Download paper

  17. Forecast the Role of GCC Financial Stress on Oil Market and GCC Financial Markets Using Convolutional Neural Networks. (2023). Mezghani, Taicir ; Abbes, Mouna Boujelbene.
    In: Asia-Pacific Financial Markets.
    RePEc:kap:apfinm:v:30:y:2023:i:3:d:10.1007_s10690-022-09387-3.

    Full description at Econpapers || Download paper

  18. Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey. (2023). Andreadakis, Zacharias E ; Kumarasamy, Suresh ; Srinivasan, Sabarathinam ; Lind, Pedro G.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:14:p:5383-:d:1194276.

    Full description at Econpapers || Download paper

  19. Super learner ensemble model: A novel approach for predicting monthly copper price in future. (2023). Hosseini, Shahab ; Chen, Qinyang ; Zhao, Jue ; Armaghani, Danial Jahed.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:85:y:2023:i:pb:s0301420723006141.

    Full description at Econpapers || Download paper

  20. Forecasting energy spot prices: A multiscale clustering recognition approach. (2023). Li, Ranran.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:81:y:2023:i:c:s0301420723000284.

    Full description at Econpapers || Download paper

  21. A novel decomposition integration model for power coal price forecasting. (2023). Wu, Siping ; Liu, Lang ; Xia, Guilin.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:80:y:2023:i:c:s0301420722007024.

    Full description at Econpapers || Download paper

  22. International and Chinese energy markets: Dynamic spillover effects. (2023). Wang, Xiaoyu ; Zhang, Shuquan.
    In: Energy.
    RePEc:eee:energy:v:282:y:2023:i:c:s0360544223021187.

    Full description at Econpapers || Download paper

  23. Forecasting Carbon Price in China: A Multimodel Comparison. (2022). Wang, Yufeng ; Huang, Xinya ; Su, Mengying ; Guo, Lili ; Li, Houjian ; Zhou, Deheng ; Cao, Andi.
    In: IJERPH.
    RePEc:gam:jijerp:v:19:y:2022:i:10:p:6217-:d:819951.

    Full description at Econpapers || Download paper

  24. Forecast of Coal Demand in Shanxi Province Based on GA—LSSVM under Multiple Scenarios. (2022). Liu, Yujing ; Du, Ruoyun ; Niu, Dongxiao.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:17:p:6475-:d:906904.

    Full description at Econpapers || Download paper

  25. A dynamic ensemble learning with multi-objective optimization for oil prices prediction. (2022). Sun, Xiaolei ; Feng, Qianqian ; Hao, Jun ; Yuan, Jiaxin ; Li, Jianping.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:79:y:2022:i:c:s0301420722004007.

    Full description at Econpapers || Download paper

  26. A novel hybrid model integrating modified ensemble empirical mode decomposition and LSTM neural network for multi-step precious metal prices prediction. (2022). Lin, Zixiao ; Yu, Yuanyuan ; Liao, Qidong ; Tan, Bin.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:78:y:2022:i:c:s0301420722003294.

    Full description at Econpapers || Download paper

  27. A multi-model fusion based non-ferrous metal price forecasting. (2022). Liu, Qing ; Zhou, Hanlu ; Yan, Feng.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:77:y:2022:i:c:s0301420722001623.

    Full description at Econpapers || Download paper

  28. A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms. (2022). Zhang, Kefei ; The, Jesse ; Cao, Hua ; Yu, Hesheng.
    In: Applied Energy.
    RePEc:eee:appene:v:306:y:2022:i:pa:s030626192101312x.

    Full description at Econpapers || Download paper

  29. Forecasting Brazilian Ethanol Spot Prices Using LSTM. (2021). Silva, Mateus Ferreira ; Santos, Gustavo Carvalho ; Barboza, Flavio ; Paschoarelli, Antonio Claudio.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:23:p:7987-:d:691284.

    Full description at Econpapers || Download paper

  30. Multi-step metal prices forecasting based on a data preprocessing method and an optimized extreme learning machine by marine predators algorithm. (2021). Wang, Shouyang ; Sun, Shaolong ; Du, Pei ; Guo, Jue ; Wu, Jing.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:74:y:2021:i:c:s0301420721003445.

    Full description at Econpapers || Download paper

  31. Forecasting copper price by application of robust artificial intelligence techniques. (2021). Asadizadeh, Mostafa ; Shakeri, Jamshid ; Najmoddini, Iraj ; Khoshalan, Hasel Amini.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:73:y:2021:i:c:s0301420721002506.

    Full description at Econpapers || Download paper

  32. Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm. (2021). Liu, Zhenkun ; Jiang, Ping ; Zhang, Lifang ; Wang, Jianzhou.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:73:y:2021:i:c:s0301420721002452.

    Full description at Econpapers || Download paper

  33. Probability density forecasts for steam coal prices in China: The role of high-frequency factors. (2021). Zhao, Zhongchao ; Han, Meng ; Ding, Lili.
    In: Energy.
    RePEc:eee:energy:v:220:y:2021:i:c:s0360544221000074.

    Full description at Econpapers || Download paper

  34. Multi-scenario simulation on the impact of Chinas electricity bidding policy based on complex networks model. (2021). Zhang, Zhiyuan ; Li, Yuman ; Zhao, Yueying ; Yang, Xiaodi ; Wang, DI.
    In: Energy Policy.
    RePEc:eee:enepol:v:158:y:2021:i:c:s0301421521004432.

    Full description at Econpapers || Download paper

  35. Forecasting energy commodity prices: A large global dataset sparse approach. (2021). Vespignani, Joaquin ; Ravazzolo, Francesco ; Ferrari, Davide.
    In: Energy Economics.
    RePEc:eee:eneeco:v:98:y:2021:i:c:s0140988321001730.

    Full description at Econpapers || Download paper

  36. Forecasting Mid-price Movement of Bitcoin Futures Using Machine Learning. (2020). Uddin, Gazi ; Corbet, Shaen ; Cepni, Oguzhan ; Akyildirim, Erdinc.
    In: Working Papers.
    RePEc:hhs:cbsnow:2020_020.

    Full description at Econpapers || Download paper

  37. Research on the Transmission Ability of China’s Thermal Coal Price Information Based on Directed Limited Penetrable Interdependent Network. (2020). Zhang, Wenbin ; Fu, Min ; Tian, Lixin ; Wan, Bingyue.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:18:p:7815-:d:417211.

    Full description at Econpapers || Download paper

  38. Evaluation of Chinese natural gas investment along the Belt and Road Initiative using super slacks-based measurement of efficiency method. (2020). Wang, Xiaolin ; Hu, Xiangping ; Wu, Qiaosheng ; Zhou, NA ; Xu, Deyi.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:67:y:2020:i:c:s0301420719302302.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 17:59:08 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.