create a website

Anomaly detection of wind turbines based on stationarity analysis of SCADA data. (2024). Staszewski, Wieslaw J ; Barszcz, Tomasz ; Dao, Phong B.
In: Renewable Energy.
RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011443.

Full description at Econpapers || Download paper

Cited: 1

Citations received by this document

Cites: 54

References cited by this document

Cocites: 27

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Machine Learning and Cointegration for Wind Turbine Monitoring and Fault Detection: From a Comparative Study to a Combined Approach. (2024). Dao, Phong B ; Knes, Pawe.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:20:p:5055-:d:1496539.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Astolfi, D. ; Castellani, F. Editorial on the special issue “wind turbine monitoring through operation data analysis”. 2022 Energies. 15 3664-
    Paper not yet in RePEc: Add citation now
  2. Bangalore, P. ; Letzgus, S. ; Karlsson, D. ; Patriksson, M. An artificial neural network-based condition monitoring method for wind turbines, with application to the monitoring of the gearbox. 2017 Wind Energy. 20 1421-1438
    Paper not yet in RePEc: Add citation now
  3. Bi, R. ; Zhou, C. ; Hepburn, D.M. Detection and classification of faults in pitch-regulated wind turbine generators using normal behaviour models based on performance curves. 2017 Renew. Energy. 105 674-688

  4. Byrne, R. ; Astolfi, D. ; Castellani, F. ; Hewitt, N.J. A study of wind turbine performance decline with age through operation data analysis. 2020 Energies. 13 2086-

  5. Canova, F. Methods for Applied Macroeconomic Research. 2007 Princeton University Press: Princeton, NJ
    Paper not yet in RePEc: Add citation now
  6. Chen, P. ; Lin, Z. ; Xie, Z. ; Qu, C. Real-time yaw-misalignment calibration and field-test verification of wind turbine via machine learning methods. 2024 Mech. Syst. Signal Process.. 208 -
    Paper not yet in RePEc: Add citation now
  7. Dao, P.B. A CUSUM-based approach for condition monitoring and fault diagnosis of wind turbines. 2021 Energies. 14 3236-

  8. Dao, P.B. Condition monitoring and fault diagnosis of wind turbines based on structural break detection in SCADA data. 2022 Renew. Energy. 185 641-654

  9. Dao, P.B. Condition monitoring of wind turbines based on cointegration analysis of gearbox and generator temperature data. 2018 Diagnostyka. 19 63-71
    Paper not yet in RePEc: Add citation now
  10. Dao, P.B. On cointegration analysis for condition monitoring and fault detection of wind turbines using SCADA data. 2023 Energies. 16 2352-

  11. Dao, P.B. On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines. 2022 Appl. Energy. 318 -

  12. Dao, P.B. ; Staszewski, W.J. Cointegration and how it works for structural health monitoring. 2023 Measurement. 209 -
    Paper not yet in RePEc: Add citation now
  13. Dao, P.B. ; Staszewski, W.J. ; Barszcz, T. ; Uhl, T. Condition monitoring and fault detection in wind turbines based on cointegration analysis of SCADA data. 2018 Renew. Energy. 116 107-122
    Paper not yet in RePEc: Add citation now
  14. Dickey, D.A. ; Fuller, W.A. Likelihood ratio statistics for autoregressive time series with a unit root. 1981 Econometrica. 49 1057-1072

  15. Emerson, J. Cointegration analysis and the choice of lag length. 2007 Appl. Econ. Lett.. 14 881-885

  16. Engle, R.F. ; Granger, C.W.J. Cointegration and error-correction: representation, estimation and testing. 1987 Econometrica. 55 251-276

  17. Gao, Z. ; Liu, X. An overview on fault diagnosis, prognosis and resilient control for wind turbine systems. 2021 Processes. 9 300-
    Paper not yet in RePEc: Add citation now
  18. Guo, P. ; Infield, D. ; Yang, X. Wind turbine generator condition-monitoring using temperature trend analysis. 2012 IEEE Trans. Sustain. Energy. 3 124-133
    Paper not yet in RePEc: Add citation now
  19. Hatemi-J, A. ; Hacker, R.S. Can the LR test be helpful in choosing the optimal lag order in the VAR model when information criteria suggest different lag orders?. 2009 Appl. Econ.. 41 1121-1125

  20. Khan, P.W. ; Byun, Y.C. A review of machine learning techniques for wind turbine's fault detection, diagnosis, and prognosis. 2024 Int. J. Green Energy. 21 771-786
    Paper not yet in RePEc: Add citation now
  21. Kusiak, A. ; Verma, A. Analyzing bearing faults in wind turbines: a data-mining approach. 2012 Renew. Energy. 48 110-116

  22. Latiffianti, E. ; Sheng, S. ; Ding, Y. Wind turbine gearbox failure detection through cumulative sum of multivariate time series data. 2022 Front. Energy Res.. 10 -
    Paper not yet in RePEc: Add citation now
  23. LeSage, J.P. Applied Econometrics Using MATLAB. 1998 Department of Economics, University of Toledo:
    Paper not yet in RePEc: Add citation now
  24. Letzgus, S. Change-point detection in wind turbine SCADA data for robust condition monitoring with normal behaviour models. 2020 Wind Energy Science. 5 1375-1397
    Paper not yet in RePEc: Add citation now
  25. Liew, V.K.S. Which lag length selection criteria should we employ?. 2004 Econ. Bull.. 3 1-9

  26. Maddala, G. ; Kim, I. Unit Roots, Cointegration, and Structural Change. 1998 Cambridge University Press: Cambridge
    Paper not yet in RePEc: Add citation now
  27. Meyer, A. Multi-target normal behaviour models for wind farm condition monitoring. 2021 Appl. Energy. 300 -

  28. Morrison, R. ; Liu, X. ; Lin, Z. Anomaly detection in wind turbine SCADA data for power curve cleaning. 2022 Renew. Energy. 184 473-486

  29. Murgia, A. ; Verbeke, R. ; Tsiporkova, E. ; Terzi, L. ; Astolfi, D. Discussion on the suitability of SCADA-based condition monitoring for wind turbine fault diagnosis through temperature data analysis. 2023 Energies. 16 620-
    Paper not yet in RePEc: Add citation now
  30. Perez-Sanjines, F. ; Peeters, C. ; Verstraeten, T. ; Antoni, J. ; Nowé, A. ; Helsen, J. Fleet-based early fault detection of wind turbine gearboxes using physics-informed deep learning based on cyclic spectral coherence. 2023 Mech. Syst. Signal Process.. 185 -
    Paper not yet in RePEc: Add citation now
  31. Pozo, F. ; Vidal, Y. ; Salgado, Ó. Wind turbine condition monitoring strategy through multiway PCA and multivariate inference. 2018 Energies. 11 749-

  32. Qadri, B.A. ; Ulriksen, M.D. ; Damkilde, L. ; Tcherniak, D. Cointegration for detecting structural blade damage in an operating wind turbine: an experimental study. 2020 En : Pakzad, S. Dynamics of Civil Structures. Springer: Cham
    Paper not yet in RePEc: Add citation now
  33. Qiao, L. ; Zhang, Y. ; Wang, Q. Fault detection in wind turbine generators using a meta-learning-based convolutional neural network. 2023 Mech. Syst. Signal Process.. 200 -
    Paper not yet in RePEc: Add citation now
  34. Ren, H. ; Liu, W. ; Shan, M. ; Wang, X. A new wind turbine health condition monitoring method based on VMD-MPE and feature-based transfer learning. 2019 Measurement. 148 -
    Paper not yet in RePEc: Add citation now
  35. Salameh, J.P. ; Cauet, S. ; Etien, E. ; Sakout, A. ; Rambault, L. Gearbox condition monitoring in wind turbines: a review. 2018 Mech. Syst. Signal Process.. 111 251-264
    Paper not yet in RePEc: Add citation now
  36. Schlechtingen, M. ; Santos, I.F. ; Achiche, S. Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 1: system description. 2013 Appl. Soft Comput.. 13 259-270
    Paper not yet in RePEc: Add citation now
  37. Schwert, W. Test for unit roots: a Monte Carlo investigation. 1989 J. Bus. Econ. Stat.. 7 147-159

  38. Sims, C.A. Macroeconomics and reality. 1980 Econometrica. 48 1-49

  39. Staffell, I. ; Green, R. How does wind farm performance decline with age?. 2014 Renew. Energy. 66 775-786

  40. Stetco, A. ; Dinmohammadi, F. ; Zhao, X. ; Robu, V. ; Flynn, D. ; Barnes, M. ; Keane, J. ; Nenadic, G. Machine learning methods for wind turbine condition monitoring: a review. 2019 Renew. Energy. 133 620-635

  41. Sun, S. ; Wang, T. ; Yang, H. ; Chu, F. Condition monitoring of wind turbine blades based on self-supervised health representation learning: a conducive technique to effective and reliable utilization of wind energy. 2022 Appl. Energy. 313 -

  42. Sun, X. ; Xue, D. ; Li, R. ; Li, X. ; Cui, L. ; Zhang, X. ; Wu, W. Research on condition monitoring of key components in wind turbine based on cointegration analysis. 2019 IOP Conf. Ser. Mater. Sci. Eng.. 575 -
    Paper not yet in RePEc: Add citation now
  43. Wang, P. ; Li, Y. ; Zhang, G. Probabilistic power curve estimation based on meteorological factors and density LSTM. 2023 Energy. 269 -

  44. Wang, T. ; Han, Q. ; Chu, F. ; Feng, Z. Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: a review. 2019 Mech. Syst. Signal Process.. 126 662-685
    Paper not yet in RePEc: Add citation now
  45. Wilcoxon, F. Individual comparisons by ranking methods. 1945 Biometrics Bull.. 1 80-83
    Paper not yet in RePEc: Add citation now
  46. Xiang, L. ; Wang, P. ; Yang, X. ; Hu, A. ; Su, H. Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism. 2021 Measurement. 175 -
    Paper not yet in RePEc: Add citation now
  47. Xiang, L. ; Yang, X. ; Hu, A. ; Su, H. ; Wang, P. Condition monitoring and anomaly detection of wind turbine based on cascaded and bidirectional deep learning networks. 2022 Appl. Energy. 305 -

  48. Xu, M. ; Li, J. ; Wang, S. ; Yang, N. ; Hao, H. Damage detection of wind turbine blades by Bayesian multivariate cointegration. 2022 Ocean Eng.. 258 -
    Paper not yet in RePEc: Add citation now
  49. Zaher, A. ; McArthur, S.D.J. ; Infield, D.G. ; Patel, Y. Online wind turbine fault detection through automated SCADA data analysis. 2009 Wind Energy. 12 574-593
    Paper not yet in RePEc: Add citation now
  50. Zhan, J. ; Wu, C. ; Ma, X. ; Yang, C. ; Miao, Q. ; Wang, S. Abnormal vibration detection of wind turbine based on temporal convolution network and multivariate coefficient of variation. 2022 Mech. Syst. Signal Process.. 174 -
    Paper not yet in RePEc: Add citation now
  51. Zhang, K. ; Tang, B. ; Deng, L. ; Liu, X. A hybrid attention improved ResNet based fault diagnosis method of wind turbines gearbox. 2021 Measurement. 179 -
    Paper not yet in RePEc: Add citation now
  52. Zhang, Y. ; Liu, W. ; Wang, X. ; Shaheer, M.A. A novel hierarchical hyper-parameter search algorithm based on greedy strategy for wind turbine fault diagnosis. 2022 Expert Syst. Appl.. 202 -
    Paper not yet in RePEc: Add citation now
  53. Zhu, J. ; Yoon, J.M. ; He, D. ; Bechhoefer, E. Online particle-contaminated lubrication oil condition monitoring and remaining useful life prediction for wind turbines. 2015 Wind Energy. 18 1131-1149
    Paper not yet in RePEc: Add citation now
  54. Zivot, E. ; Wang, J. Modeling Financial Time Series with S-PLUS. 2006 Springer: New York
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Comparative analysis of offshore wind turbine blade maintenance: RL-based and classical strategies for sustainable approach. (2025). Yin, Shen ; Hendradewa, Andrie Pasca.
    In: Reliability Engineering and System Safety.
    RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005490.

    Full description at Econpapers || Download paper

  2. Condition-based maintenance of wind turbine structures: A state-of-the-art review. (2024). Lee, Seonghwan ; Jang, Juhyeong ; Cho, Gyu-Eun ; Joung, Chanwoo ; Park, Young-Bin ; Shim, Yoon-Bo ; Oh, So Young.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:204:y:2024:i:c:s1364032124005252.

    Full description at Econpapers || Download paper

  3. Anomaly detection of wind turbines based on stationarity analysis of SCADA data. (2024). Staszewski, Wieslaw J ; Barszcz, Tomasz ; Dao, Phong B.
    In: Renewable Energy.
    RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011443.

    Full description at Econpapers || Download paper

  4. Influence of high-resolution data on accurate curtailment loss estimation and optimal design of hybrid PV–wind power plants. (2024). Olkkonen, Ville ; Grab, Robin ; Klyve, Oyvind Sommer ; Marstein, Erik Stensrud.
    In: Applied Energy.
    RePEc:eee:appene:v:372:y:2024:i:c:s030626192401167x.

    Full description at Econpapers || Download paper

  5. Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency. (2023). Guo, Ziwei ; Tian, Zhigang ; Wang, Yifei ; He, Rui ; Zuo, Mingjian.
    In: Reliability Engineering and System Safety.
    RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023000820.

    Full description at Econpapers || Download paper

  6. A Multi-Turbine Approach for Improving Performance of Wind Turbine Power-Based Fault Detection Methods. (2022). Aziz, Usama ; Charbonnier, Sylvie ; Prevost, Frederic ; Berenguer, Christophe ; Lebranchu, Alexis.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:8:p:2806-:d:792051.

    Full description at Econpapers || Download paper

  7. Fostering Energy Resilience in the Rural Thai Power System—A Case Study in Nakhon Phanom. (2022). Breitner, Michael Hans ; Gudrun, Maria Christina.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:19:p:7374-:d:935876.

    Full description at Econpapers || Download paper

  8. Discussion of Wind Turbine Performance Based on SCADA Data and Multiple Test Case Analysis. (2022). Pandit, Ravi ; Terzi, Ludovico ; Astolfi, Davide ; Lombardi, Andrea.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:15:p:5343-:d:869669.

    Full description at Econpapers || Download paper

  9. Wind Turbine Performance Decline with Age. (2022). Pandit, Ravi ; Astolfi, Davide.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:14:p:5225-:d:866217.

    Full description at Econpapers || Download paper

  10. Anomaly detection in wind turbine SCADA data for power curve cleaning. (2022). Lin, ZI ; Liu, Xiaolei ; Morrison, Rory.
    In: Renewable Energy.
    RePEc:eee:renene:v:184:y:2022:i:c:p:473-486.

    Full description at Econpapers || Download paper

  11. Analysis of Wind Turbine Aging through Operation Data Calibrated by LiDAR Measurement. (2021). Kim, Jin-Young.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:8:p:2319-:d:539605.

    Full description at Econpapers || Download paper

  12. A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks. (2021). Introna, Vito ; Dadi, Daniele ; Santolamazza, Annalisa.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:7:p:1845-:d:524712.

    Full description at Econpapers || Download paper

  13. Estimation of the Performance Aging of the Vestas V52 Wind Turbine through Comparative Test Case Analysis. (2021). Byrne, Raymond ; Castellani, Francesco ; Astolfi, Davide.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:4:p:915-:d:496494.

    Full description at Econpapers || Download paper

  14. Modeling of Ultra-Short Term Offshore Wind Power Prediction Based on Condition-Assessment of Wind Turbines. (2021). Liu, Yang ; Zhang, Meng-Yao ; Huang, Ling-Ling.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:4:p:891-:d:495984.

    Full description at Econpapers || Download paper

  15. Multivariate SCADA Data Analysis Methods for Real-World Wind Turbine Power Curve Monitoring. (2021). Terzi, Ludovico ; Castellani, Francesco ; Astolfi, Davide ; Lombardi, Andrea.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:4:p:1105-:d:502178.

    Full description at Econpapers || Download paper

  16. Advanced Discretisation and Visualisation Methods for Performance Profiling of Wind Turbines. (2021). Boeva, Veselka ; Dhont, Michiel ; Tsiporkova, Elena.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:19:p:6216-:d:646099.

    Full description at Econpapers || Download paper

  17. Performance Enhancement of Proposed Namaacha Wind Farm by Minimising Losses Due to the Wake Effect: A Mozambican Case Study. (2021). Huan, Zhongjie ; Chowdhury, Shyama Pada ; Joo, Paxis Marques.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:14:p:4291-:d:595305.

    Full description at Econpapers || Download paper

  18. Improvement of AEP Predictions with Time for Swedish Wind Farms. (2021). Gregory, Sean ; Mollerstrom, Erik ; Sugathan, Aromal.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:12:p:3475-:d:573602.

    Full description at Econpapers || Download paper

  19. Critical comparison of power-based wind turbine fault-detection methods using a realistic framework for SCADA data simulation. (2021). Aziz, Usama ; Charbonnier, Sylvie ; Prevost, Frederic ; Berenguer, Christophe ; Lebranchu, Alexis.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121002537.

    Full description at Econpapers || Download paper

  20. Research on Fault Detection for Three Types of Wind Turbine Subsystems Using Machine Learning. (2020). Liu, Zuojun ; Zhang, XU ; Xiao, Cheng.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:2:p:460-:d:310000.

    Full description at Econpapers || Download paper

  21. Analysis of Wind Turbine Aging through Operation Curves. (2020). Byrne, Raymond ; Castellani, Francesco ; Astolfi, Davide.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:21:p:5623-:d:435662.

    Full description at Econpapers || Download paper

  22. Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review. (2020). Martin-Martinez, Sergio ; Maldonado-Correa, Jorge ; Artigao, Estefania ; Gomez-Lazaro, Emilio.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:12:p:3132-:d:372597.

    Full description at Econpapers || Download paper

  23. Fault Detection Algorithm for Wind Turbines’ Pitch Actuator Systems. (2020). Acho, Leonardo ; Gibergans-Baguena, Jose ; Pujol-Vazquez, Gisela.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:11:p:2861-:d:367146.

    Full description at Econpapers || Download paper

  24. Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level. (2020). Pearrocha-Alos, Ignacio ; Sales-Setien, Ester.
    In: Renewable Energy.
    RePEc:eee:renene:v:146:y:2020:i:c:p:1746-1765.

    Full description at Econpapers || Download paper

  25. Early Fault Detection of Wind Turbines Based on Operational Condition Clustering and Optimized Deep Belief Network Modeling. (2019). Wang, Yueling ; Li, Jimeng ; Jiang, Guoqian.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:6:p:984-:d:213672.

    Full description at Econpapers || Download paper

  26. On Fault Prediction for Wind Turbine Pitch System Using Radar Chart and Support Vector Machine Approach. (2019). Liu, Zuojun ; Zhang, Tieling ; Xiao, Cheng.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:14:p:2693-:d:248209.

    Full description at Econpapers || Download paper

  27. State Rules Mining and Probabilistic Fault Analysis for 5 MW Offshore Wind Turbines. (2019). Zhang, Yuxian ; Qian, Xiaoyi ; Gendeel, Mohammed.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:11:p:2046-:d:235080.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 02:24:16 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.