- Abbasimehr, H. ; Shabani, M. ; Yousefi, M. An optimized model using LSTM network for demand forecasting. 2020 Computers & Industrial Engineering. 143 -
Paper not yet in RePEc: Add citation now
Agosto, A. ; Cerchiello, P. ; Pagnottoni, P. Sentiment, Google queries and explosivity in the cryptocurrency market. 2022 Physica A: Statistical Mechanics and Its Applications. 605 -
Albanesi, S. ; Vamossy, D.F. Predicting consumer default: A deep learning approach (No. w26165). 2019 National Bureau of Economic Research:
Alessandretti, L. ; ElBahrawy, A. ; Aiello, L.M. ; Baronchelli, A. Anticipating cryptocurrency prices using machine learning. 2018 Complexity:
- Alonso, A. ; Carbó, J.M. Accuracy and stability of explanations of machine learning models for credit default prediction. 2022 Forthcoming:
Paper not yet in RePEc: Add citation now
Aslanidis, N. ; Bariviera, A.F. ; López, Ó.G. The link between cryptocurrencies and Google Trends attention. 2022 Finance Research Letters. -
Babaei, G. ; Giudici, P. ; Raffinetti, E. Explainable artificial intelligence for crypto asset allocation. 2022 Finance Research Letters. 47 -
- Bala, R. ; Singh, R.P. Financial and non-stationary time series forecasting using lstm recurrent neural network for short and long horizon. 2019 En : 2019 10th international conference on computing, communication and networking technologies (ICCCNT). IEEE:
Paper not yet in RePEc: Add citation now
- Bariviera, A.F. ; Merediz‐Solà, I. Where do we stand in cryptocurrencies economic research? A survey based on hybrid analysis. 2021 Journal of Economic Surveys. 35 377-407
Paper not yet in RePEc: Add citation now
Baur, D.G. ; Hong, K. ; Lee, A.D. Bitcoin: Medium of exchange or speculative assets?. 2018 Journal of International Financial Markets, Institutions and Money. 54 177-189
Bouoiyour, J. ; Selmi, R. The Bitcoin price formation: Beyond the fundamental sources. 2017 :
Bouoiyour, J. ; Selmi, R. What does Bitcoin look like?. 2015 Annals of Economics and Finance. 16 -
Bouri, E. ; Molnár, P. ; Azzi, G. ; Roubaud, D. ; Hagfors, L.I. On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?. 2017 Finance Research Letters. 20 192-198
- Breiman, L. Random forests. 2001 Machine Learning. 45 5-32
Paper not yet in RePEc: Add citation now
- Carbó, J.M. ; García, E.D. El interés por la innovación financiera en España: Un análisis con google trends (No. 2112). 2021 Banco de España:
Paper not yet in RePEc: Add citation now
- Cermak, V. (2017). Can bitcoin become a viable alternative to fiat currencies? An empirical analysis of bitcoin’s volatility based on a GARCH model. An Empirical Analysis of Bitcoin’s Volatility Based on a GARCH Model. Available at SSRN: https://ssrn.com/abstract=2961405.
Paper not yet in RePEc: Add citation now
Chen, W. ; Xu, H. ; Jia, L. ; Gao, Y. Machine learning model for Bitcoin exchange rate prediction using economic and technology determinants. 2021 International Journal of Forecasting. 37 28-43
Ciaian, P. ; Kancs, D.A. ; Rajcaniova, M. The price of BitCoin: GARCH evidence from high frequency data. 2018 :
Ciaian, P. ; Rajcaniova, M. ; Kancs, D.A. The economics of BitCoin price formation. 2016 Applied Economics. 48 1799-1815
- Dolatsara, H.A. ; Kibis, E. ; Caglar, M. ; Simsek, S. ; Dag, A. ; Dolatsara, G.A. ; Delen, D. An interpretable decision-support systems for daily cryptocurrency trading. 2022 Expert Systems with Applications. 203 -
Paper not yet in RePEc: Add citation now
Fantazzini, D. ; Kolodin, N. Does the hashrate affect the bitcoin price?. 2020 Journal of Risk and Financial Management. 13 263-
- Fisher, A. ; Rudin, C. ; Dominici, F. All models are wrong, but many are useful: Learning a variable's importance by studying an entire class of prediction models simultaneously. 2019 Journal of Machine Learning Research. 20 1-81
Paper not yet in RePEc: Add citation now
Giudici, P. ; Pagnottoni, P. High frequency price change spillovers in bitcoin markets. 2019 Risks. 7 111-
- Giudici, P. ; Raffinetti, E. Shapley-Lorenz eXplainable artificial intelligence. 2021 Expert Systems with Applications. 167 -
Paper not yet in RePEc: Add citation now
- Hayes, A.S. Cryptocurrency value formation: An empirical study leading to a cost of production model for valuing bitcoin. 2017 Telematics and Informatics. 34 1308-1321
Paper not yet in RePEc: Add citation now
- Hochreiter, S. ; Schmidhuber, J. Long short-term memory. 1997 Neural Computation. 9 1735-1780
Paper not yet in RePEc: Add citation now
- Kaminski, J. Nowcasting the bitcoin market with twitter signals. 2014 :
Paper not yet in RePEc: Add citation now
Kapar, B. ; Olmo, J. Analysis of Bitcoin prices using market and sentiment variables. 2021 The World Economy. 44 45-63
Kim, Y.B. ; Kim, J.G. ; Kim, W. ; Im, J.H. ; Kim, T.H. ; Kang, S.J. ; Kim, C.H. Predicting fluctuations in cryptocurrency transactions based on user comments and replies. 2016 PLoS One. 11 -
Kjærland, F. ; Khazal, A. ; Krogstad, E.A. ; Nordstrøm, F.B. ; Oust, A. An analysis of bitcoin's price dynamics. 2018 Journal of Risk and Financial Management. 11 63-
- Kristoufek, L. What are the main drivers of the bitcoin price? Evidence from wavelet coherence analysis. 2015 PLoS One. 10 -
Paper not yet in RePEc: Add citation now
Li, L. Investigating risk assessment in post-pandemic household cryptocurrency investments: An explainable machine learning approach. 2023 Journal of Asset Management. 24 255-267
Liu, Y. ; Zhang, L. Cryptocurrency valuation: An explainable ai approach. 2023 En : Science and information conference. Springer Nature Switzerland: Cham
- Lundberg, S.M. ; Erion, G. ; Chen, H. ; DeGrave, A. ; Prutkin, J.M. ; Nair, B. ; Lee, S.I. From local explanations to global understanding with explainable AI for trees. 2020 Nature Machine Intelligence. 2 56-67
Paper not yet in RePEc: Add citation now
- Lundberg, S.M. ; Lee, S.I. “A unified approach to interpreting model predictions” Advances in neural information processing systems. 2017 :
Paper not yet in RePEc: Add citation now
Lyócsa, Š. ; Molnár, P. ; Plíhal, T. ; Širaňová, M. Impact of macroeconomic news, regulation and hacking exchange markets on the volatility of bitcoin. 2020 Journal of Economic Dynamics and Control. 119 -
- Molnar, C. Interpretable machine learning. 2020 Lulu. com:
Paper not yet in RePEc: Add citation now
- Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. 2008 Decentralized Business Review. -
Paper not yet in RePEc: Add citation now
- Olah, C. Understanding LSTM networks. 2015 :
Paper not yet in RePEc: Add citation now
Panagiotidis, T. ; Stengos, T. ; Vravosinos, O. On the determinants of bitcoin returns: A lasso approach. 2018 Finance Research Letters. 27 235-240
Pyo, S. ; Lee, J. Do FOMC and macroeconomic announcements affect Bitcoin prices?. 2020 Finance Research Letters. 37 -
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. 2019 Nature Machine Intelligence. 1 206-215
Paper not yet in RePEc: Add citation now
Sovbetov, Y. Factors influencing cryptocurrency prices: Evidence from bitcoin, ethereum, dash, litcoin, and monero. 2018 Journal of Economics and Financial Analysis. 2 1-27
Urquhart, A. What causes the attention of Bitcoin?. 2018 Economics Letters. 166 40-44
Urquhart, A. ; Zhang, H. Is bitcoin a hedge or safe haven for currencies? An intraday analysis. 2019 International Review of Financial Analysis. 63 49-57
Wang, T. ; Zhao, S. ; Zhu, G. ; Zheng, H. A machine learning-based early warning system for systemic banking crises. 2021 Applied Economics. 53 2974-2992
- Zhu, P. ; Zhang, X. ; Wu, Y. ; Zheng, H. ; Zhang, Y. Investor attention and cryptocurrency: Evidence from the Bitcoin market. 2021 PLoS One. 16 -
Paper not yet in RePEc: Add citation now
Zhu, Y. ; Dickinson, D. ; Li, J. Analysis on the influence factors of Bitcoin's price based on VEC model. 2017 Financial Innovation. 3 1-13