Alam, M.Z. ; Hoque, M.R. ; Hu, W. ; Barua, Z. Factors influencing the adoption of mHealth services in a developing country: a patient-centric study. 2020 Int. J. Inf. Manag.. 50 128-143
- Asadi, S. ; Abdullah, R. ; Safaei, M. ; Nazir, S. An integrated SEM-neural network approach for predicting determinants of adoption of wearable healthcare devices. 2019 Mobile Inf. Syst.. 1-10
Paper not yet in RePEc: Add citation now
- Beh, P.K. ; Ganesan, Y. ; Iranmanesh, M. ; Foroughi, B. Using smartwatches for fitness and health monitoring: the UTAUT2 combined with threat appraisal as moderators. 2019 Behav. Inf. Technol.. 1–18 -
Paper not yet in RePEc: Add citation now
Binyamin, S.S. ; Hoque, M.R. Understanding the drivers of wearable health monitoring technology: an extension of the unified theory of acceptance and use of technology. 2020 Sustainability. 12 9605-
- Cain, M.K. ; Zhang, Z. ; Yuan, K.-H. Univariate and multivariate skewness and kurtosis for measuring non-normality: prevalence, influence, and estimation. 2017 Behav. Res. Methods. 49 1716-1735
Paper not yet in RePEc: Add citation now
- Case, M.A. ; Burwick, H.A. ; Volpp, K.G. ; Patel, M.S. Accuracy of smartphone applications and wearable devices for tracking physical activity data. 2015 JAMA. 313 625-626
Paper not yet in RePEc: Add citation now
- Chang, C. Exploring the usage intentions of wearable medical devices: a demonstration study. 2020 Interact. J. Med. Res.. 9 1-10
Paper not yet in RePEc: Add citation now
- Cheung, M.L. ; Leung, K.S.W. ; Chan, H.S. Driving Healthcare Wearable Technology Adoption for Generation Z Consumers in Hong Kong. 2020 Young Consumers:
Paper not yet in RePEc: Add citation now
- Chuah, S.H.W. ; Rauschnabel, P.A. ; Krey, N. ; Nguyen, B. ; Ramayah, T. ; Lade, S. Wearable technologies: the role of usefulness and visibility in smartwatch adoption. 2016 Comput. Hum. Behav.. 65 276-284
Paper not yet in RePEc: Add citation now
- Cimperman, M. ; Brenčič, M. ; Trkman, P. Analyzing older users' home telehealth services acceptance behavior-applying an extended UTAUT model. 2016 Int. J. Med. Inf.. 90 22-31
Paper not yet in RePEc: Add citation now
- Dahri, A.S. ; Massan, S.-U.-R. ; y Thebo, L.A. An overview of AI enabled M-IoT wearable technology and its effects on the conduct of medical professionals in Public Healthcare in Pakistan. 2020 3C Tecnol. Glosas Innov. Apl. Pyme. 9 87-111
Paper not yet in RePEc: Add citation now
- Dai, B. ; Larnyo, E. ; Tetteh, E.A. ; Aboagye, A.K. ; Musah, A.-A.I. Factors Affecting Caregivers' Acceptance of the Use of Wearable Devices by Patients with Dementia: an Extension of the Unified Theory of Acceptance and Use of Technology Model. 2019 American Journal of Alzheimer’s Disease & Other Dementias®:
Paper not yet in RePEc: Add citation now
- Dehghani, M. ; Kim, K.J. ; Dangelico, R.M. Will smartwatches last? Factors contributing to the intention to keep using smart wearable technology. 2018 Telematics Inf.. 35 480-490
Paper not yet in RePEc: Add citation now
- Dhiman, N. ; Arora, N. ; Dogra, N. ; Gupta, A. Consumer adoption of smartphone fitness apps: an extended UTAUT2 perspective. 2019 J. Indian Bus. Res.. 12 363-388
Paper not yet in RePEc: Add citation now
- Dul, J. Necessary condition analysis (NCA): logic and methodology of “necessary but not sufficient” causality. 2016 Organ. Res. Methods. 19 10-52
Paper not yet in RePEc: Add citation now
- Dwivedi, Y.K. ; Rana, N. ; Jeyaraj, A. ; Clement, M. ; Williams, M.D. Re-Examining the unified theory of acceptance and use of technology (UTAUT): towards a revised theoretical model. 2016 Inf. Syst. Front. 21 1-16
Paper not yet in RePEc: Add citation now
- Faul, F. ; Erdfelder, E. ; Lang, A.-G. ; Buchner, A. G*power 3: a flexible statistical power analysis program for the social, behavioural, and biomedical sciences. 2007 Behav. Res. Methods. 39 175-191
Paper not yet in RePEc: Add citation now
- Gao, Y. ; Li, H. ; Luo, Y. An empirical study of wearable technology acceptance in healthcare. 2015 Ind. Manag. Data Syst.. 115 1704-1723
Paper not yet in RePEc: Add citation now
Gbongali, K. ; Xu, Y. ; Amedjonekou, K.M. Extended technology acceptance model to predict mobile-based money acceptance and sustainability: a multi-analytical structural equation modelling and neural network approach. 2019 Sustainability. 11 3639-
- Hair, ; Joseph, F. ; Tomas, G. ; Hult, M. ; Ringle, C.M. ; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2017 SAGE Publications, Inc: Thousand Oaks, California
Paper not yet in RePEc: Add citation now
- Henseler, J. ; Hubona, G. ; Ray, P.A. Using PLS path modeling in new technology research: updated guidelines. 2016 Ind. Manag. Data Syst.. 116 2-30
Paper not yet in RePEc: Add citation now
- Huarng, K. ; Yu, T.H. ; Lee, C.F. Adoption model of healthcare wearable devices. 2021 Technol. Forecast. Soc. Change. 174 1-7
Paper not yet in RePEc: Add citation now
- Kamal, S.A. ; Shafiq, M. ; Karia, P. . 2020 Technology in Society:
Paper not yet in RePEc: Add citation now
- Kekade, S. ; Hseieh, C.H. ; Islam, M.M. ; Atique, S. ; Mohammed Khalfan, A. ; Li, Y.C. ; Abdul, S.S. The usefulness and actual use of wearable devices among the elderly population. 2018 Comput. Methods Progr. Biomed.. 153 137-159
Paper not yet in RePEc: Add citation now
- Khan, S.A. Situation analysis of health care system of Pakistan: post 18 amendments. 2019 Health Care: Curr. Rev.. 7 -
Paper not yet in RePEc: Add citation now
- Kim, T.B. ; Ho, C.-T. B. Validating the moderating role of age in multi-perspective acceptance model of wearable healthcare technology. 2021 Telematics Inf.. 61 1-12
Paper not yet in RePEc: Add citation now
- Kock, N. Common method bias in PLS-SEM: a full collinearity assessment approach. 2015 Int. J. e-Collaboration. 11 1-10
Paper not yet in RePEc: Add citation now
Lee, D. Strategies for technology-driven service encounters for patient experience satisfaction in hospitals. 2018 Technol. Forecast. Soc. Change. 137 118-127
Lee, S.M. ; Lee, D.H. Healthcare wearable devices: an analysis of key factors for continuous use intention. 2020 Serv. Bus.. 14 503-531
- Lu, X. ; Hao, J. ; Shan, B. ; Gu, A. Determinants of the intention to use smart healthcare devices: a framework and public policy implications. 2021 J. Healthc. Eng.. 1-7
Paper not yet in RePEc: Add citation now
- Madan, K. ; Yadav, R. Understanding and predicting antecedents of mobile shopping adoption. 2018 Asia Pac. J. Market. Logist.. 30 139-162
Paper not yet in RePEc: Add citation now
Pirhonen, J. ; Lolich, L. ; Tuominen, K. ; Jolanki, O. ; Timonen, V. These devices have not been made for older people's needs- Older adults' perceptions of digital technologies in Finland and Ireland. 2020 Technol. Soc.. 62 -
- Podsakoff, P.M. ; Mackenzie, S.B. ; Podsakoff, N.P. Sources of method bias in social science research and recommendations on how to control it. 2012 Annu. Rev. Psychol.. 63 539-569
Paper not yet in RePEc: Add citation now
Rajak, M. ; Shaw, K. Evaluation and selection of mobile health (mHealth) application using AHP and fuzzy TOPSIS. 2019 Technol. Soc.. 59 -
- Richter, N.F. ; Schlaegel, C. ; van Bakel, M. ; Engle, R. The expanded model of cultural intelligence and its explanatory power in the context of expatriation intention. 2020 Eur. J. Int. Manag.. 14 381-419
Paper not yet in RePEc: Add citation now
- Richter, N.F. ; Schubring, S. ; Hauff, S. ; Ringle, C.M. ; Sarstedt, M. When predictors of outcomes are necessary: guidelines for the combined use of PLS-SEM and NCA. 2020 Ind. Manag. Data Syst.. 120 2243-2267
Paper not yet in RePEc: Add citation now
Saheb, T. ; Sabour, E. ; Qanbary, F. ; Saheb, T. Delineating privacy aspects of COVID tracing applications embedded with proximity measurement technologies & digital technologies. 2022 Technol. Soc.. 69 -
- Sergueeva, K. ; Shaw, N. ; Lee, S.H. (Mark).: understanding the barriers and factors associated with consumer adoption of wearable technology devices in managing personal health. 2019 Canad. J. Adm. Sci.. 1-16
Paper not yet in RePEc: Add citation now
- Talukder, Md S. ; Sorwar, G. ; Bao, Y.K. ; Ahmed, J.U. ; Palash, Md A.S. Predicting antecedents of wearable healthcare technology acceptance by elderly: a combined SEM-Neural Network approach. 2019 Technol. Forecast. Soc. Change. 150 -
Paper not yet in RePEc: Add citation now
Tamilmani, K. ; Rana, N.P. ; Wamba, S.F. ; Dwivedi, R. The extended unified theory of acceptance and use of technology (UTAUT2): a systematic literature review and theory evaluation. 2021 Int. J. Inf. Manag.. 57 -
- Venkatesh, V. ; Morris, M. ; Davis, G. ; Davis, F. User acceptance of information technology: toward a unified view. 2003 MIS Q.. 27 425-478
Paper not yet in RePEc: Add citation now
- Wang, H. ; Tao, D. ; Yu, N. ; Qu, X. Understanding consumer acceptance of healthcare wearable devices: an integrated model of UTAUT and TTF. 2020 Int. J. Med. Inf.. 139 1386-5056
Paper not yet in RePEc: Add citation now
- Zhao, Y. ; Ni, Q. ; Zhou, R. What Factors Influence the Mobile Health Service Adoption? A Meta-Analysis and the Moderating Role of Age. 2017 International Journal of Information Management:
Paper not yet in RePEc: Add citation now
- Zhu, Z. ; Liu, Y. ; Che, X. ; Chen, X. Moderating factors influencing adoption of a mobile chronic disease management system in China. 2017 Inf. Health Soc. Care. 43 22-41
Paper not yet in RePEc: Add citation now