create a website

Determinants of Users’ Attitude and Intention to Intelligent Connected Vehicle Infotainment in the 5G-V2X Mobile Ecosystem. (2021). Yu, Zhiyuan ; Jin, Doudou.
In: IJERPH.
RePEc:gam:jijerp:v:18:y:2021:i:19:p:10069-:d:642768.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 92

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Abbasi, M.S.; Chandio, F.H.; Soomro, A.F.; Shah, F. Social influence, voluntariness, experience and the internet acceptance. J. Enterp. Inf. Manag. 2011, 24, 30–52. [CrossRef]
    Paper not yet in RePEc: Add citation now
  2. Agarwal, R.; Karahanna, E. Time flies when you’re having fun: Cognitive absorption and beliefs about information technology usage. MIS Q. 2000, 24, 665. [CrossRef]
    Paper not yet in RePEc: Add citation now
  3. Alam, M.Z.; Hoque, M.R.; Wang, H.; Barua, Z. Factors influencing the adoption of mHealth services in a developing country: A patient-centric study. Int. J. Inf. Manag. 2020, 50,128–143. [CrossRef]

  4. Aldás-Manzano, J.; Lassala-Navarré, C.; Ruiz-Mafé, C.; Sanz-Blas, S. The role of consumer innovativeness and perceived risk in online banking usage. Int. J. Bank Mark. 2009, 27, 53–75. [CrossRef]
    Paper not yet in RePEc: Add citation now
  5. Altran. 5G on the Highway to V2X. Available online: https://www.altran.com/as-content/uploads/sites/27/2020/03 /brochurea5_v2x5g_web.pdf (accessed on 30 December 2020).
    Paper not yet in RePEc: Add citation now
  6. Ameen, N.; Willis, R.; Shah, M.H.; An examination of the gender gap in smartphone adoption and use in Arab countries: A cross-national study. Comput. Hum. Behav. 2018, 89, 148–162. [CrossRef]
    Paper not yet in RePEc: Add citation now
  7. Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988, 16, 74–94. [CrossRef]
    Paper not yet in RePEc: Add citation now
  8. Bansal, P.; Kockelman, K.M.; Singh, A. Assessing public opinions of and interest in new vehicle technologies: An Austin perspective. Transp. Res. Part C Emerg. Technol. 2016, 67, 1–14. [CrossRef]
    Paper not yet in RePEc: Add citation now
  9. Bhattacherjee, A. Acceptance of e-commerce services: The case of electronic brokerages. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 2000, 30, 411–420. [CrossRef]
    Paper not yet in RePEc: Add citation now
  10. Cao, G.; Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Understanding managers’ attitudes and behavioral intentions towards using artificial intelligence for organizational decision-making. Technovation 2021, 106, 102312. [CrossRef]

  11. Chen, H.H.; Chen, S.C. The empirical study of automotive telematics acceptance in Taiwan: Comparing three Technology Acceptance Models. Int. J. Mob. Commun. 2009, 7, 50–65. [CrossRef]
    Paper not yet in RePEc: Add citation now
  12. Chin, W.; Marcoulides, G. The Partial Least Squares Approach to Structural Equation Modeling. Mod. Methods Bus. Res. 1998, 295, 295–336.
    Paper not yet in RePEc: Add citation now
  13. Conchar, M.P. An integrated framework for the conceptualization of consumers’ perceived-risk processing. J. Acad. Mark. Sci. 2004, 32, 418–436. [CrossRef]
    Paper not yet in RePEc: Add citation now
  14. Coutinho, R.W.L.; Boukerche, A.; Loureiro, A.A.F. Design guidelines for information-centric connected and autonomous vehicles. IEEE Commun. Mag. 2018, 56, 85–91. [CrossRef]
    Paper not yet in RePEc: Add citation now
  15. Crespo, .H.; Del Bosque, I.R.; De Los Salmones S ánchez, M.M.G. The influence of perceived risk on Internet shopping behavior: A multidimensional perspective. J. Risk Res. 2009, 12, 259–277. [CrossRef]
    Paper not yet in RePEc: Add citation now
  16. Davis, F.D. Perceived usefulness Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–340. [CrossRef]
    Paper not yet in RePEc: Add citation now
  17. Decree of the Ministry of Public Security the People’s Republic of China. Governing Application for and Use of Driver’s License for Motor Vehicles (Number 123). Available online: https://www.mps.gov.cn/n6557558/c7684097/content.html (accessed on 9 September 2021). (In Chinese)
    Paper not yet in RePEc: Add citation now
  18. Deloitte. 2021 Global Automotive Consumer Study Global Focus Countries. Available online: https://www2.deloitte.com/ global/en/pages/consumer-business/articles/global-automotive-trends-millennials-consumer-study.html (accessed on 30 July 2021).
    Paper not yet in RePEc: Add citation now
  19. Dzogbenuku, R.K.; Amoako, G.K.; Kumi, D.K.; Bonsu, G.A. Digital payments and financial wellbeing of the rural poor: The moderating role of age and gender. J. Int. Consum. Mark. 2021, 1–24. [CrossRef]
    Paper not yet in RePEc: Add citation now
  20. Esposito, V.; Vinzi, W.W.; Henseler, J.; Wang, H. (Eds.) Handbook of Partial Least Squares: Concepts, Methods and Applications in Marketing and Related Fields; Springer Handbooks of Computational Statistics Series; Springer: Berlin, Germany, 2010; Voume II, pp. 487–514, 713–736.
    Paper not yet in RePEc: Add citation now
  21. Fang, K. An analysis of electronic-mail usage. Comput. Hum. Behav. 1998, 14, 349–374. [CrossRef]
    Paper not yet in RePEc: Add citation now
  22. Featherman, M.; Jia, S.; Califf, C.B.; Hajli, N. The impact of new technologies on consumers beliefs: Reducing the perceived risks of electric vehicle adoption. Technol. Forecast. Soc. Chang. 2021, 169, 120847. [CrossRef]

  23. Featherman, M.S.; Pavlou, P.A. Predicting e-services adoption: A perceived risk facets perspective. Int. J. Hum. Comput. Stud. 2003, 59, 451–474. [CrossRef]
    Paper not yet in RePEc: Add citation now
  24. Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [CrossRef]
    Paper not yet in RePEc: Add citation now
  25. Forsythe, S.M.; Shi, B. Consumer patronage and risk perceptions in Internet shopping. J. Bus. Res. 2003, 56, 867–875. [CrossRef]

  26. Fulk, J.; Schmitz, J.; Ryu, D. Cognitive Elements in the Social Construction of Communication Technology. Manag. Commun. Q. 1995, 8, 259–288. [CrossRef]
    Paper not yet in RePEc: Add citation now
  27. Gefen, D.; Straub, D.; Boudreau, M.-C. Structural equation modeling and regression: Guidelines for research practice. Commun. Assoc. Inf. Syst. 2000, 4. [CrossRef]
    Paper not yet in RePEc: Add citation now
  28. Goldsmith, R.E. Explaining and Predicting Consumer Intention to Purchase Over the Internet: An Exploratory Study. J. Mark. Theory Pract. 2015, 10, 22–28. [CrossRef]
    Paper not yet in RePEc: Add citation now
  29. Hair, J.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V. Partial Least Squares Structural Equation Modeling (PLS-SEM): An Emerging Tool for Business Research. Eur. Bus. Rev. 2014, 26, 106–121. [CrossRef]
    Paper not yet in RePEc: Add citation now
  30. Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; SAGE: Thousand Oaks, CA, USA, 2017.
    Paper not yet in RePEc: Add citation now
  31. Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [CrossRef]
    Paper not yet in RePEc: Add citation now
  32. Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [CrossRef]
    Paper not yet in RePEc: Add citation now
  33. Henseler, J.; Ringle, C.; Sinkovics, R. The use of partial least squares path modeling in international marketing. Adv. Int. Mark. 2009, 20, 277–319. [CrossRef]
    Paper not yet in RePEc: Add citation now
  34. Hirschman, E.C. Innovativeness, novelty seeking, and consumer creativity. J. Consum. Res. 1980, 7, 283–295. [CrossRef]

  35. Ho, J.C.; Wu, C.-G.; Lee, C.-S.; Pham, T.-T.T. Factors affecting the behavioral intention to adopt mobile banking: An international comparison. Technol. Soc. 2020, 63, 101360. [CrossRef]

  36. Hong, S.J.; Tam, K.Y. Understanding the adoption of multipurpose information appliances: The case of mobile data services. Inf. Syst. Res. 2006, 17, 162–179. [CrossRef]

  37. Hsu, C.-L.; Lin, J.C.-C. Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation. Inf. Manag. 2008, 45, 65–74. [CrossRef]
    Paper not yet in RePEc: Add citation now
  38. Hu, P.J.; Chau, P.Y.K.; Sheng, O.R.L.; Tam, K.Y. Examining the technology acceptance model using physician acceptance of telemedicine technology. J. Manag. Inf. Syst. 1999, 16, 91–112. [CrossRef]
    Paper not yet in RePEc: Add citation now
  39. Huang, L.-Y.; Hsieh, Y.-J.; Chang, S.E. The effect of consumer innovativeness on adoption of location-based services. Rev. Glob. Manag. Serv. Sci. 2011, 1, 17–31.
    Paper not yet in RePEc: Add citation now
  40. Im, S.; Bayus, B.L.; Mason, C.H. An empirical study of innate consumer innovativeness, personal characteristics, and new-product adoption behavior. J. Acad. Mark. Sci. 2003, 31, 61–73. [CrossRef] Int. J. Environ. Res. Public Health 2021, 18, 10069 19 of 19
    Paper not yet in RePEc: Add citation now
  41. Kasilingam, D.L. Understanding the attitude and intention to use smartphone chatbots for shopping. Technol. Soc. 2020, 62,

  42. Kim, C.; Mirusmonov, M.; Lee, I. An empirical examination of factors influencing the intention to use mobile payment. Comput. Hum. Behav. 2010, 26, 310–322. [CrossRef]
    Paper not yet in RePEc: Add citation now
  43. Kim, D.; Kim, D.; Oh, J. An empirical study on the factors influencing acceptance of convergence services: Focusing on telematics service. J. Soc. Bus. Stud. 2013, 18. [CrossRef]
    Paper not yet in RePEc: Add citation now
  44. Kim, D.H.; Lee, H. Effects of user experience on user resistance to change to the voice user interface of an in-vehicle infotainment system: Implications for platform and standards competition. Int. J. Inf. Manag. 2016, 36, 653–667. [CrossRef]

  45. Kim, J.; Kim, S.; Nam, C. User resistance to acceptance of In-Vehicle Infotainment (IVI) systems. Telecommun. Policy 2016, 40, 919–930. [CrossRef]

  46. King, W.R.; He, J. A meta-analysis of the technology acceptance model. Inf. Manag. 2006, 43, 740–755. [CrossRef]
    Paper not yet in RePEc: Add citation now
  47. Lee, H.Y.; Qu, H.; Kim, Y.S. A study of the impact of personal innovativeness on online travel shopping behavior-A case study of Korean travelers. Tour. Manag. 2007, 28, 886–897. [CrossRef]
    Paper not yet in RePEc: Add citation now
  48. Lee, M.-C. Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electron. Commer. Res. Appl. 2009, 8, 130–141. [CrossRef]
    Paper not yet in RePEc: Add citation now
  49. Lee, Y.-C.; Li, M.-L.; Yen, T.-M.; Huang, T.-H. Analysis of adopting an integrated decision making trial and evaluation laboratory on a technology acceptance model. Expert Syst. Appl. 2010, 37, 1745–1754. [CrossRef]
    Paper not yet in RePEc: Add citation now
  50. Leicht, T.; Chtourou, A.; Youssef, K.B. Consumer innovativeness and intentioned autonomous car adoption. J. High Technol. Manag. Res. 2018, 29, 1–11. [CrossRef]

  51. Lim, N. Consumers’ perceived risk: Sources versus consequences. Electron. Commer. Res. Appl. 2003, 2, 216–228. [CrossRef]
    Paper not yet in RePEc: Add citation now
  52. Limayem, M.; Khalifa, M.; Frini, A. What makes consumers buy from Internet? A longitudinal study of online shopping. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 2000, 30, 421–432. [CrossRef]
    Paper not yet in RePEc: Add citation now
  53. Liu, H.; Yang, R.; Wang, L.; Liu, P. Evaluating Initial Public Acceptance of Highly and Fully Autonomous Vehicles. Int. J. Hum. Comput. Interact. 2019, 35, 919–931. [CrossRef]
    Paper not yet in RePEc: Add citation now
  54. Liu, J.; Liu, J. Intelligent and connected vehicles: Current situation, future directions, and challenges. IEEE Commun. Stand. Mag. 2018, 2, 59–65. [CrossRef]
    Paper not yet in RePEc: Add citation now
  55. Lu, J.; Yao, J.E.; Yu, C.-S. Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology. J. Strateg. Inf. Syst. 2005, 14, 245–268. [CrossRef]
    Paper not yet in RePEc: Add citation now
  56. Lu, J.; Yu, C.S.; Liu, C.; Yao, J.E. Technology acceptance model for wireless Internet. Internet Res. 2003, 13, 206–222. [CrossRef]
    Paper not yet in RePEc: Add citation now
  57. Lu, Y.; Cao, Y.; Wang, B.; Yang, S. A study on factors that affect users’ behavioral intention to transfer usage from the offline to the online channel. Comput. Hum. Behav. 2011, 27, 355–364. [CrossRef]
    Paper not yet in RePEc: Add citation now
  58. Ma, L. Understanding non-adopters’ intention to use internet pharmacy: Revisiting the roles of trustworthiness, perceived risk and consumer traits. J. Eng. Technol. Manag. 2021, 59, 101613. [CrossRef]
    Paper not yet in RePEc: Add citation now
  59. McKinsey. McKinsey China Auto Consumer Insights 2019. Available online: https://www.mckinsey.com/~/media/McKinsey/ Industries/Automotive%20and%20Assembly/Our%20Insights/China%20auto%20consumer%20insights%202019/McKinseyChina -Auto-Consumer-Insights-2019.pdf (accessed on 3 August 2021).
    Paper not yet in RePEc: Add citation now
  60. Ning, Y.; Yan, M.; Xu, S.X.; Li, Y.; Li, L. Shared parking acceptance under perceived network externality and risks: Theory and evidence. Transp. Res. Part A Policy Pract. 2021, 150, 1–15. [CrossRef]

  61. Oviedo-Trespalacios, O.; Nandavar, S.; Haworth, N. How do perceptions of risk and other psychological factors influence the use of in-vehicle information systems (IVIS)? Transp. Res. Part Traffic Psychol. Behav. 2019, 67, 113–122. [CrossRef]
    Paper not yet in RePEc: Add citation now
  62. Park, E.; Kim, H.; Ohm, J.Y. Understanding driver adoption of car navigation systems using the extended technology acceptance model. Behav. Inf. Technol. 2015, 34, 741–751. [CrossRef]
    Paper not yet in RePEc: Add citation now
  63. Park, J.; Ahn, J.; Thavisay, T.; Ren, T. Examining the role of anxiety and social influence in multi-benefits of mobile payment service. J. Retail. Consum. Serv. 2019, 47, 140–149. [CrossRef]

  64. Park, J.; Kim, J.; Nam, C.; Kim, S. Driver’s intention to use smartphone-car connectivity. In Proceedings of the 24th European Regional ITS Conference, Florence, Italy, 20–23 October 2013.
    Paper not yet in RePEc: Add citation now
  65. Pengnate, S.; Sarathy, R. An experimental investigation of the influence of website emotional design features on trust in unfamiliar online vendors. Comput. Hum. Behav. 2017, 67, 49–60. [CrossRef]
    Paper not yet in RePEc: Add citation now
  66. Schierz, P.G.; Schilke, O.; Wirtz, B.W. Understanding consumer acceptance of mobile payment services: An empirical analysis. Electron. Commer. Res. Appl. 2010, 9, 209–216. [CrossRef] Int. J. Environ. Res. Public Health 2021, 18, 10069 17 of 19
    Paper not yet in RePEc: Add citation now
  67. Schillewaert, N.; Ahearne, M.J.; Frambach, R.T.; Moenaert, R.K. The adoption of information technology in the sales force. Ind. Mark. Manag. 2005, 34, 323–336. [CrossRef]
    Paper not yet in RePEc: Add citation now
  68. Sheppard, B.H.; Hartwick, J.; Warshaw, P.R. The Theory of reasoned action: A meta-analysis of past research with recommendations for modifications and future research. J. Consum. Res. 1988, 15, 325–343. [CrossRef]

  69. Slade, E.; Williams, M.; Dwivedi, Y.; Piercy, N. Exploring consumer adoption of proximity mobile payments. J. Strateg. Mark. 2014, 23, 209–223. [CrossRef]
    Paper not yet in RePEc: Add citation now
  70. Smart Connected Vehicle Technology Roadmap 2.0. Available online: http://www.gov.cn/xinwen/2020-11/19/content_5562464. htm (accessed on 10 June 2021). (In Chinese)
    Paper not yet in RePEc: Add citation now
  71. SmartPLS; Ringle, C.M.; Wende, S.; Becker, J.-M. “SmartPLS 3” Boenningstedt: SmartPLS GmbH. 2015. Avalible online: http://www.smartpls.com (accessed on 10 May 2021).
    Paper not yet in RePEc: Add citation now
  72. Subramanian, G.H. A replication of perceived usefulness and perceived ease of use measurement. Decis. Sci. 1994, 25, 863–874. [CrossRef] Int. J. Environ. Res. Public Health 2021, 18, 10069 18 of 19
    Paper not yet in RePEc: Add citation now
  73. Suki, N.M.; Suki, N.M. Determining students’ behavioural intention to use animation and storytelling applying the UTAUT model: The moderating roles of gender and experience level. Int. J. Manag. Educ. 2017, 15, 528–538. [CrossRef]
    Paper not yet in RePEc: Add citation now
  74. Sun, Y.; Jeyaraj, A. Information technology adoption and continuance: A longitudinal study of individuals’ behavioral intentions. Inf. Manag., 2013, 50, 457–465. [CrossRef]
    Paper not yet in RePEc: Add citation now
  75. Tarhini, A.; El-Masri, M.; Ali, M.; Serrano, A. Extending the UTAUT model to understand the customers’ acceptance and use of internet banking in Lebanon. Inf. Technol. People 2016, 29, 830–849. [CrossRef]
    Paper not yet in RePEc: Add citation now
  76. Taylor, S.; Todd, P.A. Understanding information technology usage : A test of competing models. Inf. Syst. Res. 1995, 6, 144–176. [CrossRef]

  77. The National Bureau of Statistics of China. Interpreting 2018 National Time Use Survey Data. Avalible online: http://www.stats. gov.cn/tjsj/sjjd/201901/t20190125_1646799.html (accessed on 31 July 2021). (In Chinese)
    Paper not yet in RePEc: Add citation now
  78. Vaezipour, A.; Rakotonirainy, A.; Haworth, N.; Delhomme, P. Enhancing eco-safe driving behaviour through the use of in-vehicle human-machine interface: A qualitative study. Transp. Res. Part Policy Pract. 2017, 100, 247–263. [CrossRef]

  79. Van Dijk, J.A.G.M.; Peters, O.; Ebbers, W. Explaining the acceptance and use of government Internet services: A multivariate analysis of 2006 survey data in the Netherlands. Gov. Inf. Q. 2008, 25, 379–399. [CrossRef]
    Paper not yet in RePEc: Add citation now
  80. Van Raaij, E.M.; Schepers, J.J.L. The acceptance and use of a virtual learning environment in China. Comput. Educ. 2008, 50, 838–852. [CrossRef]
    Paper not yet in RePEc: Add citation now
  81. Varma Citrin, A.; Sprott, D.E.; Silverman, S.N.; Stem, D.E. Adoption of Internet shopping: The role of consumer innovativeness. Ind. Manag. Data Syst. 2000, 100, 294–300. [CrossRef]
    Paper not yet in RePEc: Add citation now
  82. Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [CrossRef]

  83. Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425. [CrossRef]
    Paper not yet in RePEc: Add citation now
  84. Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157. [CrossRef]
    Paper not yet in RePEc: Add citation now
  85. Vijayasarathy, L.R. Predicting consumer intentions to use on-line shopping: The case for an augmented technology acceptance model. Inf. Manag. 2004, 41, 747–762. [CrossRef]
    Paper not yet in RePEc: Add citation now
  86. Wu, B.; Zhang, C. Empirical study on continuance intentions towards E-Learning 2.0 systems. Behav. Inf. Technol. 2014, 33, 1027–1038. [CrossRef]
    Paper not yet in RePEc: Add citation now
  87. Wu, Y.; Fang, X.; Wang, X. Mobility management through scalable C/U-plane decoupling in iov networks. IEEE Commun. Mag. 2019, 57, 122–129. [CrossRef]
    Paper not yet in RePEc: Add citation now
  88. Xie, J.; Ye, X.; Yang, Z.; Yan, X.; Lu, L.; Yang, Z.; Wang, T. Impact of risk and benefit on the suppliers’ and managers’ intention of shared parking in residential areas. Sustainability 2019, 12, 268. [CrossRef]

  89. Yang, S.; Lu, Y.; Gupta, S.; Cao, Y.; Zhang, R. Mobile payment services adoption across time: An empirical study of the effects of behavioral beliefs, social influences, and personal traits. Comput. Hum. Behav. 2012, 28, 129–142. [CrossRef]
    Paper not yet in RePEc: Add citation now
  90. Yu, Z.; Jin, D.; Song, X.; Zhai, C.; Wang, D. Internet of vehicle empowered mobile media scenarios: In-vehicle infotainment solutions for the mobility as a service (MaaS). Sustainability 2020, 12, 7448. [CrossRef]
    Paper not yet in RePEc: Add citation now
  91. Yu, Z.; Jin, D.; Zhai, C.; Ni, W.; Wang, D. Internet of Vehicles empowered mobile media: Research on mobile-generated content (MoGC) for intelligent connected vehicles. Sustainability 2021, 13, 3538. [CrossRef]

  92. Zhang, T.; Tao, D.; Qu, X.; Zhang, X.; Lin, R.; Zhang, W. The roles of initial trust and perceived risk in public’s acceptance of automated vehicles. Transp. Res. Part Emerg. Technol. 2019, 98, 207–220. [CrossRef]
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Navigating AI Adaptation in Organizational Operations: Challenges, Strategies, and Ethical Considerations. (2025). Al-Alosi, Ali.
    In: OSF Preprints.
    RePEc:osf:osfxxx:z78fu_v1.

    Full description at Econpapers || Download paper

  2. Understanding the Determinants of Adoption and Intention to Recommend AI Technology in Travel and Transportation. (2025). Pereira, Antonio ; Baptista, Gonalo.
    In: Tourism and Hospitality.
    RePEc:gam:jtourh:v:6:y:2025:i:2:p:54-:d:1619938.

    Full description at Econpapers || Download paper

  3. Investigating AI Adoption, Knowledge Absorptive Capacity, and Open Innovation in Chinese Apparel MSMEs: An Extended TAM-TOE Model with PLS-SEM Analysis. (2025). Kim, Eunyoung ; Qu, Chen.
    In: Sustainability.
    RePEc:gam:jsusta:v:17:y:2025:i:5:p:1873-:d:1597354.

    Full description at Econpapers || Download paper

  4. Integration of Artificial Intelligence Technologies into Design-Thinking Processes in the Development of Managerial Decisions as a Factor of Enterprise Sustainable Development. (2025). Firsova, Anna ; Kiseleva, Oksana ; Vavilina, Alla.
    In: Sustainability.
    RePEc:gam:jsusta:v:17:y:2025:i:10:p:4705-:d:1660206.

    Full description at Econpapers || Download paper

  5. Shifting attitudes and trust in AI: Influences on organizational AI adoption. (2025). Wiewiora, Anna ; Hearn, Greg ; Daly, Sarah J.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:215:y:2025:i:c:s0040162525001398.

    Full description at Econpapers || Download paper

  6. Healthcare workers adoption of and satisfaction with artificial intelligence: The counterintuitive role of paradoxical tensions and paradoxical mindset. (2025). Holmn, Magnus ; Barth, Henrik ; Sestino, Andrea ; Irgang, Lus.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:212:y:2025:i:c:s0040162524007650.

    Full description at Econpapers || Download paper

  7. Government adoption of generative artificial intelligence and ambidextrous innovation. (2025). Chen, Zhongjie ; Pancho, Martin ; Zhou, Zhikai ; Liu, Dewen.
    In: International Review of Economics & Finance.
    RePEc:eee:reveco:v:98:y:2025:i:c:s1059056025001169.

    Full description at Econpapers || Download paper

  8. Managing change when integrating artificial intelligence (AI) into the retail value chain: The AI implementation compass. (2025). Oosthuizen, Kim ; Botha, Elsamari ; Robertson, Jeandri ; Montecchi, Matteo.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:189:y:2025:i:c:s0148296325000219.

    Full description at Econpapers || Download paper

  9. The effects of Artificial intelligence orientation on inefficient investment: Firm-level evidence from Chinas energy enterprises. (2025). Zhai, Minhan ; Tsai, Sang-Bing ; Wu, Wenqing.
    In: Energy Economics.
    RePEc:eee:eneeco:v:141:y:2025:i:c:s0140988324007576.

    Full description at Econpapers || Download paper

  10. An Assessment of the Effects of Artificial Intelligence on Tourist Behavior and Decision-Making in San Jose Del Monte City, Bulacan. (2025). Rianne, Genine ; Jane, Sarah ; Ingrid, Khay ; Kaye, Sandara.
    In: International Journal of Research and Innovation in Social Science.
    RePEc:bcp:journl:v:9:y:2025:issue-4:p:1289-1332.

    Full description at Econpapers || Download paper

  11. Moving beyond human-centric organizational designs. (2024). Mortimore, David.
    In: Journal of Organization Design.
    RePEc:spr:jorgde:v:13:y:2024:i:2:d:10.1007_s41469-024-00167-z.

    Full description at Econpapers || Download paper

  12. Enablers and Inhibitors of AI-Powered Voice Assistants: A Dual-Factor Approach by Integrating the Status Quo Bias and Technology Acceptance Model. (2024). Balakrishnan, Janarthanan ; Dwivedi, Yogesh K ; Hughes, Laurie ; Boy, Frederic.
    In: Information Systems Frontiers.
    RePEc:spr:infosf:v:26:y:2024:i:3:d:10.1007_s10796-021-10203-y.

    Full description at Econpapers || Download paper

  13. Cognitive Chatbot for Personalised Contextual Customer Service: Behind the Scene and beyond the Hype. (2024). Ray, Arghya ; Bala, Pradip Kumar ; Behera, Rajat Kumar.
    In: Information Systems Frontiers.
    RePEc:spr:infosf:v:26:y:2024:i:3:d:10.1007_s10796-021-10168-y.

    Full description at Econpapers || Download paper

  14. Informing existing technology acceptance models: a qualitative study with older persons and caregivers. (2024). Wangmo, Tenzin ; Schwab, Delphine Roulet ; Tian, Yi Jiao ; Lipworth, Wendy ; Felber, Nadine Andrea.
    In: European Journal of Ageing.
    RePEc:spr:eujoag:v:21:y:2024:i:1:d:10.1007_s10433-024-00801-5.

    Full description at Econpapers || Download paper

  15. Still doing it yourself? Investigating determinants for the adoption of intelligent process automation. (2024). Mayr, Alexander ; Stahmann, Philip ; Janiesch, Christian ; Nebel, Maximilian.
    In: Electronic Markets.
    RePEc:spr:elmark:v:34:y:2024:i:1:d:10.1007_s12525-024-00737-9.

    Full description at Econpapers || Download paper

  16. Factors Affecting the Adoption of HRIS: An Empirical Study Using Extended UTAUT2 Model. (2024). Rahman, Md Siddikur ; Azmal, G M.
    In: International Journal of Business and Management.
    RePEc:ibn:ijbmjn:v:19:y:2024:i:3:p:213.

    Full description at Econpapers || Download paper

  17. Determinants of artificial intelligence-assisted diagnostic system adoption intention: A behavioral reasoning theory perspective. (2024). Li, Weixia ; Wang, Jianguo.
    In: Technology in Society.
    RePEc:eee:teinso:v:78:y:2024:i:c:s0160791x2400191x.

    Full description at Econpapers || Download paper

  18. Bringing employee learning to AI stress research: A moderated mediation model. (2024). Zhou, Qiwei ; Chen, Keyu ; Cheng, Shuang.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:209:y:2024:i:c:s0040162524005717.

    Full description at Econpapers || Download paper

  19. Can transactional use of AI-controlled voice assistants for service delivery pickup pace in the near future? A social learning theory (SLT) perspective. (2024). Srivastava, Shalini ; Badghish, Saeed ; Sahore, Nidhi ; Masood, Ayesha ; Shaik, Aqueeb Sohail.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:198:y:2024:i:c:s0040162523006571.

    Full description at Econpapers || Download paper

  20. Developing industrial AI capabilities: An organisational learning perspective. (2024). Nemeh, Andre ; Ruokonen, Mika ; Aaltonen, Pivi ; Ritala, Paavo.
    In: Technovation.
    RePEc:eee:techno:v:138:y:2024:i:c:s0166497224001706.

    Full description at Econpapers || Download paper

  21. Artificial intelligence and innovation management: Charting the evolving landscape. (2024). Candi, Marina ; Roberts, Deborah L.
    In: Technovation.
    RePEc:eee:techno:v:136:y:2024:i:c:s0166497224001317.

    Full description at Econpapers || Download paper

  22. Evaluating the effect of green technological innovations on organizational and environmental performance: A treble innovation approach. (2024). Opazo-Basaez, Marco ; Monroy-Osorio, Juan Carlos ; Mari, Josip.
    In: Technovation.
    RePEc:eee:techno:v:129:y:2024:i:c:s0166497223001967.

    Full description at Econpapers || Download paper

  23. Unlocking the potential of AI: Enhancing consumer engagement in the beauty and cosmetic product purchases. (2024). Khorana, Sangeeta ; Chakraborty, Debarun ; Polisetty, Aruna.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:79:y:2024:i:c:s0969698924001383.

    Full description at Econpapers || Download paper

  24. Dealing with the downsides of new work: The reactions of middle managers to the decline in middle management. (2024). Bach, Norbert ; Maurer, Marcel ; Oertel, Simon.
    In: European Management Journal.
    RePEc:eee:eurman:v:42:y:2024:i:3:p:358-370.

    Full description at Econpapers || Download paper

  25. REDECA Framework Enhancing Occupational Safety and Health Through Artificial Intelligence Applications. (2024). , Christopher ; Michiel, Sheila.
    In: Safety and Health for Medical Workers.
    RePEc:ebi:shmwjn:v:1:y:2024:i:2:p:95-110.

    Full description at Econpapers || Download paper

  26. Are skepticism and moderation dominating attitudes toward AI‐based technologies?. (2024). Oprea, Simonavasilica ; Georgescu, Irina Alexandra ; Nica, Ionut ; Bara, Adela.
    In: American Journal of Economics and Sociology.
    RePEc:bla:ajecsc:v:83:y:2024:i:3:p:567-607.

    Full description at Econpapers || Download paper

  27. Detecting fake news and disinformation using artificial intelligence and machine learning to avoid supply chain disruptions. (2023). Zahoor, Nadia ; Ul, Mirza Amin ; Ur, Haseeb ; Ghouri, Arsalan Mujahid ; Ashraf, Aniqa ; Khan, Zaheer ; Awan, Usama ; Akhtar, Pervaiz.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:327:y:2023:i:2:d:10.1007_s10479-022-05015-5.

    Full description at Econpapers || Download paper

  28. What Drives People€™s Behavioral Intention Toward Telemedicine? An Emerging Economy Perspective. (2023). Hossain, Mohammad Kamal ; Hossen, Mohammad Awal ; al Masud, Abdullah ; Amin, Ruhul.
    In: SAGE Open.
    RePEc:sae:sagope:v:13:y:2023:i:3:p:21582440231181394.

    Full description at Econpapers || Download paper

  29. Understanding continuance intention of artificial intelligence (AI)-enabled mobile banking applications: an extension of AI characteristics to an expectation confirmation model. (2023). Tang, Yuyin ; Jiang, Siqi ; Lee, Jung-Chieh.
    In: Palgrave Communications.
    RePEc:pal:palcom:v:10:y:2023:i:1:d:10.1057_s41599-023-01845-1.

    Full description at Econpapers || Download paper

  30. Behavioral Intentions to use Artificial Intelligence Among Managers in Small and Medium Enterprises. (2023). Ahmad, Abd Rahman ; Harjan, Sinan Abdullah ; Jameel, Alaa S.
    In: OSF Preprints.
    RePEc:osf:osfxxx:w69yh_v1.

    Full description at Econpapers || Download paper

  31. Behavioral Intentions to use Artificial Intelligence Among Managers in Small and Medium Enterprises. (2023). Harjan, Sinan Abdullah ; Jameel, Alaa S ; Ahmad, Abd Rahman.
    In: OSF Preprints.
    RePEc:osf:osfxxx:w69yh.

    Full description at Econpapers || Download paper

  32. Factors Affecting Behavioural Intention to Use Mobile Health Applications among Obese People in Malaysia. (2023). Hussein, Zuhal ; Kamaruzaman, Khairul Nazlin ; Fikry, Amily.
    In: European Journal of Business Science and Technology.
    RePEc:men:journl:v:9:y:2023:i:1:p:92-117.

    Full description at Econpapers || Download paper

  33. A Study on Farmers’ Participation in Environmental Protection in the Context of Rural Revitalization: The Moderating Role of Policy Environment. (2023). Zhang, Yang ; Chen, Tianqing ; Dong, Hao.
    In: IJERPH.
    RePEc:gam:jijerp:v:20:y:2023:i:3:p:1768-:d:1040004.

    Full description at Econpapers || Download paper

  34. What drives managers towards algorithm aversion and how to overcome it? Mitigating the impact of innovation resistance through technology readiness. (2023). Mitra, Ranjan Kumar ; Islam, A. K. M. Najmul, ; Mahmud, Hasan.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:193:y:2023:i:c:s0040162523003268.

    Full description at Econpapers || Download paper

  35. Understanding experiences of food-delivery-platform workers under algorithmic management using topic modeling. (2023). Lee, Junmin ; Won, Jongho.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:190:y:2023:i:c:s0040162523000549.

    Full description at Econpapers || Download paper

  36. On the edge of Big Data: Drivers and barriers to data analytics adoption in SMEs. (2023). Justy, Theo ; Gupta, Shivam ; Granata, Julien ; Pellegrin-Boucher, Estelle ; Lescop, Denis.
    In: Technovation.
    RePEc:eee:techno:v:127:y:2023:i:c:s016649722300161x.

    Full description at Econpapers || Download paper

  37. A framework for AI-powered service innovation capability: Review and agenda for future research. (2023). Rahman, Mahfuzur ; Akter, Shahriar ; Sultana, Saida ; Hossain, Md Afnan ; McCarthy, Grace ; Vrontis, Demetris ; Sajib, Shahriar.
    In: Technovation.
    RePEc:eee:techno:v:125:y:2023:i:c:s0166497223000792.

    Full description at Econpapers || Download paper

  38. The impact of evolved psychological mechanisms on innovation and adoption: A systematic literature review. (2023). Stroh, Tim ; Duff, Cameron ; Mention, Anne-Laure.
    In: Technovation.
    RePEc:eee:techno:v:125:y:2023:i:c:s0166497223000706.

    Full description at Econpapers || Download paper

  39. Steering resilience in nursing practice: Examining the impact of digital innovations and enhanced emotional training on nurse competencies. (2023). Rahman, Mahfuzur ; Kordowicz, Maria ; Verde, Juan Manuel ; Ikafa, Irene ; Hack-Polay, Dieu ; Mahmoud, Ali B.
    In: Technovation.
    RePEc:eee:techno:v:120:y:2023:i:c:s0166497222000967.

    Full description at Econpapers || Download paper

  40. Healthcare system: Moving forward with artificial intelligence. (2023). Shini, Matilda ; Dicuonzo, Grazia ; Donofrio, Francesca ; Fusco, Antonio.
    In: Technovation.
    RePEc:eee:techno:v:120:y:2023:i:c:s0166497222000578.

    Full description at Econpapers || Download paper

  41. Exploring the factors that affect user experience in mobile-health applications: A text-mining and machine-learning approach. (2023). Pal, Shounak ; Gupta, Shivam ; Biswas, Baidyanath ; Kumar, Ajay.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:156:y:2023:i:c:s0148296322009493.

    Full description at Econpapers || Download paper

  42. Overcoming financial planners’ cognitive biases through digitalization: A qualitative study. (2023). Hasan, Zahid ; Pereira, Vijay ; Athota, Vidya S ; Reppas, Dimitrios ; Vaz, Daicy ; Laker, Benjamin.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:154:y:2023:i:c:s0148296322007445.

    Full description at Econpapers || Download paper

  43. ARTIFICIAL INTELLIGENCE AND CYBERSECURITY IMPLICATIONS FOR BUSINESS MANAGEMENT. (2022). Funk, Philippe.
    In: Economy & Business Journal.
    RePEc:isp:journl:v:16:y:2022:i:1:p:252-261.

    Full description at Econpapers || Download paper

  44. Exploring the adoption of wearable healthcare devices among the Pakistani adults with dual analysis techniques. (2022). Hayat, Naeem ; Yaacob, Mohd Rafi ; Malik, Haider Ali ; Salameh, Anas A.
    In: Technology in Society.
    RePEc:eee:teinso:v:70:y:2022:i:c:s0160791x22001567.

    Full description at Econpapers || Download paper

  45. Understanding factors influencing the adoption of a mobile platform of medical and senior care in China. (2022). Zuo, Meiyun ; Xiong, Jie.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:179:y:2022:i:c:s0040162522001536.

    Full description at Econpapers || Download paper

  46. What influences algorithmic decision-making? A systematic literature review on algorithm aversion. (2022). Ahmed, Syed Ishtiaque ; Smolander, Kari ; Islam, A. K. M. Najmul, ; Mahmud, Hasan.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:175:y:2022:i:c:s0040162521008210.

    Full description at Econpapers || Download paper

  47. Make bricks without straw: Eco-innovation for resource-constrained firms in emerging markets. (2022). Ying, Ying ; Liu, Yang ; Wang, Shixiang.
    In: Technovation.
    RePEc:eee:techno:v:114:y:2022:i:c:s0166497222000645.

    Full description at Econpapers || Download paper

  48. Building user engagement to mhealth apps from a learning perspective: Relationships among functional, emotional and social drivers of user value. (2022). Davison, Robert M ; Gmez-Rico, Mar ; Santos-Vijande, Mara Leticia ; Molina-Collado, Arturo.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:66:y:2022:i:c:s0969698922000492.

    Full description at Econpapers || Download paper

  49. AI-employee collaboration and business performance: Integrating knowledge-based view, socio-technical systems and organisational socialisation framework. (2022). Chowdhury, Soumyadeb ; Joel-Edgar, Sian ; Dey, Prasanta Kumar ; Budhwar, Pawan ; Abadie, Amelie.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:144:y:2022:i:c:p:31-49.

    Full description at Econpapers || Download paper

  50. Determinants of Users’ Attitude and Intention to Intelligent Connected Vehicle Infotainment in the 5G-V2X Mobile Ecosystem. (2021). Yu, Zhiyuan ; Jin, Doudou.
    In: IJERPH.
    RePEc:gam:jijerp:v:18:y:2021:i:19:p:10069-:d:642768.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-26 05:32:47 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.