Ahmed R.; Sreeram V.; Mishra Y.; Arif M.D. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792.
- Badrinarayanan V.; Kendall A.; Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481-2495.
Paper not yet in RePEc: Add citation now
- Bradbury K.; Saboo R.; Johnson T.L.; Malof J.M.; Devarajan A.; Zhang W.; Collins L.M.; Newell R.G. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification. Sci. Data 2016, 3, 1-9.
Paper not yet in RePEc: Add citation now
- Breiman L. Random forests. Mach. Learn. 2001, 45, 5-32.
Paper not yet in RePEc: Add citation now
- Camilo J.; Wang R.; Collins L.M.; Bradbury K.; Malof J.M. Application of a semantic segmentation convolutional neural network for accurate automatic detection and mapping of solar photovoltaic arrays in aerial imagery. arXiv 2018.
Paper not yet in RePEc: Add citation now
- Castello R.; Roquette S.; Esguerra M.; Guerra A.; Scartezzini J.L. Deep learning in the built environment: Automatic detection of rooftop solar panels using Convolutional Neural Networks. J. Phys. Conf. Ser. 2019, 1343, 012034.
Paper not yet in RePEc: Add citation now
- Chaurasia A.; Culurciello E. Linknet: Exploiting encoder representations for efficient semantic segmentation. Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, Russia, 10–13 December 2017, ; pp. 1-4.
Paper not yet in RePEc: Add citation now
- Chen Y.; Fan R.; Yang X.; Wang J.; Latif A. Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning. Water 2018, 10.
Paper not yet in RePEc: Add citation now
- Cortes C.; Vapnik V. Support-vector networks. Mach. Learn. 1995, 20, 273-297.
Paper not yet in RePEc: Add citation now
- Gao L.; Song W.; Dai J.; Chen Y. Road extraction from high-resolution remote sensing imagery using refined deep residual convolutional neural network. Remote Sens. 2019, 11.
Paper not yet in RePEc: Add citation now
Han M.; Xiong J.; Wang S.; Yang Y. Chinese photovoltaic poverty alleviation: Geographic distribution, economic benefits and emission mitigation. Energy Policy 2020, 144, 111685.
- He K.; Zhang X.; Ren S.; Sun J. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 4–9 February 2016, ; pp. 770-778.
Paper not yet in RePEc: Add citation now
- Hesamian M.H.; Jia W.; He X.; Kennedy P. Deep learning techniques for medical image segmentation: Achievements and challenges. J. Digit. Imaging 2019, 32, 582-596.
Paper not yet in RePEc: Add citation now
- Hu J.; Shen L.; Sun G. Squeeze-and-excitation networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018, ; pp. 7132-7141.
Paper not yet in RePEc: Add citation now
- Huang G.; Liu Z.; Van Der Maaten L.; Weinberger K.Q. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 4–9 February 2017, ; pp. 4700-4708.
Paper not yet in RePEc: Add citation now
- Huang J.; Zhang X.; Xin Q.; Sun Y.; Zhang P. Automatic building extraction from high-resolution aerial images and LiDAR data using gated residual refinement network. ISPRS J. Photogramm. Remote Sens. 2019, 151, 91-105.
Paper not yet in RePEc: Add citation now
- Huang Z.; Wang X.; Huang L.; Huang C.; Wei Y.; Liu W. Ccnet: Criss-cross attention for semantic segmentation. Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019, ; pp. 603-612.
Paper not yet in RePEc: Add citation now
- Ioffe S.; Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015.
Paper not yet in RePEc: Add citation now
- Jain S.; Wang X.; Gonzalez J.E. Accel: A corrective fusion network for efficient semantic segmentation on video. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16-20 June 2019, ; pp. 8866-8875.
Paper not yet in RePEc: Add citation now
- Jiang F.; Grigorev A.; Rho S.; Tian Z.; Fu Y.; Jifara W.; Adil K.; Liu S. Medical image semantic segmentation based on deep learning. Neural Comput. Appl. 2018, 29, 1257-1265.
Paper not yet in RePEc: Add citation now
- Krizhevsky A.; Sutskever I.; Hinton G.E. Imagenet classification with deep convolutional neural networks. Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012, ; pp. 1097-1105.
Paper not yet in RePEc: Add citation now
- LeCun Y.; Bengio Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 1995, 3361, 1995.
Paper not yet in RePEc: Add citation now
- Li H.; Lin H.; Tan Q.; Wu P.; Wang C.; De G.; Huang L. Research on the policy route of China’s distributed photovoltaic power generation. Energy Rep. 2020, 6, 254-263.
Paper not yet in RePEc: Add citation now
- Li L.; Yan Z.; Shen Q.; Cheng G.; Gao L.; Zhang B. Water body extraction from very high spatial resolution remote sensing data based on fully convolutional networks. Remote Sens. 2019, 11.
Paper not yet in RePEc: Add citation now
- Li W.; Ren H.; Chen P.; Wang Y.; Qi H. Key Operational Issues on the Integration of Large-Scale Solar Power Generation—A Literature Review. Energies 2020, 13.
Paper not yet in RePEc: Add citation now
- Li X.; Zhao H.; Han L.; Tong Y.; Yang K. Gff: Gated fully fusion for semantic segmentation. arXiv 2019.
Paper not yet in RePEc: Add citation now
- Lin T.Y.; Dollár P.; Girshick R.; He K.; Hariharan B.; Belongie S. Feature pyramid networks for object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017, ; pp. 2117-2125.
Paper not yet in RePEc: Add citation now
- Liu Y.; Chen K.; Liu C.; Qin Z.; Luo Z.; Wang J. Structured knowledge distillation for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019, ; pp. 2604-2613.
Paper not yet in RePEc: Add citation now
- Long J.; Shelhamer E.; Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015, ; pp. 3431-3440.
Paper not yet in RePEc: Add citation now
- Lv T.; Yang Q.; Deng X.; Xu J.; Gao J. Generation expansion planning considering the output and flexibility requirement of renewable energy: The case of Jiangsu Province. Front. Energy Res. 2020, 8, 39.
Paper not yet in RePEc: Add citation now
Malof J.M.; Bradbury K.; Collins L.M.; Newell R.G. Automatic detection of solar photovoltaic arrays in high resolution aerial imagery. Appl. Energy 2016, 183, 229-240.
- Malof J.M.; Collins L.M.; Bradbury K. A deep convolutional neural network, with pre-training, for solar photovoltaic array detection in aerial imagery. Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 22–28 July 2017, ; pp. 874-877.
Paper not yet in RePEc: Add citation now
- Malof J.M.; Collins L.M.; Bradbury K.; Newell R.G. A deep convolutional neural network and a Random Forest classifier for solar photovoltaic array detection in aerial imagery. Proceedings of the 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Birmingham, UK, 20–23 November 2016, ; pp. 650-654.
Paper not yet in RePEc: Add citation now
- Malof J.M.; Hou R.; Collins L.M.; Bradbury K.; Newell R. Automatic solar photovoltaic panel detection in satellite imagery. Proceedings of the 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, Italy, 22–25 November 2015, ; pp. 1428-1431.
Paper not yet in RePEc: Add citation now
- Malof J.M.; Li B.; Huang B.; Bradbury K.; Stretslov A. Mapping solar array location, size, and capacity using deep learning and overhead imagery. arXiv 2019.
Paper not yet in RePEc: Add citation now
Mancini F.; Nastasi B. Solar energy data analytics: PV deployment and land use. Energies 2020, 13.
Manfren M.; Nastasi B.; Groppi D.; Garcia D.A. Open data and energy analytics-An analysis of essential information for energy system planning, design and operation. Energy 2020, 213, 118803.
- Matas J.; Chum O.; Urban M.; Pajdla T. Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 2004, 22, 761-767.
Paper not yet in RePEc: Add citation now
- Milletari F.; Navab N.; Ahmadi S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016, ; pp. 565-571.
Paper not yet in RePEc: Add citation now
Moriarty P.; Honnery D. Feasibility of a 100% Global Renewable Energy System. Energies 2020, 13.
- Nassar Y.F.; Hafez A.A.; Alsadi S.Y. Multi-Factorial Comparison for 24 Distinct Transposition Models for Inclined Surface Solar Irradiance Computation in the State of Palestine: A Case Study. Front. Energy Res 2020, 7, 163.
Paper not yet in RePEc: Add citation now
- Nastasi B.; de Santoli L.; Albo A.; Bruschi D.; Basso G.L. RES (Renewable Energy Sources) availability assessments for Eco-fuels production at local scale: Carbon avoidance costs associated to a hybrid biomass/H2NG-based energy scenario. Energy Procedia 2015, 81, 1069-1076.
Paper not yet in RePEc: Add citation now
- Nekrasov V.; Chen H.; Shen C.; Reid I. Architecture search of dynamic cells for semantic video segmentation. Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020, ; pp. 1970-1979.
Paper not yet in RePEc: Add citation now
- Patravali J.; Jain S.; Chilamkurthy S. 2D-3D fully convolutional neural networks for cardiac MR segmentation. International Workshop on Statistical Atlases and Computational Models of the Heart; Springer: Cham, Switzerland, 2017; pp. 130-139.
Paper not yet in RePEc: Add citation now
- Paul M.; Mayer C.; Gool L.V.; Timofte R. Efficient video semantic segmentation with labels propagation and refinement. Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020, ; pp. 2873-2882.
Paper not yet in RePEc: Add citation now
- Pfeuffer A.; Schulz K.; Dietmayer K. Semantic segmentation of video sequences with convolutional lstms. Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019, ; pp. 1441-1447.
Paper not yet in RePEc: Add citation now
- Ronneberger O.; Fischer P.; Brox T.U. Convolutional networks for biomedical image segmentation. Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015, .
Paper not yet in RePEc: Add citation now
- Roth H.R.; Oda H.; Zhou X.; Shimizu N.; Yang Y.; Hayashi Y.; Oda M.; Fujiwara M.; Misawa K.; Mori K. An application of cascaded 3D fully convolutional networks for medical image segmentation. Comput. Med. Imaging Graph. 2018, 66, 90-99.
Paper not yet in RePEc: Add citation now
- Simonyan K.; Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv 2014.
Paper not yet in RePEc: Add citation now
- Sun G.; Huang H.; Zhang A.; Li F.; Zhao H.; Fu H. Fusion of multiscale convolutional neural networks for building extraction in very high-resolution images. Remote Sens. 2019, 11.
Paper not yet in RePEc: Add citation now
- Szegedy C.; Ioffe S.; Vanhoucke V.; Alemi A. Inception-v4, inception-resnet and the impact of residual connections on learning. Proceedings of the Thirty-first AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 21–26 July 2017, .
Paper not yet in RePEc: Add citation now
- Szegedy C.; Liu W.; Jia Y.; Sermanet P.; Reed S.; Anguelov D.; Erhan D.; Vanhoucke V.; Rabinovich A. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015, ; pp. 1-9.
Paper not yet in RePEc: Add citation now
- Szegedy C.; Vanhoucke V.; Ioffe S.; Shlens J.; Wojna Z. Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016, ; pp. 2818-2826.
Paper not yet in RePEc: Add citation now
- Takikawa T.; Acuna D.; Jampani V.; Fidler S. Gated-scnn: Gated shape cnns for semantic segmentation. Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019, ; pp. 5229-5238.
Paper not yet in RePEc: Add citation now
- Tan M.; Le Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv 2019.
Paper not yet in RePEc: Add citation now
- Wu M.; Zhang C.; Liu J.; Zhou L.; Li X. Towards accurate high resolution satellite image semantic segmentation. IEEE Access 2019, 7, 55609-55619.
Paper not yet in RePEc: Add citation now
Xin-gang Z.; Zhen W. Technology, cost, economic performance of distributed photovoltaic industry in China. Renew. Sustain. Energy Rev. 2019, 110, 53-64.
Xu M.; Xie P.; Xie B.C. Study of China’s optimal solar photovoltaic power development path to 2050. Resour. Policy 2020, 65, 101541.
- Xu Y.; Wu L.; Xie Z.; Chen Z. Building extraction in very high resolution remote sensing imagery using deep learning and guided filters. Remote Sens. 2018, 10.
Paper not yet in RePEc: Add citation now
- Xu Y.; Xie Z.; Feng Y.; Chen Z. Road extraction from high-resolution remote sensing imagery using deep learning. Remote Sens. 2018, 10.
Paper not yet in RePEc: Add citation now
- Yang H.; Wu P.; Yao X.; Wu Y.; Wang B.; Xu Y. Building extraction in very high resolution imagery by dense-attention networks. Remote Sens. 2018, 10.
Paper not yet in RePEc: Add citation now
Yi T.; Tong L.; Qiu M.; Liu J. Analysis of Driving Factors of Photovoltaic Power Generation Efficiency: A Case Study in China. Energies 2019, 12.
- Yu L.; Wang Z.; Tian S.; Ye F.; Ding J.; Kong J. Convolutional neural networks for water body extraction from Landsat imagery. Int. J. Comput. Intell. Appl. 2017, 16, 1750001.
Paper not yet in RePEc: Add citation now
- Yuan J.; Yang H.H.L.; Omitaomu O.A.; Bhaduri B.L. Large-scale solar panel mapping from aerial images using deep convolutional networks. Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016, ; pp. 2703-2708.
Paper not yet in RePEc: Add citation now
- Zhang F.; Chen Y.; Li Z.; Hong Z.; Liu J.; Ma F.; Han J.; Ding E. Acfnet: Attentional class feature network for semantic segmentation. Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019, ; pp. 6798-6807.
Paper not yet in RePEc: Add citation now
- Zhou L.; Zhang C.; Wu M. D-LinkNet: LinkNet With Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction. Proceedings of the CVPR Workshops, Salt Lake City, UT, USA, 19–21 June 2018, ; pp. 182-186.
Paper not yet in RePEc: Add citation now
- Zhou Z.; Siddiquee MM R.; Tajbakhsh N.; Liang J. Unet++: A nested u-net architecture for medical image segmentation. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Cham, Switzerland, 2018; pp. 3-11.
Paper not yet in RePEc: Add citation now