create a website

Combined Multi-Layer Feature Fusion and Edge Detection Method for Distributed Photovoltaic Power Station Identification. (2020). Deng, Yupeng ; Jie, Yongshi ; Zhang, YI ; Chen, Jing ; Yue, Anzhi.
In: Energies.
RePEc:gam:jeners:v:13:y:2020:i:24:p:6742-:d:465673.

Full description at Econpapers || Download paper

Cited: 16

Citations received by this document

Cites: 67

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Detection of Photovoltaic Arrays in High-Spatial-Resolution Remote Sensing Images Using a Weight-Adaptive YOLO Model. (2025). Wang, Jiayun ; Qu, Zeng ; Yu, Hua ; Li, Jinsong ; Meng, Xiaokai ; Lu, Zhumao.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:8:p:1916-:d:1631364.

    Full description at Econpapers || Download paper

  2. Joint-task learning framework with scale adaptive and position guidance modules for improved household rooftop photovoltaic segmentation in remote sensing image. (2025). Lu, Ning ; Li, Liang ; Qin, Jun.
    In: Applied Energy.
    RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924019044.

    Full description at Econpapers || Download paper

  3. Development assessment of regional rooftop photovoltaics based on remote sensing and deep learning. (2024). Tan, Zekun ; Tian, Yajun ; Zhang, Xiaoqing ; Qi, Qingqing ; Tao, Kejun ; Zhao, Jinghao.
    In: Applied Energy.
    RePEc:eee:appene:v:375:y:2024:i:c:s0306261924015551.

    Full description at Econpapers || Download paper

  4. Remote-sensing extraction and carbon emission reduction benefit assessment for centralized photovoltaic power plants in Agrivoltaic systems. (2024). Chen, Weizhen ; Li, Penghan ; Xie, Lijian ; Deng, Jinsong ; Huang, Chenhao ; Wu, Yixuan ; Lin, YI ; Yang, WU.
    In: Applied Energy.
    RePEc:eee:appene:v:370:y:2024:i:c:s0306261924009681.

    Full description at Econpapers || Download paper

  5. Exploration of determinants underlying regional disparity in rooftop photovoltaic adoption: A case study in Nagoya, Japan. (2024). Huang, Xiaoxun ; Dem, Phub ; Tao, Linwei ; Hayashi, Kiichiro ; Shiraki, Hiroto.
    In: Applied Energy.
    RePEc:eee:appene:v:367:y:2024:i:c:s0306261924008523.

    Full description at Econpapers || Download paper

  6. Automated detection and tracking of photovoltaic modules from 3D remote sensing data. (2024). Jurado, Juan Manuel ; Ramos, Isabel M ; Jurado-Rodriguez, David ; Cardoso, Andressa ; Lopez, Alfonso.
    In: Applied Energy.
    RePEc:eee:appene:v:367:y:2024:i:c:s0306261924006251.

    Full description at Econpapers || Download paper

  7. PV Identifier: Extraction of small-scale distributed photovoltaics in complex environments from high spatial resolution remote sensing images. (2024). Lu, Ning ; Li, Liang ; Qin, Jun.
    In: Applied Energy.
    RePEc:eee:appene:v:365:y:2024:i:c:s0306261924006949.

    Full description at Econpapers || Download paper

  8. A New QFD-CE Method for Considering the Concept of Sustainable Development and Circular Economy. (2023). Siwiec, Dominika ; Pacana, Andrzej ; Gazda, Andrzej.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:5:p:2474-:d:1088284.

    Full description at Econpapers || Download paper

  9. Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images. (2023). Xiao, Yimin ; Chen, Xie ; Yu, Jinghua ; Deng, Jie ; Fan, Jianhua ; Mao, Hongzhi ; Tian, Zhiyong ; Luo, Yongqiang.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:179:y:2023:i:c:s1364032123001326.

    Full description at Econpapers || Download paper

  10. Remote sensing of photovoltaic scenarios: Techniques, applications and future directions. (2023). Zhang, Zhengjia ; Liu, Zhengguang ; Chen, QI ; Zhou, Chao ; Guo, Zhiling.
    In: Applied Energy.
    RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018360.

    Full description at Econpapers || Download paper

  11. Universal Model to Predict Expected Direction of Products Quality Improvement. (2022). Ostasz, Grzegorz ; Siwiec, Dominika ; Pacana, Andrzej.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:5:p:1751-:d:759624.

    Full description at Econpapers || Download paper

  12. Model to Predict Quality of Photovoltaic Panels Considering Customers’ Expectations. (2022). Siwiec, Dominika ; Pacana, Andrzej.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:3:p:1101-:d:740706.

    Full description at Econpapers || Download paper

  13. Model to Determine the Best Modifications of Products with Consideration Customers’ Expectations. (2022). Ostasz, Grzegorz ; Siwiec, Dominika ; Pacana, Andrzej.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:21:p:8102-:d:959008.

    Full description at Econpapers || Download paper

  14. GIS and Remote Sensing for Renewable Energy Assessment and Maps. (2021). Nezhad, Meysam Majidi ; Nastasi, Benedetto.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2021:i:1:p:14-:d:707486.

    Full description at Econpapers || Download paper

  15. Model of Choice Photovoltaic Panels Considering Customers’ Expectations. (2021). Siwiec, Dominika ; Pacana, Andrzej.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:18:p:5977-:d:639611.

    Full description at Econpapers || Download paper

  16. Remote Sensing for Monitoring Photovoltaic Solar Plants in Brazil Using Deep Semantic Segmentation. (2021). Trancoso, Roberto Arnaldo ; Guimares, Renato Fontes ; Ferreira, Osmar Luiz ; de Carvalho, Osmar Abilio ; Coelho, Marcus Vinicius ; Hirata, Issao ; Vilarinho, Felipe ; de Albuquerque, Anesmar Olino ; Orlandi, Alex Gois.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:10:p:2960-:d:558495.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Ahmed R.; Sreeram V.; Mishra Y.; Arif M.D. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792.

  2. Badrinarayanan V.; Kendall A.; Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481-2495.
    Paper not yet in RePEc: Add citation now
  3. Bradbury K.; Saboo R.; Johnson T.L.; Malof J.M.; Devarajan A.; Zhang W.; Collins L.M.; Newell R.G. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification. Sci. Data 2016, 3, 1-9.
    Paper not yet in RePEc: Add citation now
  4. Breiman L. Random forests. Mach. Learn. 2001, 45, 5-32.
    Paper not yet in RePEc: Add citation now
  5. Camilo J.; Wang R.; Collins L.M.; Bradbury K.; Malof J.M. Application of a semantic segmentation convolutional neural network for accurate automatic detection and mapping of solar photovoltaic arrays in aerial imagery. arXiv 2018.
    Paper not yet in RePEc: Add citation now
  6. Castello R.; Roquette S.; Esguerra M.; Guerra A.; Scartezzini J.L. Deep learning in the built environment: Automatic detection of rooftop solar panels using Convolutional Neural Networks. J. Phys. Conf. Ser. 2019, 1343, 012034.
    Paper not yet in RePEc: Add citation now
  7. Chaurasia A.; Culurciello E. Linknet: Exploiting encoder representations for efficient semantic segmentation. Proceedings of the 2017 IEEE Visual Communications and Image Processing (VCIP), St. Petersburg, Russia, 10–13 December 2017, ; pp. 1-4.
    Paper not yet in RePEc: Add citation now
  8. Chen Y.; Fan R.; Yang X.; Wang J.; Latif A. Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning. Water 2018, 10.
    Paper not yet in RePEc: Add citation now
  9. Cortes C.; Vapnik V. Support-vector networks. Mach. Learn. 1995, 20, 273-297.
    Paper not yet in RePEc: Add citation now
  10. Gao L.; Song W.; Dai J.; Chen Y. Road extraction from high-resolution remote sensing imagery using refined deep residual convolutional neural network. Remote Sens. 2019, 11.
    Paper not yet in RePEc: Add citation now
  11. Han M.; Xiong J.; Wang S.; Yang Y. Chinese photovoltaic poverty alleviation: Geographic distribution, economic benefits and emission mitigation. Energy Policy 2020, 144, 111685.

  12. He K.; Zhang X.; Ren S.; Sun J. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 4–9 February 2016, ; pp. 770-778.
    Paper not yet in RePEc: Add citation now
  13. Hesamian M.H.; Jia W.; He X.; Kennedy P. Deep learning techniques for medical image segmentation: Achievements and challenges. J. Digit. Imaging 2019, 32, 582-596.
    Paper not yet in RePEc: Add citation now
  14. Hu J.; Shen L.; Sun G. Squeeze-and-excitation networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018, ; pp. 7132-7141.
    Paper not yet in RePEc: Add citation now
  15. Huang G.; Liu Z.; Van Der Maaten L.; Weinberger K.Q. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 4–9 February 2017, ; pp. 4700-4708.
    Paper not yet in RePEc: Add citation now
  16. Huang J.; Zhang X.; Xin Q.; Sun Y.; Zhang P. Automatic building extraction from high-resolution aerial images and LiDAR data using gated residual refinement network. ISPRS J. Photogramm. Remote Sens. 2019, 151, 91-105.
    Paper not yet in RePEc: Add citation now
  17. Huang Z.; Wang X.; Huang L.; Huang C.; Wei Y.; Liu W. Ccnet: Criss-cross attention for semantic segmentation. Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019, ; pp. 603-612.
    Paper not yet in RePEc: Add citation now
  18. Ioffe S.; Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015.
    Paper not yet in RePEc: Add citation now
  19. Jain S.; Wang X.; Gonzalez J.E. Accel: A corrective fusion network for efficient semantic segmentation on video. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16-20 June 2019, ; pp. 8866-8875.
    Paper not yet in RePEc: Add citation now
  20. Jiang F.; Grigorev A.; Rho S.; Tian Z.; Fu Y.; Jifara W.; Adil K.; Liu S. Medical image semantic segmentation based on deep learning. Neural Comput. Appl. 2018, 29, 1257-1265.
    Paper not yet in RePEc: Add citation now
  21. Krizhevsky A.; Sutskever I.; Hinton G.E. Imagenet classification with deep convolutional neural networks. Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012, ; pp. 1097-1105.
    Paper not yet in RePEc: Add citation now
  22. LeCun Y.; Bengio Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 1995, 3361, 1995.
    Paper not yet in RePEc: Add citation now
  23. Li H.; Lin H.; Tan Q.; Wu P.; Wang C.; De G.; Huang L. Research on the policy route of China’s distributed photovoltaic power generation. Energy Rep. 2020, 6, 254-263.
    Paper not yet in RePEc: Add citation now
  24. Li L.; Yan Z.; Shen Q.; Cheng G.; Gao L.; Zhang B. Water body extraction from very high spatial resolution remote sensing data based on fully convolutional networks. Remote Sens. 2019, 11.
    Paper not yet in RePEc: Add citation now
  25. Li W.; Ren H.; Chen P.; Wang Y.; Qi H. Key Operational Issues on the Integration of Large-Scale Solar Power Generation—A Literature Review. Energies 2020, 13.
    Paper not yet in RePEc: Add citation now
  26. Li X.; Zhao H.; Han L.; Tong Y.; Yang K. Gff: Gated fully fusion for semantic segmentation. arXiv 2019.
    Paper not yet in RePEc: Add citation now
  27. Lin T.Y.; Dollár P.; Girshick R.; He K.; Hariharan B.; Belongie S. Feature pyramid networks for object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017, ; pp. 2117-2125.
    Paper not yet in RePEc: Add citation now
  28. Liu Y.; Chen K.; Liu C.; Qin Z.; Luo Z.; Wang J. Structured knowledge distillation for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019, ; pp. 2604-2613.
    Paper not yet in RePEc: Add citation now
  29. Long J.; Shelhamer E.; Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015, ; pp. 3431-3440.
    Paper not yet in RePEc: Add citation now
  30. Lv T.; Yang Q.; Deng X.; Xu J.; Gao J. Generation expansion planning considering the output and flexibility requirement of renewable energy: The case of Jiangsu Province. Front. Energy Res. 2020, 8, 39.
    Paper not yet in RePEc: Add citation now
  31. Malof J.M.; Bradbury K.; Collins L.M.; Newell R.G. Automatic detection of solar photovoltaic arrays in high resolution aerial imagery. Appl. Energy 2016, 183, 229-240.

  32. Malof J.M.; Collins L.M.; Bradbury K. A deep convolutional neural network, with pre-training, for solar photovoltaic array detection in aerial imagery. Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 22–28 July 2017, ; pp. 874-877.
    Paper not yet in RePEc: Add citation now
  33. Malof J.M.; Collins L.M.; Bradbury K.; Newell R.G. A deep convolutional neural network and a Random Forest classifier for solar photovoltaic array detection in aerial imagery. Proceedings of the 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Birmingham, UK, 20–23 November 2016, ; pp. 650-654.
    Paper not yet in RePEc: Add citation now
  34. Malof J.M.; Hou R.; Collins L.M.; Bradbury K.; Newell R. Automatic solar photovoltaic panel detection in satellite imagery. Proceedings of the 2015 International Conference on Renewable Energy Research and Applications (ICRERA), Palermo, Italy, 22–25 November 2015, ; pp. 1428-1431.
    Paper not yet in RePEc: Add citation now
  35. Malof J.M.; Li B.; Huang B.; Bradbury K.; Stretslov A. Mapping solar array location, size, and capacity using deep learning and overhead imagery. arXiv 2019.
    Paper not yet in RePEc: Add citation now
  36. Mancini F.; Nastasi B. Solar energy data analytics: PV deployment and land use. Energies 2020, 13.

  37. Manfren M.; Nastasi B.; Groppi D.; Garcia D.A. Open data and energy analytics-An analysis of essential information for energy system planning, design and operation. Energy 2020, 213, 118803.

  38. Matas J.; Chum O.; Urban M.; Pajdla T. Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 2004, 22, 761-767.
    Paper not yet in RePEc: Add citation now
  39. Milletari F.; Navab N.; Ahmadi S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016, ; pp. 565-571.
    Paper not yet in RePEc: Add citation now
  40. Moriarty P.; Honnery D. Feasibility of a 100% Global Renewable Energy System. Energies 2020, 13.

  41. Nassar Y.F.; Hafez A.A.; Alsadi S.Y. Multi-Factorial Comparison for 24 Distinct Transposition Models for Inclined Surface Solar Irradiance Computation in the State of Palestine: A Case Study. Front. Energy Res 2020, 7, 163.
    Paper not yet in RePEc: Add citation now
  42. Nastasi B.; de Santoli L.; Albo A.; Bruschi D.; Basso G.L. RES (Renewable Energy Sources) availability assessments for Eco-fuels production at local scale: Carbon avoidance costs associated to a hybrid biomass/H2NG-based energy scenario. Energy Procedia 2015, 81, 1069-1076.
    Paper not yet in RePEc: Add citation now
  43. Nekrasov V.; Chen H.; Shen C.; Reid I. Architecture search of dynamic cells for semantic video segmentation. Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020, ; pp. 1970-1979.
    Paper not yet in RePEc: Add citation now
  44. Patravali J.; Jain S.; Chilamkurthy S. 2D-3D fully convolutional neural networks for cardiac MR segmentation. International Workshop on Statistical Atlases and Computational Models of the Heart; Springer: Cham, Switzerland, 2017; pp. 130-139.
    Paper not yet in RePEc: Add citation now
  45. Paul M.; Mayer C.; Gool L.V.; Timofte R. Efficient video semantic segmentation with labels propagation and refinement. Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020, ; pp. 2873-2882.
    Paper not yet in RePEc: Add citation now
  46. Pfeuffer A.; Schulz K.; Dietmayer K. Semantic segmentation of video sequences with convolutional lstms. Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019, ; pp. 1441-1447.
    Paper not yet in RePEc: Add citation now
  47. Ronneberger O.; Fischer P.; Brox T.U. Convolutional networks for biomedical image segmentation. Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015, .
    Paper not yet in RePEc: Add citation now
  48. Roth H.R.; Oda H.; Zhou X.; Shimizu N.; Yang Y.; Hayashi Y.; Oda M.; Fujiwara M.; Misawa K.; Mori K. An application of cascaded 3D fully convolutional networks for medical image segmentation. Comput. Med. Imaging Graph. 2018, 66, 90-99.
    Paper not yet in RePEc: Add citation now
  49. Simonyan K.; Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv 2014.
    Paper not yet in RePEc: Add citation now
  50. Sun G.; Huang H.; Zhang A.; Li F.; Zhao H.; Fu H. Fusion of multiscale convolutional neural networks for building extraction in very high-resolution images. Remote Sens. 2019, 11.
    Paper not yet in RePEc: Add citation now
  51. Szegedy C.; Ioffe S.; Vanhoucke V.; Alemi A. Inception-v4, inception-resnet and the impact of residual connections on learning. Proceedings of the Thirty-first AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 21–26 July 2017, .
    Paper not yet in RePEc: Add citation now
  52. Szegedy C.; Liu W.; Jia Y.; Sermanet P.; Reed S.; Anguelov D.; Erhan D.; Vanhoucke V.; Rabinovich A. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015, ; pp. 1-9.
    Paper not yet in RePEc: Add citation now
  53. Szegedy C.; Vanhoucke V.; Ioffe S.; Shlens J.; Wojna Z. Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016, ; pp. 2818-2826.
    Paper not yet in RePEc: Add citation now
  54. Takikawa T.; Acuna D.; Jampani V.; Fidler S. Gated-scnn: Gated shape cnns for semantic segmentation. Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019, ; pp. 5229-5238.
    Paper not yet in RePEc: Add citation now
  55. Tan M.; Le Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv 2019.
    Paper not yet in RePEc: Add citation now
  56. Wu M.; Zhang C.; Liu J.; Zhou L.; Li X. Towards accurate high resolution satellite image semantic segmentation. IEEE Access 2019, 7, 55609-55619.
    Paper not yet in RePEc: Add citation now
  57. Xin-gang Z.; Zhen W. Technology, cost, economic performance of distributed photovoltaic industry in China. Renew. Sustain. Energy Rev. 2019, 110, 53-64.

  58. Xu M.; Xie P.; Xie B.C. Study of China’s optimal solar photovoltaic power development path to 2050. Resour. Policy 2020, 65, 101541.

  59. Xu Y.; Wu L.; Xie Z.; Chen Z. Building extraction in very high resolution remote sensing imagery using deep learning and guided filters. Remote Sens. 2018, 10.
    Paper not yet in RePEc: Add citation now
  60. Xu Y.; Xie Z.; Feng Y.; Chen Z. Road extraction from high-resolution remote sensing imagery using deep learning. Remote Sens. 2018, 10.
    Paper not yet in RePEc: Add citation now
  61. Yang H.; Wu P.; Yao X.; Wu Y.; Wang B.; Xu Y. Building extraction in very high resolution imagery by dense-attention networks. Remote Sens. 2018, 10.
    Paper not yet in RePEc: Add citation now
  62. Yi T.; Tong L.; Qiu M.; Liu J. Analysis of Driving Factors of Photovoltaic Power Generation Efficiency: A Case Study in China. Energies 2019, 12.

  63. Yu L.; Wang Z.; Tian S.; Ye F.; Ding J.; Kong J. Convolutional neural networks for water body extraction from Landsat imagery. Int. J. Comput. Intell. Appl. 2017, 16, 1750001.
    Paper not yet in RePEc: Add citation now
  64. Yuan J.; Yang H.H.L.; Omitaomu O.A.; Bhaduri B.L. Large-scale solar panel mapping from aerial images using deep convolutional networks. Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016, ; pp. 2703-2708.
    Paper not yet in RePEc: Add citation now
  65. Zhang F.; Chen Y.; Li Z.; Hong Z.; Liu J.; Ma F.; Han J.; Ding E. Acfnet: Attentional class feature network for semantic segmentation. Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019, ; pp. 6798-6807.
    Paper not yet in RePEc: Add citation now
  66. Zhou L.; Zhang C.; Wu M. D-LinkNet: LinkNet With Pretrained Encoder and Dilated Convolution for High Resolution Satellite Imagery Road Extraction. Proceedings of the CVPR Workshops, Salt Lake City, UT, USA, 19–21 June 2018, ; pp. 182-186.
    Paper not yet in RePEc: Add citation now
  67. Zhou Z.; Siddiquee MM R.; Tajbakhsh N.; Liang J. Unet++: A nested u-net architecture for medical image segmentation. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Cham, Switzerland, 2018; pp. 3-11.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting. (2022). Son, Yongju ; Yoon, Yeunggurl ; Choi, Sungyun.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:8:p:4427-:d:789392.

    Full description at Econpapers || Download paper

  2. Parameter Evaluation in Motion Estimation for Forecasting Multiple Photovoltaic Power Generation. (2022). Kameda, Yusuke ; Kure, Taiki ; Kondoh, Junji ; Yamamoto, Hiroki ; Tsuchiya, Haruka Danil ; Kodaira, Daisuke.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:8:p:2855-:d:793339.

    Full description at Econpapers || Download paper

  3. Advanced Forecasting Methods of 5-Minute Power Generation in a PV System for Microgrid Operation Control. (2022). Kapler, Piotr ; Piotrowski, Pawe ; Parol, Mirosaw ; Fetliski, Bartosz.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:7:p:2645-:d:786857.

    Full description at Econpapers || Download paper

  4. Robust Scheduling of Networked Microgrids for Economics and Resilience Improvement. (2022). Ollis, Thomas B ; Ferrari, Maximiliano F ; Tomsovic, Kevin ; Liu, Guodong ; Sundararajan, Aditya.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:6:p:2249-:d:774811.

    Full description at Econpapers || Download paper

  5. Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. (2022). Mayer, Martin Janos ; Markovics, David.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:161:y:2022:i:c:s136403212200274x.

    Full description at Econpapers || Download paper

  6. A review of behind-the-meter solar forecasting. (2022). Doubleday, Kate ; Feng, Cong ; Erdener, Burcin Cakir ; Hodge, Bri-Mathias ; Florita, Anthony.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:160:y:2022:i:c:s1364032122001472.

    Full description at Econpapers || Download paper

  7. Analysis of data errors in the solar photovoltaic monitoring system database: An overview of nationwide power plants in Korea. (2022). Cha, Suk-Won ; Choi, Jongwoo ; Lee, Il-Woo.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:156:y:2022:i:c:s1364032121012703.

    Full description at Econpapers || Download paper

  8. The uncertainties involved in measuring national solar photovoltaic electricity generation. (2022). Tilley, K ; Taylor, J ; Harwood, J ; Briggs, J ; Everard, A ; Buckley, A ; Huxley, O T.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:156:y:2022:i:c:s1364032121012636.

    Full description at Econpapers || Download paper

  9. A review of very short-term wind and solar power forecasting. (2022). Tawn, R ; Browell, J.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:153:y:2022:i:c:s1364032121010285.

    Full description at Econpapers || Download paper

  10. Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM. (2022). Tai, Yonghang ; Huang, Xiaoqiao ; Liu, Wuming ; Shi, Junsheng ; Chen, Zaiqing.
    In: Energy.
    RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003061.

    Full description at Econpapers || Download paper

  11. Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach. (2022). Zeiler, Wim ; Khan, Waqas ; Walker, Shalika.
    In: Energy.
    RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030619.

    Full description at Econpapers || Download paper

  12. Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification. (2022). Sun, Yunlin ; Wang, Xiaoyang ; Peng, Jinqing ; Luo, Duo.
    In: Energy.
    RePEc:eee:energy:v:240:y:2022:i:c:s0360544221029820.

    Full description at Econpapers || Download paper

  13. Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control. (2022). Vasquez, Juan C ; Guerrero, Josep M ; Rodriguez, Fermin ; Galarza, Ainhoa.
    In: Energy.
    RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023641.

    Full description at Econpapers || Download paper

  14. Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?. (2022). Zhao, Zhongchao ; Ding, Lili ; Wang, Lei.
    In: Applied Energy.
    RePEc:eee:appene:v:312:y:2022:i:c:s0306261922002100.

    Full description at Econpapers || Download paper

  15. Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm. (2022). Li, Zhiwu ; Zhou, Yilin ; Wang, Jianzhou.
    In: Applied Energy.
    RePEc:eee:appene:v:312:y:2022:i:c:s0306261922001830.

    Full description at Econpapers || Download paper

  16. An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting. (2022). Lens, Hendrik ; Mitrentsis, Georgios.
    In: Applied Energy.
    RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016950.

    Full description at Econpapers || Download paper

  17. Novel machine learning approach for solar photovoltaic energy output forecast using extra-terrestrial solar irradiance. (2022). Cai, Zuansi ; Fjelkestam, Cornelia A.
    In: Applied Energy.
    RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921014276.

    Full description at Econpapers || Download paper

  18. Hybrid Forecasting Methodology for Wind Power-Photovoltaic-Concentrating Solar Power Generation Clustered Renewable Energy Systems. (2021). Zheng, Zixuan ; Xiao, Xianyong ; Pang, Simian ; Xu, Lanlan ; Luo, Fan.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:12:p:6681-:d:573715.

    Full description at Econpapers || Download paper

  19. Comparison and Explanation of Forecasting Algorithms for Energy Time Series. (2021). Zhang, Yuyi ; Liu, Xiuxiu ; Ma, Ruimin ; Petrosian, Ovanes ; Krinkin, Kirill.
    In: Mathematics.
    RePEc:gam:jmathe:v:9:y:2021:i:21:p:2794-:d:671887.

    Full description at Econpapers || Download paper

  20. Hour-Ahead Photovoltaic Output Forecasting Using Wavelet-ANFIS. (2021). Chang, Yu-Ming ; Tan, Shih-Wei ; Ouedraogo, Faouzi Brice ; Larasati, Devita Ayu ; Chen, Chao-Rong.
    In: Mathematics.
    RePEc:gam:jmathe:v:9:y:2021:i:19:p:2438-:d:648136.

    Full description at Econpapers || Download paper

  21. A Probabilistic Ensemble Prediction Method for PV Power in the Nonstationary Period. (2021). An, Yuan ; Shi, Xiaoyu ; Jia, Rong ; Huang, Qiang ; Zhang, Kai ; Dang, Kaikai.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:4:p:859-:d:495015.

    Full description at Econpapers || Download paper

  22. Exploitation of a New Short-Term Multimodel Photovoltaic Power Forecasting Method in the Very Short-Term Horizon to Derive a Multi-Time Scale Forecasting System. (2021). Collino, Elena ; Ronzio, Dario.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:3:p:789-:d:491908.

    Full description at Econpapers || Download paper

  23. Improving Forecast Reliability for Geographically Distributed Photovoltaic Generations. (2021). Kure, Taiki ; Tsukazaki, Kazuki ; Kondoh, Junji ; Kodaira, Daisuke.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:21:p:7340-:d:672260.

    Full description at Econpapers || Download paper

  24. Short-Term Deterministic Solar Irradiance Forecasting Considering a Heuristics-Based, Operational Approach. (2021). Escobar, Rodrigo ; Boland, John ; Castillejo-Cuberos, Armando.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:18:p:6005-:d:640192.

    Full description at Econpapers || Download paper

  25. Prediction of Solar Power Using Near-Real Time Satellite Data. (2021). Kay, Merlinde ; Prasad, Abhnil Amtesh.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:18:p:5865-:d:636858.

    Full description at Econpapers || Download paper

  26. Probabilistic Forecasting of Wind and Solar Farm Output. (2021). Farah, Sleiman ; Boland, John.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:16:p:5154-:d:618439.

    Full description at Econpapers || Download paper

  27. A Comparison of the Performance of Supervised Learning Algorithms for Solar Power Prediction. (2021). Gutierrez, Leidy ; Patio, Julian ; Duque-Grisales, Eduardo.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:15:p:4424-:d:599316.

    Full description at Econpapers || Download paper

  28. A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting. (2021). Thil, Stephane ; Grieu, Stephane ; Gbemou, Shab ; Eynard, Julien ; Guillot, Emmanuel.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:11:p:3192-:d:565352.

    Full description at Econpapers || Download paper

  29. Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system. (2021). Cheng, Ziming ; Shuai, Yong ; Yang, Luwei ; Liang, Huaxu ; Tan, Heping ; Wang, Fuqiang.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000800.

    Full description at Econpapers || Download paper

  30. State-of-the-art short-term electricity market operation with solar generation: A review. (2021). Wang, Jessie ; Li, Z ; Fang, X ; Yin, S.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:138:y:2021:i:c:s136403212030931x.

    Full description at Econpapers || Download paper

  31. Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks. (2021). Nwokolo, Samuel Chukwujindu ; Bailek, Nadjem ; Hassan, Muhammed A ; Bouchouicha, Kada.
    In: Renewable Energy.
    RePEc:eee:renene:v:171:y:2021:i:c:p:191-209.

    Full description at Econpapers || Download paper

  32. Hybrid deep neural model for hourly solar irradiance forecasting. (2021). Huang, Xiaoqiao ; Liu, Wuming ; Zhang, Jun ; Shi, Junsheng ; Gao, Bixuan ; Chen, Zaiqing ; Tai, Yonghang.
    In: Renewable Energy.
    RePEc:eee:renene:v:171:y:2021:i:c:p:1041-1060.

    Full description at Econpapers || Download paper

  33. Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants. (2021). Vasallo, Manuel Jesus ; Gegundez, Manuel Emilio ; Cojocaru, Emilian Gelu ; Marin, Diego.
    In: Mathematics and Computers in Simulation (MATCOM).
    RePEc:eee:matcom:v:190:y:2021:i:c:p:1130-1149.

    Full description at Econpapers || Download paper

  34. Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern. (2021). Qian, Zheng ; Pei, Yan ; Qu, Jiaqi.
    In: Energy.
    RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012445.

    Full description at Econpapers || Download paper

  35. Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming. (2021). Liu, Zhe ; Wu, Zening ; Wang, Xinqi ; Yuan, Wenlin ; Cheng, Chuntian ; Su, Chengguo.
    In: Energy.
    RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002450.

    Full description at Econpapers || Download paper

  36. Probability density forecasts for steam coal prices in China: The role of high-frequency factors. (2021). Zhao, Zhongchao ; Han, Meng ; Ding, Lili.
    In: Energy.
    RePEc:eee:energy:v:220:y:2021:i:c:s0360544221000074.

    Full description at Econpapers || Download paper

  37. Combining CFD and artificial neural network techniques to predict the thermal performance of all-glass straight evacuated tube solar collector. (2021). Lund, Peter D ; Wang, Jun ; Du, Bin.
    In: Energy.
    RePEc:eee:energy:v:220:y:2021:i:c:s0360544220328206.

    Full description at Econpapers || Download paper

  38. Probabilistic real-time deep-water natural gas hydrate dispersion modeling by using a novel hybrid deep learning approach. (2021). Zhu, Yuan ; Li, Junjie ; Shi, Jihao ; Chen, Guoming ; Yang, Dongdong ; Usmani, Asif Sohail.
    In: Energy.
    RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326797.

    Full description at Econpapers || Download paper

  39. SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting. (2021). Korkmaz, Deniz.
    In: Applied Energy.
    RePEc:eee:appene:v:300:y:2021:i:c:s0306261921008072.

    Full description at Econpapers || Download paper

  40. Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance. (2021). Trapero, Juan R ; Pedregal, Diego J.
    In: Applied Energy.
    RePEc:eee:appene:v:298:y:2021:i:c:s0306261921005882.

    Full description at Econpapers || Download paper

  41. Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data. (2021). Ajith, Meenu ; Martinez-Ramon, Manel.
    In: Applied Energy.
    RePEc:eee:appene:v:294:y:2021:i:c:s0306261921004803.

    Full description at Econpapers || Download paper

  42. Lifetime improvement for wind power generation system based on optimal effectiveness of thermal management. (2021). Du, Xiong ; Zhang, Jun ; Qian, Cheng.
    In: Applied Energy.
    RePEc:eee:appene:v:286:y:2021:i:c:s0306261921000416.

    Full description at Econpapers || Download paper

  43. Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour. (2021). Strauss, J M ; Rix, A J ; du Plessis, A A.
    In: Applied Energy.
    RePEc:eee:appene:v:285:y:2021:i:c:s0306261920317657.

    Full description at Econpapers || Download paper

  44. Extensive comparison of physical models for photovoltaic power forecasting. (2021). Mayer, Martin Janos ; Grof, Gyula.
    In: Applied Energy.
    RePEc:eee:appene:v:283:y:2021:i:c:s0306261920316330.

    Full description at Econpapers || Download paper

  45. What drives the accuracy of PV output forecasts?. (2021). Nguyen, Thi Ngoc ; Musgens, Felix.
    In: Papers.
    RePEc:arx:papers:2111.02092.

    Full description at Econpapers || Download paper

  46. Combined Multi-Layer Feature Fusion and Edge Detection Method for Distributed Photovoltaic Power Station Identification. (2020). Deng, Yupeng ; Jie, Yongshi ; Zhang, YI ; Chen, Jing ; Yue, Anzhi.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:24:p:6742-:d:465673.

    Full description at Econpapers || Download paper

  47. Reliability Predictors for Solar Irradiance Satellite-Based Forecast. (2020). Cros, Sylvain ; Haeffelin, Martial ; Badosa, Jordi ; Szantai, Andre.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:21:p:5566-:d:433975.

    Full description at Econpapers || Download paper

  48. Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies. (2020). Tola, Vittorio ; Petrollese, Mario ; Oyekale, Joseph ; Cau, Giorgio.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:18:p:4856-:d:414596.

    Full description at Econpapers || Download paper

  49. Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling. (2020). Lie, Tek Tjing ; Zamora, Ramon ; Mohammad, Asaad.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:17:p:4541-:d:407570.

    Full description at Econpapers || Download paper

  50. Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications. (2020). Dong, Z Y ; Begum, R A ; Ker, Pin Jern ; Faisal, M ; Hannan, M A ; Zhang, C.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:131:y:2020:i:c:s1364032120303130.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-21 15:20:19 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.