create a website

Hybrid Forecasting Methodology for Wind Power-Photovoltaic-Concentrating Solar Power Generation Clustered Renewable Energy Systems. (2021). Zheng, Zixuan ; Xiao, Xianyong ; Pang, Simian ; Xu, Lanlan ; Luo, Fan.
In: Sustainability.
RePEc:gam:jsusta:v:13:y:2021:i:12:p:6681-:d:573715.

Full description at Econpapers || Download paper

Cited: 3

Citations received by this document

Cites: 32

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence. (2023). Cyrino, Fernando Luiz ; Marques, Andre Luis ; Iung, Anderson Mitterhofer.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:3:p:1013-:d:1038118.

    Full description at Econpapers || Download paper

  2. Numerical study on energy conversion characteristics of molten salt pump based on energy transport theory. (2022). Jin, Yongxin ; Shen, XI ; Song, Wenwu ; Shi, Lei ; Lu, Jiaxing ; Zhang, Desheng.
    In: Energy.
    RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221029236.

    Full description at Econpapers || Download paper

  3. An Improved Approach to Enhance Training Performance of ANN and the Prediction of PV Power for Any Time-Span without the Presence of Real-Time Weather Data. (2021). Salam, Zainal ; Alharbi, Walied ; Bhattacharya, Kankar ; Awan, Ahmed Bilal ; Bhatti, Abdul Rauf ; Bin, Abdullah S.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:21:p:11893-:d:666278.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Ahmed R.; Sreeram V.; Mishra Y.; Arif M.D. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renew. Sust. Energ. Rev. 2020, 124, 109792.

  2. Chapagain K.; Kittipiyakul S.; Kulthanavit P. Short-Term Electricity Demand Forecasting: Impact Analysis of Temperature for Thailand. Energies 2020, 13.

  3. Chen R.; Sun H.; Guo Q.; Li Z.; Deng T.; Wu W.; Zhang B. Reducing generation uncertainty by integrating CSP with wind power: An adaptive robust optimization-based analysis. IEEE Trans. Sustain. Energy 2015, 6, 583-594.
    Paper not yet in RePEc: Add citation now
  4. Croonenbroeck C.; Stadtmann G. Renewable generation forecast studies-Review and good practice guidance. Renew. Sust. Energ. Rev. 2019, 108, 312-322.

  5. Ding Y. Data Science for Wind Energy; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2019.
    Paper not yet in RePEc: Add citation now
  6. Du E.; Zhang N.; Hodge B.; Kang C.; Kroposki B.; Xia Q. Economic justification of concentrating solar power in high renewable energy penetrated power systems. Appl. Energy 2018, 222, 649-661.

  7. Du E.; Zhang N.; Hodge B.; Wang Q.; Kang C.; Kroposki B.; Xia Q. The role of concentrating solar power towards high renewable energy penetrated power systems. IEEE Trans. Power Syst. 2018, 33, 6630-6641.
    Paper not yet in RePEc: Add citation now
  8. Feng L.; Zhang J.; Li G.; Zhang B. Cost reduction of a hybrid energy storage system considering correlation between wind and PV power. PCMP 2016, 1, 11.
    Paper not yet in RePEc: Add citation now
  9. Gao M.; Li J.; Hong F.; Long D. Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM. Energy 2019, 187, 115838.

  10. Han S.; Qiao Y.H.; Yan J.; Liu Y.Q.; Li L.; Wang Z. Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network. Appl. Energy 2019, 239, 181-191.

  11. Heydari A.; Garcia D.A.; Keynia F.; Bisegna F.; De Santoli L. A novel composite neural network based method for wind and solar power forecasting in microgrids. Appl. Energy 2019, 251, 113353.

  12. Hippert H.S.; Pedreira C.E.; Souza R.C. Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans. Power Syst. 2001, 16, 44-55.
    Paper not yet in RePEc: Add citation now
  13. Hochreiter S.; Schmidhuber J. Long short-term memory. Neural. Comput. 1997, 9, 1735-1780.
    Paper not yet in RePEc: Add citation now
  14. Hong T.; Wang P. Fuzzy interaction regression for short term load forecasting. Fuzzy Opt. Decis. Mak. 2014, 13, 91-103.
    Paper not yet in RePEc: Add citation now
  15. Islam M.T.; Huda N.; Abdullah A.B.; Saidur R. A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends. Renew. Sust. Energ. Rev. 2018, 91, 987-1018.

  16. Khare V.; Nema S.; Baredar P. Solar–wind hybrid renewable energy system: A review. Renew. Sust. Energ. Rev. 2016, 58, 23-33.
    Paper not yet in RePEc: Add citation now
  17. Kong W.C.; Dong Z.Y.; Jia Y.W.; Hill D.J.; Xu Y.; Zhang Y. Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network. IEEE Trans. Smart Grid 2019, 10, 841-851.
    Paper not yet in RePEc: Add citation now
  18. Li F.; Li C.; Sun K.; Zhang J.; Li H. Capacity configuration of hybrid CSP/PV plant for economical application of solar energy. Proc. CSEE 2020, 6, 19-29.
    Paper not yet in RePEc: Add citation now
  19. Liu W.F.; Zhu F.L.; Zhao T.T.; Wang H.; Lei X.H.; Zhong P.A.; Fthenakis V. Optimal stochastic scheduling of hydropower-based compensation for combined wind and photovoltaic power outputs. Appl. Energy 2020, 276, 115501.

  20. Liu Z.; Jiang P.; Zhang L.; Niu X. A combined forecasting model for time series: Application to short-term wind speed forecasting. Appl. Energy 2020, 259, 114137.

  21. Miglietta M.M.; Huld T.; Monforti-Ferrario F. Local complementarity of wind and solar energy resources over Europe: An assessment study from a meteorological perspective. J. Appl. Meteorol. Climatol. 2017, 56, 217-234.
    Paper not yet in RePEc: Add citation now
  22. Monforti F.; Huld T.; Bódis K.; Vitali L.; D'Isidoro M.; Lacal-Arántegui R. Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach. Renew. Energy 2014, 63, 576-586.

  23. Notton G.; Nivet M.L.; Voyant C.; Paoli C.; Darras C.; Motte F.; Fouilloy A. Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renew. Sust. Energ. Rev. 2018, 87, 96-105.

  24. Rahman M.M.; Shakeri M.; Tiong S.K.; Khatun F.; Amin N.; Pasupuleti J.; Hasan M.K. Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks. Sustainability 2021, 13.

  25. Sanjari M.J.; Gooi H.B.; Nair N. Power Generation Forecast of Hybrid PV-Wind System. IEEE Trans. Sustain. Energy 2019, 11, 703-712.
    Paper not yet in RePEc: Add citation now
  26. Sharifzadeh M.; Sikinioti-Lock A.; Shah N. Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression. Renew. Sust. Energ. Rev. 2019, 108, 513-538.

  27. Sun M.C.; Feng C.; Zhang J. Conditional aggregated probabilistic wind power forecasting based on spatio-temporal correlation. Appl. Energy 2019, 256, 113842.

  28. Wang H.Z.; Li G.Q.; Wang G.B.; Peng J.C.; Jiang H.; Liu Y.T. Deep learning based ensemble approach for probabilistic wind power forecasting. Appl. Energy 2017, 188, 56-70.

  29. Wang Y.; Feng B.; Hua Q.-S.; Sun L. Short-Term Solar Power Forecasting: A Combined Long Short-Term Memory and Gaussian Process Regression Method. Sustainability 2021, 13.

  30. Xu T.; Zhang N. Coordinated Operation of Concentrated Solar Power and Wind Resources for the Provision of Energy and Reserve Services. IEEE Trans. Power Syst. 2016, 2, 1260-1271.
    Paper not yet in RePEc: Add citation now
  31. Zeineb A.; Rashid A.M.A.; Adel G. Review of policies encouraging renewable energy integration & best practices. Renew. Sust. Energ. Rev. 2015, 45, 249-262.
    Paper not yet in RePEc: Add citation now
  32. Zheng Z.W.; Chen Y.Y.; Huo M.M.; Zhao B. An Overview: The Development of Prediction Technology of Wind and Photovoltaic Power Generation. Energy Procedia 2011, 12, 601-608.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting. (2022). Son, Yongju ; Yoon, Yeunggurl ; Choi, Sungyun.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:8:p:4427-:d:789392.

    Full description at Econpapers || Download paper

  2. Parameter Evaluation in Motion Estimation for Forecasting Multiple Photovoltaic Power Generation. (2022). Kameda, Yusuke ; Kure, Taiki ; Kondoh, Junji ; Yamamoto, Hiroki ; Tsuchiya, Haruka Danil ; Kodaira, Daisuke.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:8:p:2855-:d:793339.

    Full description at Econpapers || Download paper

  3. Advanced Forecasting Methods of 5-Minute Power Generation in a PV System for Microgrid Operation Control. (2022). Kapler, Piotr ; Piotrowski, Pawe ; Parol, Mirosaw ; Fetliski, Bartosz.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:7:p:2645-:d:786857.

    Full description at Econpapers || Download paper

  4. Robust Scheduling of Networked Microgrids for Economics and Resilience Improvement. (2022). Ollis, Thomas B ; Ferrari, Maximiliano F ; Tomsovic, Kevin ; Liu, Guodong ; Sundararajan, Aditya.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:6:p:2249-:d:774811.

    Full description at Econpapers || Download paper

  5. Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. (2022). Mayer, Martin Janos ; Markovics, David.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:161:y:2022:i:c:s136403212200274x.

    Full description at Econpapers || Download paper

  6. A review of behind-the-meter solar forecasting. (2022). Doubleday, Kate ; Feng, Cong ; Erdener, Burcin Cakir ; Hodge, Bri-Mathias ; Florita, Anthony.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:160:y:2022:i:c:s1364032122001472.

    Full description at Econpapers || Download paper

  7. Analysis of data errors in the solar photovoltaic monitoring system database: An overview of nationwide power plants in Korea. (2022). Cha, Suk-Won ; Choi, Jongwoo ; Lee, Il-Woo.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:156:y:2022:i:c:s1364032121012703.

    Full description at Econpapers || Download paper

  8. The uncertainties involved in measuring national solar photovoltaic electricity generation. (2022). Tilley, K ; Taylor, J ; Harwood, J ; Briggs, J ; Everard, A ; Buckley, A ; Huxley, O T.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:156:y:2022:i:c:s1364032121012636.

    Full description at Econpapers || Download paper

  9. A review of very short-term wind and solar power forecasting. (2022). Tawn, R ; Browell, J.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:153:y:2022:i:c:s1364032121010285.

    Full description at Econpapers || Download paper

  10. Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM. (2022). Tai, Yonghang ; Huang, Xiaoqiao ; Liu, Wuming ; Shi, Junsheng ; Chen, Zaiqing.
    In: Energy.
    RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003061.

    Full description at Econpapers || Download paper

  11. Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach. (2022). Zeiler, Wim ; Khan, Waqas ; Walker, Shalika.
    In: Energy.
    RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030619.

    Full description at Econpapers || Download paper

  12. Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification. (2022). Sun, Yunlin ; Wang, Xiaoyang ; Peng, Jinqing ; Luo, Duo.
    In: Energy.
    RePEc:eee:energy:v:240:y:2022:i:c:s0360544221029820.

    Full description at Econpapers || Download paper

  13. Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control. (2022). Vasquez, Juan C ; Guerrero, Josep M ; Rodriguez, Fermin ; Galarza, Ainhoa.
    In: Energy.
    RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023641.

    Full description at Econpapers || Download paper

  14. Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?. (2022). Zhao, Zhongchao ; Ding, Lili ; Wang, Lei.
    In: Applied Energy.
    RePEc:eee:appene:v:312:y:2022:i:c:s0306261922002100.

    Full description at Econpapers || Download paper

  15. Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm. (2022). Li, Zhiwu ; Zhou, Yilin ; Wang, Jianzhou.
    In: Applied Energy.
    RePEc:eee:appene:v:312:y:2022:i:c:s0306261922001830.

    Full description at Econpapers || Download paper

  16. An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting. (2022). Lens, Hendrik ; Mitrentsis, Georgios.
    In: Applied Energy.
    RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016950.

    Full description at Econpapers || Download paper

  17. Novel machine learning approach for solar photovoltaic energy output forecast using extra-terrestrial solar irradiance. (2022). Cai, Zuansi ; Fjelkestam, Cornelia A.
    In: Applied Energy.
    RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921014276.

    Full description at Econpapers || Download paper

  18. Hybrid Forecasting Methodology for Wind Power-Photovoltaic-Concentrating Solar Power Generation Clustered Renewable Energy Systems. (2021). Zheng, Zixuan ; Xiao, Xianyong ; Pang, Simian ; Xu, Lanlan ; Luo, Fan.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:12:p:6681-:d:573715.

    Full description at Econpapers || Download paper

  19. Comparison and Explanation of Forecasting Algorithms for Energy Time Series. (2021). Zhang, Yuyi ; Liu, Xiuxiu ; Ma, Ruimin ; Petrosian, Ovanes ; Krinkin, Kirill.
    In: Mathematics.
    RePEc:gam:jmathe:v:9:y:2021:i:21:p:2794-:d:671887.

    Full description at Econpapers || Download paper

  20. Hour-Ahead Photovoltaic Output Forecasting Using Wavelet-ANFIS. (2021). Chang, Yu-Ming ; Tan, Shih-Wei ; Ouedraogo, Faouzi Brice ; Larasati, Devita Ayu ; Chen, Chao-Rong.
    In: Mathematics.
    RePEc:gam:jmathe:v:9:y:2021:i:19:p:2438-:d:648136.

    Full description at Econpapers || Download paper

  21. A Probabilistic Ensemble Prediction Method for PV Power in the Nonstationary Period. (2021). An, Yuan ; Shi, Xiaoyu ; Jia, Rong ; Huang, Qiang ; Zhang, Kai ; Dang, Kaikai.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:4:p:859-:d:495015.

    Full description at Econpapers || Download paper

  22. Exploitation of a New Short-Term Multimodel Photovoltaic Power Forecasting Method in the Very Short-Term Horizon to Derive a Multi-Time Scale Forecasting System. (2021). Collino, Elena ; Ronzio, Dario.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:3:p:789-:d:491908.

    Full description at Econpapers || Download paper

  23. Improving Forecast Reliability for Geographically Distributed Photovoltaic Generations. (2021). Kure, Taiki ; Tsukazaki, Kazuki ; Kondoh, Junji ; Kodaira, Daisuke.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:21:p:7340-:d:672260.

    Full description at Econpapers || Download paper

  24. Short-Term Deterministic Solar Irradiance Forecasting Considering a Heuristics-Based, Operational Approach. (2021). Escobar, Rodrigo ; Boland, John ; Castillejo-Cuberos, Armando.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:18:p:6005-:d:640192.

    Full description at Econpapers || Download paper

  25. Prediction of Solar Power Using Near-Real Time Satellite Data. (2021). Kay, Merlinde ; Prasad, Abhnil Amtesh.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:18:p:5865-:d:636858.

    Full description at Econpapers || Download paper

  26. Probabilistic Forecasting of Wind and Solar Farm Output. (2021). Farah, Sleiman ; Boland, John.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:16:p:5154-:d:618439.

    Full description at Econpapers || Download paper

  27. A Comparison of the Performance of Supervised Learning Algorithms for Solar Power Prediction. (2021). Gutierrez, Leidy ; Patio, Julian ; Duque-Grisales, Eduardo.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:15:p:4424-:d:599316.

    Full description at Econpapers || Download paper

  28. A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting. (2021). Thil, Stephane ; Grieu, Stephane ; Gbemou, Shab ; Eynard, Julien ; Guillot, Emmanuel.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:11:p:3192-:d:565352.

    Full description at Econpapers || Download paper

  29. Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system. (2021). Cheng, Ziming ; Shuai, Yong ; Yang, Luwei ; Liang, Huaxu ; Tan, Heping ; Wang, Fuqiang.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000800.

    Full description at Econpapers || Download paper

  30. State-of-the-art short-term electricity market operation with solar generation: A review. (2021). Wang, Jessie ; Li, Z ; Fang, X ; Yin, S.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:138:y:2021:i:c:s136403212030931x.

    Full description at Econpapers || Download paper

  31. Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks. (2021). Nwokolo, Samuel Chukwujindu ; Bailek, Nadjem ; Hassan, Muhammed A ; Bouchouicha, Kada.
    In: Renewable Energy.
    RePEc:eee:renene:v:171:y:2021:i:c:p:191-209.

    Full description at Econpapers || Download paper

  32. Hybrid deep neural model for hourly solar irradiance forecasting. (2021). Huang, Xiaoqiao ; Liu, Wuming ; Zhang, Jun ; Shi, Junsheng ; Gao, Bixuan ; Chen, Zaiqing ; Tai, Yonghang.
    In: Renewable Energy.
    RePEc:eee:renene:v:171:y:2021:i:c:p:1041-1060.

    Full description at Econpapers || Download paper

  33. Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants. (2021). Vasallo, Manuel Jesus ; Gegundez, Manuel Emilio ; Cojocaru, Emilian Gelu ; Marin, Diego.
    In: Mathematics and Computers in Simulation (MATCOM).
    RePEc:eee:matcom:v:190:y:2021:i:c:p:1130-1149.

    Full description at Econpapers || Download paper

  34. Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern. (2021). Qian, Zheng ; Pei, Yan ; Qu, Jiaqi.
    In: Energy.
    RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012445.

    Full description at Econpapers || Download paper

  35. Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming. (2021). Liu, Zhe ; Wu, Zening ; Wang, Xinqi ; Yuan, Wenlin ; Cheng, Chuntian ; Su, Chengguo.
    In: Energy.
    RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002450.

    Full description at Econpapers || Download paper

  36. Probability density forecasts for steam coal prices in China: The role of high-frequency factors. (2021). Zhao, Zhongchao ; Han, Meng ; Ding, Lili.
    In: Energy.
    RePEc:eee:energy:v:220:y:2021:i:c:s0360544221000074.

    Full description at Econpapers || Download paper

  37. Combining CFD and artificial neural network techniques to predict the thermal performance of all-glass straight evacuated tube solar collector. (2021). Lund, Peter D ; Wang, Jun ; Du, Bin.
    In: Energy.
    RePEc:eee:energy:v:220:y:2021:i:c:s0360544220328206.

    Full description at Econpapers || Download paper

  38. Probabilistic real-time deep-water natural gas hydrate dispersion modeling by using a novel hybrid deep learning approach. (2021). Zhu, Yuan ; Li, Junjie ; Shi, Jihao ; Chen, Guoming ; Yang, Dongdong ; Usmani, Asif Sohail.
    In: Energy.
    RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326797.

    Full description at Econpapers || Download paper

  39. SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting. (2021). Korkmaz, Deniz.
    In: Applied Energy.
    RePEc:eee:appene:v:300:y:2021:i:c:s0306261921008072.

    Full description at Econpapers || Download paper

  40. Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance. (2021). Trapero, Juan R ; Pedregal, Diego J.
    In: Applied Energy.
    RePEc:eee:appene:v:298:y:2021:i:c:s0306261921005882.

    Full description at Econpapers || Download paper

  41. Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data. (2021). Ajith, Meenu ; Martinez-Ramon, Manel.
    In: Applied Energy.
    RePEc:eee:appene:v:294:y:2021:i:c:s0306261921004803.

    Full description at Econpapers || Download paper

  42. Lifetime improvement for wind power generation system based on optimal effectiveness of thermal management. (2021). Du, Xiong ; Zhang, Jun ; Qian, Cheng.
    In: Applied Energy.
    RePEc:eee:appene:v:286:y:2021:i:c:s0306261921000416.

    Full description at Econpapers || Download paper

  43. Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour. (2021). Strauss, J M ; Rix, A J ; du Plessis, A A.
    In: Applied Energy.
    RePEc:eee:appene:v:285:y:2021:i:c:s0306261920317657.

    Full description at Econpapers || Download paper

  44. Extensive comparison of physical models for photovoltaic power forecasting. (2021). Mayer, Martin Janos ; Grof, Gyula.
    In: Applied Energy.
    RePEc:eee:appene:v:283:y:2021:i:c:s0306261920316330.

    Full description at Econpapers || Download paper

  45. What drives the accuracy of PV output forecasts?. (2021). Nguyen, Thi Ngoc ; Musgens, Felix.
    In: Papers.
    RePEc:arx:papers:2111.02092.

    Full description at Econpapers || Download paper

  46. Combined Multi-Layer Feature Fusion and Edge Detection Method for Distributed Photovoltaic Power Station Identification. (2020). Deng, Yupeng ; Jie, Yongshi ; Zhang, YI ; Chen, Jing ; Yue, Anzhi.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:24:p:6742-:d:465673.

    Full description at Econpapers || Download paper

  47. Reliability Predictors for Solar Irradiance Satellite-Based Forecast. (2020). Cros, Sylvain ; Haeffelin, Martial ; Badosa, Jordi ; Szantai, Andre.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:21:p:5566-:d:433975.

    Full description at Econpapers || Download paper

  48. Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies. (2020). Tola, Vittorio ; Petrollese, Mario ; Oyekale, Joseph ; Cau, Giorgio.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:18:p:4856-:d:414596.

    Full description at Econpapers || Download paper

  49. Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling. (2020). Lie, Tek Tjing ; Zamora, Ramon ; Mohammad, Asaad.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:17:p:4541-:d:407570.

    Full description at Econpapers || Download paper

  50. Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications. (2020). Dong, Z Y ; Begum, R A ; Ker, Pin Jern ; Faisal, M ; Hannan, M A ; Zhang, C.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:131:y:2020:i:c:s1364032120303130.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-25 11:21:47 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.