Ahmed R.; Sreeram V.; Mishra Y.; Arif M.D. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renew. Sust. Energ. Rev. 2020, 124, 109792.
Chapagain K.; Kittipiyakul S.; Kulthanavit P. Short-Term Electricity Demand Forecasting: Impact Analysis of Temperature for Thailand. Energies 2020, 13.
- Chen R.; Sun H.; Guo Q.; Li Z.; Deng T.; Wu W.; Zhang B. Reducing generation uncertainty by integrating CSP with wind power: An adaptive robust optimization-based analysis. IEEE Trans. Sustain. Energy 2015, 6, 583-594.
Paper not yet in RePEc: Add citation now
Croonenbroeck C.; Stadtmann G. Renewable generation forecast studies-Review and good practice guidance. Renew. Sust. Energ. Rev. 2019, 108, 312-322.
- Ding Y. Data Science for Wind Energy; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2019.
Paper not yet in RePEc: Add citation now
Du E.; Zhang N.; Hodge B.; Kang C.; Kroposki B.; Xia Q. Economic justification of concentrating solar power in high renewable energy penetrated power systems. Appl. Energy 2018, 222, 649-661.
- Du E.; Zhang N.; Hodge B.; Wang Q.; Kang C.; Kroposki B.; Xia Q. The role of concentrating solar power towards high renewable energy penetrated power systems. IEEE Trans. Power Syst. 2018, 33, 6630-6641.
Paper not yet in RePEc: Add citation now
- Feng L.; Zhang J.; Li G.; Zhang B. Cost reduction of a hybrid energy storage system considering correlation between wind and PV power. PCMP 2016, 1, 11.
Paper not yet in RePEc: Add citation now
Gao M.; Li J.; Hong F.; Long D. Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM. Energy 2019, 187, 115838.
Han S.; Qiao Y.H.; Yan J.; Liu Y.Q.; Li L.; Wang Z. Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network. Appl. Energy 2019, 239, 181-191.
Heydari A.; Garcia D.A.; Keynia F.; Bisegna F.; De Santoli L. A novel composite neural network based method for wind and solar power forecasting in microgrids. Appl. Energy 2019, 251, 113353.
- Hippert H.S.; Pedreira C.E.; Souza R.C. Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans. Power Syst. 2001, 16, 44-55.
Paper not yet in RePEc: Add citation now
- Hochreiter S.; Schmidhuber J. Long short-term memory. Neural. Comput. 1997, 9, 1735-1780.
Paper not yet in RePEc: Add citation now
- Hong T.; Wang P. Fuzzy interaction regression for short term load forecasting. Fuzzy Opt. Decis. Mak. 2014, 13, 91-103.
Paper not yet in RePEc: Add citation now
Islam M.T.; Huda N.; Abdullah A.B.; Saidur R. A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends. Renew. Sust. Energ. Rev. 2018, 91, 987-1018.
- Khare V.; Nema S.; Baredar P. Solar–wind hybrid renewable energy system: A review. Renew. Sust. Energ. Rev. 2016, 58, 23-33.
Paper not yet in RePEc: Add citation now
- Kong W.C.; Dong Z.Y.; Jia Y.W.; Hill D.J.; Xu Y.; Zhang Y. Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network. IEEE Trans. Smart Grid 2019, 10, 841-851.
Paper not yet in RePEc: Add citation now
- Li F.; Li C.; Sun K.; Zhang J.; Li H. Capacity configuration of hybrid CSP/PV plant for economical application of solar energy. Proc. CSEE 2020, 6, 19-29.
Paper not yet in RePEc: Add citation now
Liu W.F.; Zhu F.L.; Zhao T.T.; Wang H.; Lei X.H.; Zhong P.A.; Fthenakis V. Optimal stochastic scheduling of hydropower-based compensation for combined wind and photovoltaic power outputs. Appl. Energy 2020, 276, 115501.
Liu Z.; Jiang P.; Zhang L.; Niu X. A combined forecasting model for time series: Application to short-term wind speed forecasting. Appl. Energy 2020, 259, 114137.
- Miglietta M.M.; Huld T.; Monforti-Ferrario F. Local complementarity of wind and solar energy resources over Europe: An assessment study from a meteorological perspective. J. Appl. Meteorol. Climatol. 2017, 56, 217-234.
Paper not yet in RePEc: Add citation now
Monforti F.; Huld T.; Bódis K.; Vitali L.; D'Isidoro M.; Lacal-Arántegui R. Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach. Renew. Energy 2014, 63, 576-586.
Notton G.; Nivet M.L.; Voyant C.; Paoli C.; Darras C.; Motte F.; Fouilloy A. Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renew. Sust. Energ. Rev. 2018, 87, 96-105.
Rahman M.M.; Shakeri M.; Tiong S.K.; Khatun F.; Amin N.; Pasupuleti J.; Hasan M.K. Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks. Sustainability 2021, 13.
- Sanjari M.J.; Gooi H.B.; Nair N. Power Generation Forecast of Hybrid PV-Wind System. IEEE Trans. Sustain. Energy 2019, 11, 703-712.
Paper not yet in RePEc: Add citation now
Sharifzadeh M.; Sikinioti-Lock A.; Shah N. Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression. Renew. Sust. Energ. Rev. 2019, 108, 513-538.
Sun M.C.; Feng C.; Zhang J. Conditional aggregated probabilistic wind power forecasting based on spatio-temporal correlation. Appl. Energy 2019, 256, 113842.
Wang H.Z.; Li G.Q.; Wang G.B.; Peng J.C.; Jiang H.; Liu Y.T. Deep learning based ensemble approach for probabilistic wind power forecasting. Appl. Energy 2017, 188, 56-70.
Wang Y.; Feng B.; Hua Q.-S.; Sun L. Short-Term Solar Power Forecasting: A Combined Long Short-Term Memory and Gaussian Process Regression Method. Sustainability 2021, 13.
- Xu T.; Zhang N. Coordinated Operation of Concentrated Solar Power and Wind Resources for the Provision of Energy and Reserve Services. IEEE Trans. Power Syst. 2016, 2, 1260-1271.
Paper not yet in RePEc: Add citation now
- Zeineb A.; Rashid A.M.A.; Adel G. Review of policies encouraging renewable energy integration & best practices. Renew. Sust. Energ. Rev. 2015, 45, 249-262.
Paper not yet in RePEc: Add citation now
- Zheng Z.W.; Chen Y.Y.; Huo M.M.; Zhao B. An Overview: The Development of Prediction Technology of Wind and Photovoltaic Power Generation. Energy Procedia 2011, 12, 601-608.
Paper not yet in RePEc: Add citation now