- Acikgoz, H.; Yildiz, C.; Sekkeli, M. An extreme learning machine based very short-term wind power forecasting method for complex terrain. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 2715â2730. [CrossRef]
Paper not yet in RePEc: Add citation now
- Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40â79. [CrossRef]
Paper not yet in RePEc: Add citation now
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281â305.
Paper not yet in RePEc: Add citation now
- Bilgen, S.; Kaygusuz, K.; Sari, A. Renewable energy for a clean and sustainable future. Energy Sources 2004, 26, 1119â1129. [CrossRef]
Paper not yet in RePEc: Add citation now
- Carta, J.A.; Ramirez, P.; Velazquez, S. A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands. Renew. Sustain. Energy Rev. 2009, 13, 933â955. [CrossRef]
Paper not yet in RePEc: Add citation now
- Chandran, V.; Patil, C.K.; Merline Manoharan, A.; Ghosh, A.; Sumithra, M.G.; Karthick, A.; Rahim, R.; Arun, K. Wind Power Forecasting Based on Time Series Model Using Deep Machine Learning Algorithms. Mater. Today 2021, 47, 115â126. [CrossRef]
Paper not yet in RePEc: Add citation now
- Chen, H.; Xianfa, C. Photovoltaic power prediction of LSTM model based on Pearson feature selection. Energy Rep. 2021, 7, 1047â1054. [CrossRef]
Paper not yet in RePEc: Add citation now
- Cui, M.; Zhang, J.; Wang, Q.; Krishnan, V.; Hodge, B.-M. A data-driven methodology for probabilistic wind power ramp forecasting. IEEE Trans. Smart Grid 2019, 10, 1326â1338. [CrossRef]
Paper not yet in RePEc: Add citation now
- Demir-Kavuk, O.; Kamada, M.; Akutsu, T.; Knapp, E.W. Prediction using step-wise L1, L2 regularization and feature selection for small data sets with large number of features. BMC Bioinform. 2011, 12, 412. [CrossRef]
Paper not yet in RePEc: Add citation now
- Eikeland, O.F.; Hovem, F.D.; Olsen, T.E.; Chiesa, M.; Bianchi, F.M. Probabilistic forecasts of wind power generation in regions with complex topography using deep learning methods: An Arctic case. Energy Convers. Manag. X 2022, 15, 100239. [CrossRef]
Paper not yet in RePEc: Add citation now
- Eseye, A.T.; Lehtonen, M.; Tukia, T.; Uimonen, S.; Millar, R.J. Machine Learning Based Integrated Feature Selection Approach for Improved Electricity Demand Forecasting in Decentralized Energy Systems. IEEE Access 2019, 7, 91463â91475. [CrossRef]
Paper not yet in RePEc: Add citation now
- Eskandari, A.; Nedaei, A.; Milimonfared, J.; Aghaei, M. A multilayer integrative approach for diagnosis, classification and severity detection of electrical faults in photovoltaic arrays. Expert Syst. Appl. 2024, 252, 124111. [CrossRef]
Paper not yet in RePEc: Add citation now
- Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind power generation. Renew. Energy 2012, 37, 1â8. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ghadimi, N.; Akbarimajd, A.; Shayeghi, H.; Abedinia, O. Application of a New Hybrid Forecast Engine with Feature Selection Algorithm in a Power System. Int. J. Ambient Energy 2019, 40, 494â503. [CrossRef]
Paper not yet in RePEc: Add citation now
- Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Networks Learn. Syst. 2016, 28, 2222â2232. [CrossRef]
Paper not yet in RePEc: Add citation now
Khandakar, A.; Chowdhury, M.E.H.; Kazi, M.K.; Benhmed, K.; Touati, F.; Al-Hitmi, M.; Gonzales, A.J.S.P. Machine Learning Based Photovoltaics (PV) Power Prediction Using Different Environmental Parameters of Qatar. Energies 2019, 12, 2782. [CrossRef]
- Kong, X.; Zhang, G.; Liu, Y.; Liang, Y.; Kang, H.; Huang, Z. Wind speed prediction using reduced support vector machines with feature selection. Neurocomputing 2015, 169, 449â456. [CrossRef]
Paper not yet in RePEc: Add citation now
- Konstantinou, T.; Hatziargyriou, N. Regional wind power forecasting based on Bayesian feature selection. IEEE Trans. Power Syst. 2024, 1â12. . [CrossRef]
Paper not yet in RePEc: Add citation now
- Kurbatskii, V.G.; Sidorov, D.N.; Spiryaev, V.A.; Shramkov, A.A. On the neural network approach for forecasting of nonstationary time series on the basis of the Hilbert-Huang transform. Autom. Remote Control 2011, 72, 1405â1414. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kutlug Sahin, E.; Ipbuker, C.; Kavzoglu, T. Investigation of automatic feature weighting methods (Fisher, Chi-square and Relief-F) for landslide susceptibility mapping. Geocarto Int. 2017, 32, 956â977. [CrossRef]
Paper not yet in RePEc: Add citation now
- Li, J.; Geng, D.; Zhang, P.; Meng, X.; Liang, Z.; Fan, G. Ultra-Short Term Wind Power Forecasting Based on LSTM Neural Network. In Proceedings of the 2019 IEEE 3rd International Electrical and Energy Conference (CIEEC), Beijing, China, 7â9 September 2019; pp. 1815â1818. [CrossRef] Energies 2024, 17, 5431 22 of 22
Paper not yet in RePEc: Add citation now
- Li, L.L.; Zhao, X.; Tseng, M.L.; Tan, R.R. Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm. J. Clean. Prod. 2020, 242, 118447. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, F.; Li, R.; Dreglea, A. Wind speed and power ultra short-term robust forecasting based on TakagiâSugeno fuzzy model. Energies 2019, 12, 3551. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, H.; Setiono, R. Incremental feature selection. Appl. Intell. 1998, 9, 217â230. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, X.; Zhang, H.; Kong, X.; Lee, K.Y. Wind speed forecasting using deep neural network with feature selection. Neurocomputing 2020, 397, 393â403. [CrossRef]
Paper not yet in RePEc: Add citation now
- Makarovskikh, T.; Abotaleb, M.; Albadran, Z.; Ramadhan, A.J. Hyper-parameter tuning for the long short-term memory algorithm. AIP Conf. Proc. 2023, 2977, 020097. [CrossRef]
Paper not yet in RePEc: Add citation now
- Manwell, J.F.; McCowan, J.G.; Rogers, A.L. Wind energy explained: Theory, design and application. Wind. Eng. 2006, 30, 169.
Paper not yet in RePEc: Add citation now
- Meteorological Data Provided by the Italian Air ForceâAreonautica Militare, 2023. Data Collected by the Italian Air Force and Made Available to the Public. Available online: https://www.meteoam.it/it/home (accessed on 12 April 2024).
Paper not yet in RePEc: Add citation now
- Natarajan, V.; Karatampati, P. Survey on renewable energy forecasting using different techniques. In Proceedings of 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC), Chennai, India, 21â23 August 2019; pp. 349â354. [CrossRef]
Paper not yet in RePEc: Add citation now
- Omer, Z.M.; Shareef, H. Comparison of Decision Tree based Ensemble Methods for Prediction of Photovoltaic Maximum Current. Energy Convers. Manag. X 2022, 16, 100333. [CrossRef]
Paper not yet in RePEc: Add citation now
Osorio, G.J.; Matias, J.C.O.; Catalao, J.P.S. Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew. Energy 2015, 75, 301â307. [CrossRef]
- Ozkan, M.B.; Pinar, K. Data mining-based upscaling approach for regional wind power forecasting: Regional statistical hybrid wind power forecast technique (RegionalSHWIP). IEEE Access 2019, 7, 171790â171800. [CrossRef]
Paper not yet in RePEc: Add citation now
- Pei, M.; Ye, L.; Li, Y.; Luo, Y.; Song, X.; Yu, Y.; Zhao, Y. Short-term regional wind power forecasting based on spatialâtemporal correlation and dynamic clustering model. Energy Rep. 2022, 8, 10786â10802. [CrossRef]
Paper not yet in RePEc: Add citation now
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226â1238. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ren, Y.; Zhou, X.; Liu, J.; Xie, Y.; Li, J. A two-stage fuzzy nonlinear combination method for utmost-short-term wind speed prediction based on TS fuzzy model. J. Renew. Sustain. Energy 2023, 15, 0123456. [CrossRef]
Paper not yet in RePEc: Add citation now
Sabadus, A.; Blaga, R.; Hategan, S.-M.; Calinoiu, D.; Paulescu, E.; Mares, O.; Boata, R.; Stefu, N.; Paulescu, M.; Badescu, V. A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches. Renew. Energy 2024, 226, 120385. [CrossRef]
- Saeys, Y.; Inza, I.; Larrañaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23, 2507â2517. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Schmidhuber, J.; Hochreiter, S. Long Short-Term Memory. Neural Comput. 1997, 9, 1735â1780.
Paper not yet in RePEc: Add citation now
- Shahzad, U. The Need For Renewable Energy Sources. ITEE J. Need Renew. Energy Sources 2012, 2, 1â12.
Paper not yet in RePEc: Add citation now
- Shao, H.; Xing, D.; Yingtao, J. A novel deep learning approach for short-term wind power forecasting based on infinite feature selection and recurrent neural network. J. Renew. Sustain. Energy 2018, 10, 043303. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sharifai, G.A.; Zainol, Z. Feature selection for high-dimensional and imbalanced biomedical data based on robust correlation based redundancy and binary grasshopper optimization algorithm. Genes 2020, 11, 717. [CrossRef] Disclaimer/Publisherâs Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Paper not yet in RePEc: Add citation now
- Sun, H.; Ye, C.; Wan, C.; Yao, H.; Zhang, K. Data-Driven Day-ahead Probabilistic Forecasting of Wind Power Based on Features Sensitivity Analysis and Meteorological Scenario Classification. In Proceedings of the 2023 IEEE Power & Energy Society General Meeting (PESGM), Orlando, FL, USA, 16â20 July 2023; pp. 1â5. [CrossRef]
Paper not yet in RePEc: Add citation now
- Transparency Platform of European Network of Transmission System Operators for Electricity, 2023. European Network of Transmission System Operators for Electricity. Available online: https://transparency.entsoe.eu/ (accessed on 12 April 2024).
Paper not yet in RePEc: Add citation now
- Varma, S.; Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 2006, 7, 91. [CrossRef]
Paper not yet in RePEc: Add citation now
- Viet, D.T.; Phuong, V.V.; Duong, M.Q.; Tran, Q.T. Models for Short-Term Wind Power Forecasting Based on Improved Artificial Neural Network Using Particle Swarm Optimization and Genetic Algorithms. Energies 2020, 13, 2873. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, Z.; Weisheng, W.; Bo, W. Regional wind power forecasting model with NWP grid data optimized. Front. Energy 2017, 7, 175â183. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wharton, S.; Julie, K.L. Assessing atmospheric stability and its impacts on rotor-disk wind characteristics at an onshore wind farm. Wind Energy 2012, 15, 525â546. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yang, Y.; Lou, H.; Wu, J.; Zhang, S.; Gao, S. A survey on wind power forecasting with machine learning approaches. Neural Comput. Appl. 2024, 36, 12753â12773. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yu, Y.X.; Yang, M.; Han, X.S.; Zhang, Y.M.; Ye, P.F. A Regional Wind Power Probabilistic Forecast Method Based on Deep Quantile Regression. IEEE Trans. Ind. Appl. 2021, 57, 4420â4427. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, Y.; Wang, J.; Wang, X. Review on probabilistic forecasting of wind power generation. Renew. Sustain. Energy Rev. 2014, 32, 255â270. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhao, Z.; Yun, S.; Jia, L.; Guo, J.; Meng, Y.; He, N.; Li, X.; Shi, J.; Yang, L. Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features. Eng. Appl. Artif. Intell. 2023, 121, 105982. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zheng, J.; Niu, Z.; Han, X.; Wu, Y.; Cui, X. Short-Term Wind Power Forecasting Based on Two-Stage Feature Selection. In Proceedings of the 2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE), Guangzhou, China, 12â14 May 2023; pp. 1181â1186. [CrossRef]
Paper not yet in RePEc: Add citation now