create a website

Enhancing Regional Wind Power Forecasting through Advanced Machine-Learning and Feature-Selection Techniques. (2024). Tucci, Mauro ; Taheri, Nabi.
In: Energies.
RePEc:gam:jeners:v:17:y:2024:i:21:p:5431-:d:1510663.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 52

References cited by this document

Cocites: 30

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Acikgoz, H.; Yildiz, C.; Sekkeli, M. An extreme learning machine based very short-term wind power forecasting method for complex terrain. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 2715–2730. [CrossRef]
    Paper not yet in RePEc: Add citation now
  2. Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40–79. [CrossRef]
    Paper not yet in RePEc: Add citation now
  3. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
    Paper not yet in RePEc: Add citation now
  4. Bilgen, S.; Kaygusuz, K.; Sari, A. Renewable energy for a clean and sustainable future. Energy Sources 2004, 26, 1119–1129. [CrossRef]
    Paper not yet in RePEc: Add citation now
  5. Carta, J.A.; Ramirez, P.; Velazquez, S. A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands. Renew. Sustain. Energy Rev. 2009, 13, 933–955. [CrossRef]
    Paper not yet in RePEc: Add citation now
  6. Chandran, V.; Patil, C.K.; Merline Manoharan, A.; Ghosh, A.; Sumithra, M.G.; Karthick, A.; Rahim, R.; Arun, K. Wind Power Forecasting Based on Time Series Model Using Deep Machine Learning Algorithms. Mater. Today 2021, 47, 115–126. [CrossRef]
    Paper not yet in RePEc: Add citation now
  7. Chen, H.; Xianfa, C. Photovoltaic power prediction of LSTM model based on Pearson feature selection. Energy Rep. 2021, 7, 1047–1054. [CrossRef]
    Paper not yet in RePEc: Add citation now
  8. Cui, M.; Zhang, J.; Wang, Q.; Krishnan, V.; Hodge, B.-M. A data-driven methodology for probabilistic wind power ramp forecasting. IEEE Trans. Smart Grid 2019, 10, 1326–1338. [CrossRef]
    Paper not yet in RePEc: Add citation now
  9. Demir-Kavuk, O.; Kamada, M.; Akutsu, T.; Knapp, E.W. Prediction using step-wise L1, L2 regularization and feature selection for small data sets with large number of features. BMC Bioinform. 2011, 12, 412. [CrossRef]
    Paper not yet in RePEc: Add citation now
  10. Eikeland, O.F.; Hovem, F.D.; Olsen, T.E.; Chiesa, M.; Bianchi, F.M. Probabilistic forecasts of wind power generation in regions with complex topography using deep learning methods: An Arctic case. Energy Convers. Manag. X 2022, 15, 100239. [CrossRef]
    Paper not yet in RePEc: Add citation now
  11. Eseye, A.T.; Lehtonen, M.; Tukia, T.; Uimonen, S.; Millar, R.J. Machine Learning Based Integrated Feature Selection Approach for Improved Electricity Demand Forecasting in Decentralized Energy Systems. IEEE Access 2019, 7, 91463–91475. [CrossRef]
    Paper not yet in RePEc: Add citation now
  12. Eskandari, A.; Nedaei, A.; Milimonfared, J.; Aghaei, M. A multilayer integrative approach for diagnosis, classification and severity detection of electrical faults in photovoltaic arrays. Expert Syst. Appl. 2024, 252, 124111. [CrossRef]
    Paper not yet in RePEc: Add citation now
  13. Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind power generation. Renew. Energy 2012, 37, 1–8. [CrossRef]
    Paper not yet in RePEc: Add citation now
  14. Ghadimi, N.; Akbarimajd, A.; Shayeghi, H.; Abedinia, O. Application of a New Hybrid Forecast Engine with Feature Selection Algorithm in a Power System. Int. J. Ambient Energy 2019, 40, 494–503. [CrossRef]
    Paper not yet in RePEc: Add citation now
  15. Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Networks Learn. Syst. 2016, 28, 2222–2232. [CrossRef]
    Paper not yet in RePEc: Add citation now
  16. Khandakar, A.; Chowdhury, M.E.H.; Kazi, M.K.; Benhmed, K.; Touati, F.; Al-Hitmi, M.; Gonzales, A.J.S.P. Machine Learning Based Photovoltaics (PV) Power Prediction Using Different Environmental Parameters of Qatar. Energies 2019, 12, 2782. [CrossRef]

  17. Kong, X.; Zhang, G.; Liu, Y.; Liang, Y.; Kang, H.; Huang, Z. Wind speed prediction using reduced support vector machines with feature selection. Neurocomputing 2015, 169, 449–456. [CrossRef]
    Paper not yet in RePEc: Add citation now
  18. Konstantinou, T.; Hatziargyriou, N. Regional wind power forecasting based on Bayesian feature selection. IEEE Trans. Power Syst. 2024, 1–12. . [CrossRef]
    Paper not yet in RePEc: Add citation now
  19. Kurbatskii, V.G.; Sidorov, D.N.; Spiryaev, V.A.; Shramkov, A.A. On the neural network approach for forecasting of nonstationary time series on the basis of the Hilbert-Huang transform. Autom. Remote Control 2011, 72, 1405–1414. [CrossRef]
    Paper not yet in RePEc: Add citation now
  20. Kutlug Sahin, E.; Ipbuker, C.; Kavzoglu, T. Investigation of automatic feature weighting methods (Fisher, Chi-square and Relief-F) for landslide susceptibility mapping. Geocarto Int. 2017, 32, 956–977. [CrossRef]
    Paper not yet in RePEc: Add citation now
  21. Li, J.; Geng, D.; Zhang, P.; Meng, X.; Liang, Z.; Fan, G. Ultra-Short Term Wind Power Forecasting Based on LSTM Neural Network. In Proceedings of the 2019 IEEE 3rd International Electrical and Energy Conference (CIEEC), Beijing, China, 7–9 September 2019; pp. 1815–1818. [CrossRef] Energies 2024, 17, 5431 22 of 22
    Paper not yet in RePEc: Add citation now
  22. Li, L.L.; Zhao, X.; Tseng, M.L.; Tan, R.R. Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm. J. Clean. Prod. 2020, 242, 118447. [CrossRef]
    Paper not yet in RePEc: Add citation now
  23. Liu, F.; Li, R.; Dreglea, A. Wind speed and power ultra short-term robust forecasting based on Takagi–Sugeno fuzzy model. Energies 2019, 12, 3551. [CrossRef]
    Paper not yet in RePEc: Add citation now
  24. Liu, H.; Setiono, R. Incremental feature selection. Appl. Intell. 1998, 9, 217–230. [CrossRef]
    Paper not yet in RePEc: Add citation now
  25. Liu, X.; Zhang, H.; Kong, X.; Lee, K.Y. Wind speed forecasting using deep neural network with feature selection. Neurocomputing 2020, 397, 393–403. [CrossRef]
    Paper not yet in RePEc: Add citation now
  26. Makarovskikh, T.; Abotaleb, M.; Albadran, Z.; Ramadhan, A.J. Hyper-parameter tuning for the long short-term memory algorithm. AIP Conf. Proc. 2023, 2977, 020097. [CrossRef]
    Paper not yet in RePEc: Add citation now
  27. Manwell, J.F.; McCowan, J.G.; Rogers, A.L. Wind energy explained: Theory, design and application. Wind. Eng. 2006, 30, 169.
    Paper not yet in RePEc: Add citation now
  28. Meteorological Data Provided by the Italian Air Force—Areonautica Militare, 2023. Data Collected by the Italian Air Force and Made Available to the Public. Available online: https://www.meteoam.it/it/home (accessed on 12 April 2024).
    Paper not yet in RePEc: Add citation now
  29. Natarajan, V.; Karatampati, P. Survey on renewable energy forecasting using different techniques. In Proceedings of 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC), Chennai, India, 21–23 August 2019; pp. 349–354. [CrossRef]
    Paper not yet in RePEc: Add citation now
  30. Omer, Z.M.; Shareef, H. Comparison of Decision Tree based Ensemble Methods for Prediction of Photovoltaic Maximum Current. Energy Convers. Manag. X 2022, 16, 100333. [CrossRef]
    Paper not yet in RePEc: Add citation now
  31. Osorio, G.J.; Matias, J.C.O.; Catalao, J.P.S. Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew. Energy 2015, 75, 301–307. [CrossRef]

  32. Ozkan, M.B.; Pinar, K. Data mining-based upscaling approach for regional wind power forecasting: Regional statistical hybrid wind power forecast technique (RegionalSHWIP). IEEE Access 2019, 7, 171790–171800. [CrossRef]
    Paper not yet in RePEc: Add citation now
  33. Pei, M.; Ye, L.; Li, Y.; Luo, Y.; Song, X.; Yu, Y.; Zhao, Y. Short-term regional wind power forecasting based on spatial–temporal correlation and dynamic clustering model. Energy Rep. 2022, 8, 10786–10802. [CrossRef]
    Paper not yet in RePEc: Add citation now
  34. Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [CrossRef]
    Paper not yet in RePEc: Add citation now
  35. Ren, Y.; Zhou, X.; Liu, J.; Xie, Y.; Li, J. A two-stage fuzzy nonlinear combination method for utmost-short-term wind speed prediction based on TS fuzzy model. J. Renew. Sustain. Energy 2023, 15, 0123456. [CrossRef]
    Paper not yet in RePEc: Add citation now
  36. Sabadus, A.; Blaga, R.; Hategan, S.-M.; Calinoiu, D.; Paulescu, E.; Mares, O.; Boata, R.; Stefu, N.; Paulescu, M.; Badescu, V. A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches. Renew. Energy 2024, 226, 120385. [CrossRef]

  37. Saeys, Y.; Inza, I.; Larrañaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23, 2507–2517. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  38. Schmidhuber, J.; Hochreiter, S. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780.
    Paper not yet in RePEc: Add citation now
  39. Shahzad, U. The Need For Renewable Energy Sources. ITEE J. Need Renew. Energy Sources 2012, 2, 1–12.
    Paper not yet in RePEc: Add citation now
  40. Shao, H.; Xing, D.; Yingtao, J. A novel deep learning approach for short-term wind power forecasting based on infinite feature selection and recurrent neural network. J. Renew. Sustain. Energy 2018, 10, 043303. [CrossRef]
    Paper not yet in RePEc: Add citation now
  41. Sharifai, G.A.; Zainol, Z. Feature selection for high-dimensional and imbalanced biomedical data based on robust correlation based redundancy and binary grasshopper optimization algorithm. Genes 2020, 11, 717. [CrossRef] Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
    Paper not yet in RePEc: Add citation now
  42. Sun, H.; Ye, C.; Wan, C.; Yao, H.; Zhang, K. Data-Driven Day-ahead Probabilistic Forecasting of Wind Power Based on Features Sensitivity Analysis and Meteorological Scenario Classification. In Proceedings of the 2023 IEEE Power & Energy Society General Meeting (PESGM), Orlando, FL, USA, 16–20 July 2023; pp. 1–5. [CrossRef]
    Paper not yet in RePEc: Add citation now
  43. Transparency Platform of European Network of Transmission System Operators for Electricity, 2023. European Network of Transmission System Operators for Electricity. Available online: https://transparency.entsoe.eu/ (accessed on 12 April 2024).
    Paper not yet in RePEc: Add citation now
  44. Varma, S.; Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 2006, 7, 91. [CrossRef]
    Paper not yet in RePEc: Add citation now
  45. Viet, D.T.; Phuong, V.V.; Duong, M.Q.; Tran, Q.T. Models for Short-Term Wind Power Forecasting Based on Improved Artificial Neural Network Using Particle Swarm Optimization and Genetic Algorithms. Energies 2020, 13, 2873. [CrossRef]
    Paper not yet in RePEc: Add citation now
  46. Wang, Z.; Weisheng, W.; Bo, W. Regional wind power forecasting model with NWP grid data optimized. Front. Energy 2017, 7, 175–183. [CrossRef]
    Paper not yet in RePEc: Add citation now
  47. Wharton, S.; Julie, K.L. Assessing atmospheric stability and its impacts on rotor-disk wind characteristics at an onshore wind farm. Wind Energy 2012, 15, 525–546. [CrossRef]
    Paper not yet in RePEc: Add citation now
  48. Yang, Y.; Lou, H.; Wu, J.; Zhang, S.; Gao, S. A survey on wind power forecasting with machine learning approaches. Neural Comput. Appl. 2024, 36, 12753–12773. [CrossRef]
    Paper not yet in RePEc: Add citation now
  49. Yu, Y.X.; Yang, M.; Han, X.S.; Zhang, Y.M.; Ye, P.F. A Regional Wind Power Probabilistic Forecast Method Based on Deep Quantile Regression. IEEE Trans. Ind. Appl. 2021, 57, 4420–4427. [CrossRef]
    Paper not yet in RePEc: Add citation now
  50. Zhang, Y.; Wang, J.; Wang, X. Review on probabilistic forecasting of wind power generation. Renew. Sustain. Energy Rev. 2014, 32, 255–270. [CrossRef]
    Paper not yet in RePEc: Add citation now
  51. Zhao, Z.; Yun, S.; Jia, L.; Guo, J.; Meng, Y.; He, N.; Li, X.; Shi, J.; Yang, L. Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features. Eng. Appl. Artif. Intell. 2023, 121, 105982. [CrossRef]
    Paper not yet in RePEc: Add citation now
  52. Zheng, J.; Niu, Z.; Han, X.; Wu, Y.; Cui, X. Short-Term Wind Power Forecasting Based on Two-Stage Feature Selection. In Proceedings of the 2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE), Guangzhou, China, 12–14 May 2023; pp. 1181–1186. [CrossRef]
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Machine Learning-Based Evaluation of Solar Photovoltaic Panel Exergy and Efficiency Under Real Climate Conditions. (2025). Ahin, Gkhan.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:6:p:1318-:d:1607427.

    Full description at Econpapers || Download paper

  2. Using Machine Learning and Analytical Modeling to Predict Poly-Crystalline PV Performance in Jordan. (2025). Salameh, Dana Helmi ; Abdallah, Salah ; Faouri, Sinan S.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:13:p:3458-:d:1692133.

    Full description at Econpapers || Download paper

  3. Predictive modeling of photovoltaic system cleaning schedules using machine learning techniques. (2025). Shamayleh, Abdulrahim ; Awad, Mahmoud ; Abuzaid, Haneen ; Alshraideh, Hussam.
    In: Renewable Energy.
    RePEc:eee:renene:v:239:y:2025:i:c:s0960148124022171.

    Full description at Econpapers || Download paper

  4. Prediction of photovoltaic panel cell temperatures: Application of empirical and machine learning models. (2025). Bayrak, Fatih.
    In: Energy.
    RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014069.

    Full description at Econpapers || Download paper

  5. A review of solar and wind energy forecasting: From single-site to multi-site paradigm. (2025). Verdone, Alessio ; Panella, Massimo ; de Santis, Enrico ; Rizzi, Antonello.
    In: Applied Energy.
    RePEc:eee:appene:v:392:y:2025:i:c:s0306261925007469.

    Full description at Econpapers || Download paper

  6. Panel Temperature Dependence on Atmospheric Parameters of an Operative Photovoltaic Park in Semi-Arid Zones Using Artificial Neural Networks. (2024). Jaque, Marcelo ; Cortez, Jorge ; Torrejn, Andrea ; Rodrguez, Carlos ; Montecinos, Sonia.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:23:p:5844-:d:1526625.

    Full description at Econpapers || Download paper

  7. Enhancing Regional Wind Power Forecasting through Advanced Machine-Learning and Feature-Selection Techniques. (2024). Tucci, Mauro ; Taheri, Nabi.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:21:p:5431-:d:1510663.

    Full description at Econpapers || Download paper

  8. Forecasting Solar Photovoltaic Power Production: A Comprehensive Review and Innovative Data-Driven Modeling Framework. (2024). Baraldi, Piero ; Aghaei, Mohammadreza ; Alrbai, Mohammad ; Madhiarasan, Manoharan ; Al-Ghussain, Loiy ; Alahmer, Hussein ; Zio, Enrico ; Abubaker, Ahmad M ; Ahmad, Adnan Darwish ; Al-Dahidi, Sameer.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:16:p:4145-:d:1460190.

    Full description at Econpapers || Download paper

  9. Optimizing Nanofluid Hybrid Solar Collectors through Artificial Intelligence Models. (2024). Aneli, Stefano ; Margoum, Safae ; Tina, Giuseppe Marco ; Hajji, Bekkay ; Gagliano, Antonio.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:10:p:2307-:d:1392141.

    Full description at Econpapers || Download paper

  10. A novel SARCIMA model based on central difference and its application in solar power generation of China. (2024). Mao, Yaqian ; Gu, Yangyang ; Wang, Jianhong ; Weng, Jiacheng ; Wu, Haixin ; Shen, Yun.
    In: Applied Energy.
    RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002411.

    Full description at Econpapers || Download paper

  11. Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects. (2023). Benti, Natei Ermias ; Chaka, Mesfin Diro ; Semie, Addisu Gezahegn.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:9:p:7087-:d:1130894.

    Full description at Econpapers || Download paper

  12. A Day-Ahead Photovoltaic Power Prediction via Transfer Learning and Deep Neural Networks. (2023). Miraftabzadeh, Seyed Mahdi ; Longo, Michela ; Foiadelli, Federica ; Colombo, Cristian Giovanni.
    In: Forecasting.
    RePEc:gam:jforec:v:5:y:2023:i:1:p:12-228:d:1072471.

    Full description at Econpapers || Download paper

  13. New Feature Selection Approach for Photovoltaïc Power Forecasting Using KCDE. (2023). Zermani, Sara ; Linguet, Laurent ; MacAire, Jeremy.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:19:p:6842-:d:1249021.

    Full description at Econpapers || Download paper

  14. Photovoltaic Power Forecasting Using Multiscale-Model-Based Machine Learning Techniques. (2023). Mimouni, Mohamed Fouazi ; Hajji, Mansour ; Marweni, Manel ; Mansouri, Majdi.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:12:p:4696-:d:1170642.

    Full description at Econpapers || Download paper

  15. Power Generation Prediction of Building-Integrated Photovoltaic System with Colored Modules Using Machine Learning. (2022). Shin, Woo-Gyun ; Ko, Suk-Whan ; Hwang, Hye-Mi ; Park, Chi-Hong.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:7:p:2589-:d:785595.

    Full description at Econpapers || Download paper

  16. Investigation of a Real-Time Dynamic Model for a PV Cooling System. (2022). Jaradat, Yousef ; Bevilacqua, Piero ; Masoud, Mohammad ; Manasrah, Ahmad.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:5:p:1836-:d:762330.

    Full description at Econpapers || Download paper

  17. Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems. (2022). Lazaridis, Pavlos I ; Dhimish, Mahmoud.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:21:p:8201-:d:962108.

    Full description at Econpapers || Download paper

  18. Machine Learning Analysis on the Performance of Dye-Sensitized Solar Cell—Thermoelectric Generator Hybrid System. (2022). Varga, Zoltan ; Racz, Ervin.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:19:p:7222-:d:931140.

    Full description at Econpapers || Download paper

  19. Advances in Fault Condition Monitoring for Solar Photovoltaic and Wind Turbine Energy Generation: A Review. (2022). Osornio-Rios, Roque A ; Antonino-Daviu, Jose A ; Elvira-Ortiz, David A ; Jaen-Cuellar, Arturo Y.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:15:p:5404-:d:872144.

    Full description at Econpapers || Download paper

  20. Two-Stage stochastic optimization for operating a Renewable-Based Microgrid. (2022). Kim, Yun-Su ; Park, Woan-Ho ; Glick, Mark B ; Abunima, Hamza.
    In: Applied Energy.
    RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011163.

    Full description at Econpapers || Download paper

  21. Quantification of PV Power and Economic Losses Due to Soiling in Qatar. (2021). Al-Fakhroo, Khaled ; Touati, Farid ; Zeedan, Amr ; Barakeh, Abdulaziz.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:6:p:3364-:d:519794.

    Full description at Econpapers || Download paper

  22. Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks. (2021). Tiong, Sieh Kiong ; Amin, Nowshad ; Shakeri, Mohammad ; Hasan, Mohammad Kamrul ; Rahman, Md Mijanur ; Pasupuleti, Jagadeesh ; Khatun, Fatema.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:4:p:2393-:d:504205.

    Full description at Econpapers || Download paper

  23. Comprehensive and Comparative Analysis of GAM-Based PV Power Forecasting Models Using Multidimensional Tensor Product Splines against Machine Learning Techniques. (2021). Yamada, Yuji ; Matsumoto, Takuji.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:21:p:7146-:d:669790.

    Full description at Econpapers || Download paper

  24. Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales. (2021). Cha, Seung Hyun ; Ahmed, Abdo Abdullah.
    In: Applied Energy.
    RePEc:eee:appene:v:291:y:2021:i:c:s0306261921003184.

    Full description at Econpapers || Download paper

  25. Fuel Cell Characteristic Curve Approximation Using the Bézier Curve Technique. (2020). Al-Dahidi, Sameer ; Louzazni, Mohamed ; Mussetta, Marco.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:19:p:8127-:d:422805.

    Full description at Econpapers || Download paper

  26. A Machine Learning Approach to Low-Cost Photovoltaic Power Prediction Based on Publicly Available Weather Reports. (2020). Schmidt, Thomas ; Maitanova, Nailya ; Grottke, Matthias ; von Maydell, Karsten ; Telle, Jan-Simon ; Agert, Carsten ; Hanke, Benedikt.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:3:p:735-:d:317957.

    Full description at Econpapers || Download paper

  27. Novel Mode Adaptive Artificial Neural Network for Dynamic Learning: Application in Renewable Energy Sources Power Generation Prediction. (2020). Zamee, Muhammad Ahsan ; Won, Dongjun.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:23:p:6405-:d:456021.

    Full description at Econpapers || Download paper

  28. A Case Study to Identify the Hindrances to Widespread Adoption of Electric Vehicles in Qatar. (2020). Ashfaq, S M ; Ahmed, Mohammad Rafi ; Iqbal, Atif ; Rizqullah, Annaufal ; Abdou, Anas Ashraf ; Khandakar, Amith.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:15:p:3994-:d:393677.

    Full description at Econpapers || Download paper

  29. Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation. (2019). Car, Zlatan ; Mrzljak, Vedran ; Aneli, Nikola ; Lorencin, Ivan.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:22:p:4352-:d:287228.

    Full description at Econpapers || Download paper

  30. Evaluation of Photovoltaic Power Generation by Using Deep Learning in Solar Panels Installed in Buildings. (2019). Wei, Chih-Chiang.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:18:p:3564-:d:268112.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-30 16:15:18 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.