- Ai, S.; Chakravorty, A.; Rong, C. Evolutionary Ensemble LSTM based Household Peak Demand Prediction. In Proceedings of the 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Okinawa, Japan, 11â13 February 2019.
Paper not yet in RePEc: Add citation now
- Alla, H.; Moumoun, L.; Balouki, Y. A Multilayer Perceptron Neural Network with Selective-Data Training for Flight Arrival Delay Prediction. Hindawi Sci. Program. 2021, 2021, 5558918. [CrossRef]
Paper not yet in RePEc: Add citation now
- Allouhi, A.; El Fouih, Y.; Kousksou, T.; Jamil, A.; Zeraouli, Y.; Mourad, Y. Energy consumption and efficiency in buildings: Current status and future trends. J. Clean. Prod. 2015, 109, 118â130. [CrossRef]
Paper not yet in RePEc: Add citation now
- Amara-Ouali, Y.; Fasiolo, M.; Goude, Y.; Yan, H. Daily peak electrical load forecasting with a multi-resolution approach. Int. J. Forecast. 2023, 39, 1272â1286. [CrossRef]
Paper not yet in RePEc: Add citation now
- Amjady, N. Short-term hourly load forecasting using time-series modeling with peak load estimation capability. IEEE Trans. Power Syst. 2001, 16, 798â805. [CrossRef]
Paper not yet in RePEc: Add citation now
- Aouad, M.; Hajj, H.; Shaban, K.; Jabr, R.A.; El-Hajj, W. A CNN-Sequence-to-Sequence network with attention for residential short-term load forecasting. Electr. Power Syst. Res. 2022, 211, 108152. [CrossRef]
Paper not yet in RePEc: Add citation now
Berardi, U. A cross-country comparison of the building energy consumptions and their trends. Resour. Conserv. Recycl. 2017, 123, 230â241. [CrossRef]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281â305. Energies 2024, 17, 1672 24 of 24
Paper not yet in RePEc: Add citation now
- Blázquez-GarcÃa, A.; Conde, A.; Mori, U.; Lozano, J.A. A Review on Outlier/Anomaly Detection in Time Series Data. ACM Comput. Surv. 2021, 54, 1â33. [CrossRef]
Paper not yet in RePEc: Add citation now
- Boano-Danquah, J.; Sigauke, C.; Kyei, K. Analysis of Extreme Peak Loads Using Point Processes: An Application Using South African Data. IEEE Access 2020, 8, 2169â3536. [CrossRef]
Paper not yet in RePEc: Add citation now
Braun, M.R.; Altan, H.; Beck, S.B.M. Using regression analysis to predict the future energy consumption of a supermarket in the UK. Appl. Energy 2014, 130, 305â313. [CrossRef]
Cao, J.; Li, Z.; Li, J. Financial time series forecasting model based on ceemdan and lstm. Phys. A Stat. Mech. Its Appl. 2019, 519, 127â139. [CrossRef]
- Chae, Y.T.; Horesh, R.; Hwang, Y.; Lee, Y.M. Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings. Energy Build. 2016, 111, 184â194. [CrossRef]
Paper not yet in RePEc: Add citation now
- Chimmula, V.K.R.; Zhang, L. Time series forecasting of covid-19 transmission in Canada using lstm networks. Chaos Solitons Fractals 2020, 135, 109864. [CrossRef]
Paper not yet in RePEc: Add citation now
- Davies, L.; Gather, U. The Identification of Multiple Outliers. J. Am. Stat. Assoc. 1993, 88, 797â801. [CrossRef]
Paper not yet in RePEc: Add citation now
- Elsaraiti, M.; Ali, G.; Musbah, H.; Merabet, A.; Little, T. Time Series Analysis of Electricity Consumption Forecasting Using ARIMA Model. In Proceedings of the 2021 IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 7â9 April 2021.
Paper not yet in RePEc: Add citation now
Fan, C.; Xiao, F.; Wang, S. Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques. Appl. Energy 2014, 127, 1â10. [CrossRef]
- Fan, G.; Peng, L.; Zhao, X.; Hong, W. Applications of Hybrid EMD with PSO and GA for an SVR-Based Load Forecasting Model. Energies 2017, 10, 1713. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ferreira, A.; Haan, L. On the block maxima method in extreme value theory: PWM estimators. Ann. Stat. 2013, 43, 276â298. [CrossRef]
Paper not yet in RePEc: Add citation now
- Feurer, M.; Hutter, F. Hyperparameter optimization in automated machine learning. In The Springer Series on Challenges in Machine Learning; Springer: Berlin/Heidelberg, Germany, 2019.
Paper not yet in RePEc: Add citation now
- Fu, H.; Baltazar, J.; Claridge, D.E. Review of developments in whole-building statistical energy consumption models for commercial buildings. Renew. Sustain. Energy Rev. 2021, 147, 111248. [CrossRef] Energies 2024, 17, 1672 23 of 24
Paper not yet in RePEc: Add citation now
- GarcÃa, S.; Luengo, J.; Herrera, F. Data Preprocessing in Data Mining: Data Preparation Basic Models; Springer International Publishing: Berlin/Heidelberg, Germany, 2015.
Paper not yet in RePEc: Add citation now
- Gardner, M.W.; Dorling, S. Artificial neural networks (the multilayer perceptron)âA review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32, 2627â2636. [CrossRef]
Paper not yet in RePEc: Add citation now
- Gilbert, C.; Browell, J.; Stephen, B. Probabilistic load forecasting for the low voltage network: Forecast fusion and daily peaks. Sustain. Energy Grids Netw. 2023, 34, 100998. [CrossRef]
Paper not yet in RePEc: Add citation now
- Glavan, M.; GradiÅ¡ar, D.; Moscariello, S.; JuricÌicÌ, Ã.; VrancÌicÌ, D. Demand-side improvement of short-term load forecasting using a proactive load managementâa supermarket use case. Energy Build. 2019, 186, 186â194. [CrossRef]
Paper not yet in RePEc: Add citation now
- Global Alliance for Buildings and Construction. 2020 Global Status Report for Buildings and Construction; Global Alliance for Buildings and Construction: Paris, France, 2020.
Paper not yet in RePEc: Add citation now
- Guo, N.; Chen, W.; Wang, M.; Tian, Z.; Jin, H. Appling an Improved Method Based on ARIMA Model to Predict the Short-Term Electricity Consumption Transmitted by the Internet of Things (IoT). Wirel. Commun. Mob. Comput. 2021, 2021, 6610273. [CrossRef]
Paper not yet in RePEc: Add citation now
- Heaton, J. Introduction to Neural Networks with Java, 2nd ed.; Heaton Research, Inc.: Chesterfield, MI, USA, 2008; p. 158.
Paper not yet in RePEc: Add citation now
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 212. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hong, W.; Fan, G. Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting. Energies 2019, 12, 1093. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ibrahim, I.A.; Hossain, M.J. LSTM neural network model for ultra-short-term distribution zone substation peak demand prediction. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2â6 August 2020.
Paper not yet in RePEc: Add citation now
- Jang, J.; Han, J.; Leigh, S.B. Prediction of heating energy consumption with operation pattern variables for non-residential buildings using lstm networks. Energy Build. 2022, 255, 111647. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jiang, Y.; Liu, Y.; Liu, D.; Song, H. Applying Machine Learning to Aviation Big Data for Flight Delay Prediction. In Proceedings of the 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB, Canada, 17â22 August 2020.
Paper not yet in RePEc: Add citation now
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013.
Paper not yet in RePEc: Add citation now
- Lam, J.C.; Wan, K.K.W.; Tsang, C.L.; Yang, L. Building energy efficiency in different climates. Energy Convers. Manag. 2008, 49, 2354â2366. [CrossRef]
Paper not yet in RePEc: Add citation now
Lebotsa, M.E.; Sigauke, C.; Bere, A.; Fildes, R.; Boylan, J.E. Short term electricity demand forecasting using partially linear additive quantile regression with an application to the unit commitment problem. Appl. Energy 2018, 222, 104â118. [CrossRef]
- Li, D.; Qian, J. Text sentiment analysis based on long short-term memory. In Proceedings of the 2016 First IEEE International Conference on Computer Communication and the Internet (ICCCI), Wuhan, China, 13â15 October 2016.
Paper not yet in RePEc: Add citation now
- Lu, H.; Cheng, F.; Ma, X.; Hu, G. Short-term prediction of building energy consumption employing an improved extreme gradient boosting model: A case study of an intake tower. Energy 2020, 203, 117756. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mahjoub, S.; Chrifi-Alaoui, L.; Marhic, B.; Delahoche, L. Predicting Energy Consumption Using LSTM, Multi-Layer GRU and Drop-GRU Neural Networks. Sensors 2022, 22, 4062. [CrossRef]
Paper not yet in RePEc: Add citation now
- Miller, C.; Arjunan, P.; Kathirgamanathan, A.; Fu, C.; Roth, J.; Park, J.Y.; Balbach, C.; Gowri, K.; Nagy, Z.; Fontanini, A.D.; et al. The ashrae great energy predictor iii competition: Overview and results. Sci. Technol. Built Environ. 2020, 26, 1427â1447. [CrossRef] Disclaimer/Publisherâs Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Paper not yet in RePEc: Add citation now
- Miller, C.; Kathirgamanathan, A.; Picchetti, B.; Arjunan, P.; Park, J.Y.; Nagy, Z.; Raftery, P.; Hobson, B.W.; Shi, Z.; Meggers, F. The building data genome project 2: Energy meter data from the ashrae great energy predictor iii competition. Sci. Data 2020, 7, 368. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mocanu, E.; Nguyen, P.H.; Gibescu, M.; Kling, W.L. Deep learning for estimating building energy consumption. Sustain. Energy Grids Netw. 2016, 6, 91â99. [CrossRef]
Paper not yet in RePEc: Add citation now
- Montgomery, D. Design and Analysis of Experiments, 8th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; Chapter 5.
Paper not yet in RePEc: Add citation now
- Mughees, N.; Mohsin, S.A.; Mughees, A.; Mughees, A. Deep sequence to sequence Bi-LSTM neural networks for day-ahead peak load forecasting. Expert Syst. Appl. 2021, 175, 114844. [CrossRef]
Paper not yet in RePEc: Add citation now
- Nepal, B.; Yamaha, M.; Yokoe, A.; Yamaji, T. Electricity load forecasting using clustering and ARIMA model for energy management in buildings. Jpn. Archit. Rev. 2020, 3, 62â76. [CrossRef]
Paper not yet in RePEc: Add citation now
- Nti, I.K.; Teimeh, M.; Nyarko-Boateng, O.; Adekoya, A.F. Electricity load forecasting: A systematic review. J. Electr. Syst. Inf. Technol. 2020, 7, 13. [CrossRef]
Paper not yet in RePEc: Add citation now
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394â398. [CrossRef]
Paper not yet in RePEc: Add citation now
- Pallonetto, F.; Jin, C.; Mangina, E. Forecast electricity demand in commercial building with machine learning models to enable demand response programs. Energy AI 2022, 7, 100121. [CrossRef]
Paper not yet in RePEc: Add citation now
- Pearson, R.; Neuvo, Y.; Astola, J.; Gabbouj, M. Generalized Hampel Filters. EURASIP J. Adv. Signal Process 2016, 2016, 87. [CrossRef]
Paper not yet in RePEc: Add citation now
- Pearson, R.K. Outliers in process modeling and identification. IEEE Trans. Control Syst. Technol. 2002, 10, 55â63. [CrossRef]
Paper not yet in RePEc: Add citation now
- Santamouris, M. Innovating to zero the building sector in Europe: Minimising the energy consumption, eradication of the energy poverty and mitigating the local climate change. Sol. Energy 2016, 128, 61â94. [CrossRef]
Paper not yet in RePEc: Add citation now
Satre-Meloy, A.; Diakonova, M.; Grünewald, P. Cluster analysis and prediction of residential peak demand profiles using occupant activity data. Appl. Energy 2020, 260, 114246. [CrossRef]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; De Freitas, N. Taking the human out of the loop: A review of Bayesian optimization. Proc. IEEE 2015, 104, 148â175. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sharma, S.; Sharma, S.; Athaiya, A. Activation functions in neural networks. Int. J. Eng. Appl. Sci. Technol. 2020, 4, 310â316. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [CrossRef]
Paper not yet in RePEc: Add citation now
- Soman, A.; Trivedi, A.; Irwin, D.; Kosanovic, B.; McDaniel, B.; Shenoy, P. Peak Forecasting for Battery-Based Energy Optimizations in Campus Microgrids. In Proceedings of the Eleventh ACM International Conference on Future Energy Systems, Virtual Event, Australia, 22â26 June 2020.
Paper not yet in RePEc: Add citation now
- Soutner, D.; Muller, L. Application of LSTM neural networks in language modelling. Int. Conf. Text Speech Dialogue 2013, 8082, 105â112.
Paper not yet in RePEc: Add citation now
- Taheri, S.; Razban, A. A novel probabilistic regression model for electrical peak demand estimate of commercial and manufacturing buildings. Sustain. Cities Soc. 2022, 77, 103544. [CrossRef]
Paper not yet in RePEc: Add citation now
Taieb, S.B.; Taylor, J.W.; Hyndman, R.J. Hierarchical Probabilistic Forecasting of Electricity Demand with Smart Meter Data. J. Am. Stat. Assoc. 2021, 116, 27â43. [CrossRef]
- Tassou, S.A.; Ge, Y.; Hadawey, A.; Marriott, D. Energy consumption and conservation in food retailing. Appl. Therm. Eng. 2011, 31, 147. [CrossRef]
Paper not yet in RePEc: Add citation now
- Timma, L.; Skudritis, R.; Blumberga, D. Benchmarking Analysis of Energy Consumption in Supermarkets. Energy Procedia 2016, 95, 435â438. [CrossRef]
Paper not yet in RePEc: Add citation now
- U.S. Energy Information Administration. 2018 Commercial Buildings Energy Consumption Survey Building Characteristics Highlights; U.S. Energy Information Administration: Washington, DC, USA, 2018.
Paper not yet in RePEc: Add citation now
- U.S. Energy Information Administration. 2018 Commercial Buildings Energy Consumption Survey Consumption and Expenditures Highlights; U.S. Energy Information Administration: Washington, DC, USA, 2018.
Paper not yet in RePEc: Add citation now
Wan, K.K.W.; Li, D.H.W.; Pan, W.; Lam, J.C. Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications. Appl. Energy 2012, 97, 274â282. [CrossRef]
- Xue, J.; Xu, Z.; Watada, J. Building an integrated hybrid model for short-term and mid-term load forecasting with genetic optimization. Int. J. Innov. Comput. Inf. Control 2012, 8, 7381â7391.
Paper not yet in RePEc: Add citation now
- Yan, K.; Wang, X.; Du, Y.; Jin, N.; Huang, H.; Zhou, H. Multi-step short-term power consumption forecasting with a hybrid deep learning strategy. Energies, 2018; 11, 3089.
Paper not yet in RePEc: Add citation now
- Yildiz, B.; Bilbao, J.I.; Sproul, A.B. A review and analysis of regression and machine learning models on commercial building electricity load forecasting. Renew. Sustain. Energy Rev. 2017, 73, 1104â1122. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, F.; Deb, C.; Lee, S.E.; Yang, J.; Shah, K.W. Time series forecasting for building energy consumption using weighted Support Vector Regression with differential evolution optimization technique. Energy Build. 2016, 126, 94â103. [CrossRef]
Paper not yet in RePEc: Add citation now