create a website

Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle. (2022). Magner, Nicolas ; Hardy, Nicolas.
In: Mathematics.
RePEc:gam:jmathe:v:10:y:2022:i:13:p:2338-:d:855300.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 92

References cited by this document

Cocites: 21

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Abadi, J.; Brunnermeier, M. Blockchain Economics; Working paper; Princeton University: Princeton, NJ, USA, 2018.
    Paper not yet in RePEc: Add citation now
  2. Adcock, R.; Gradojevic, N. Non-Fundamental, Non-Parametric Bitcoin Forecasting. Phys. A Stat. Mech. Its Appl. 2019, 531,

  3. Anatolyev, S.; Gerko, A. A Trading Approach to Testing for Predictability. J. Bus. Econ. Stat. 2005, 23, 455–461. [CrossRef]

  4. Ashley, R.; Granger, C.W.J.; Schmalensee, R. Advertising and Aggregate Consumption: An Analysis of Causality. Econom. J. Econom. Soc. 1980, 48, 1149–1167. [CrossRef]

  5. Athey, S.; Parashkevov, I.; Sarukkai, V.; Xia, J. Bitcoin Pricing, Adoption, and Usage: Theory and Evidence. 2016. Available online: https://ssrn.com/abstract=2826674 (accessed on 30 May 2022).

  6. Atsalakis, G.S.; Atsalaki, I.G.; Pasiouras, F.; Zopounidis, C. Bitcoin Price Forecasting with Neuro-Fuzzy Techniques. Eur. J. Oper. Res. 2019, 276, 770–780. [CrossRef]

  7. Bai, J.; Perron, P. Estimating and Testing Linear Models with Multiple Structural Changes. Econometrica 1998, 66, 47–78. [CrossRef]

  8. Bai, Y. Country Factors in Stock Returns: Reconsidering the Basic Method. Appl. Financ. Econ. 2014, 24, 871–888. [CrossRef]

  9. Baker, M.; Wurgler, J. Investor Sentiment and the Cross-Section of Stock Returns. J. Financ. 2006, 61, 1645–1680. [CrossRef]

  10. Balcilar, M.; Bouri, E.; Gupta, R.; Roubaud, D. Can Volume Predict Bitcoin Returns and Volatility? A Quantiles-Based Approach. Econ. Model. 2017, 64, 74–81. [CrossRef]

  11. Barberis, N.; Shleifer, A.; Vishny, R. A Model of Investor Sentiment. J. Financ. Econ. 1998, 49, 307–343. [CrossRef]

  12. Bikhchandani, S.; Hirshleifer, D.; Welch, I. A Theory of Fads, Fashion, Custom, and Cultural Change as Informational Cascades. J. Political Econ. 1992, 100, 992–1026. [CrossRef]

  13. Bolt, W.; van Oordt, M.R.C. On the Value of Virtual Currencies. J. Money Credit. Bank. 2020, 52, 835–862. [CrossRef]

  14. Bork, L.; Kaltwasser, P.R.; Sercu, P. Commodity Index Construction and the Predictive Power of Exchange Rates. J. Bank. Financ. 2019, 1–49.
    Paper not yet in RePEc: Add citation now
  15. Brown, P.P.; Hardy, N. Forecasting Base Metal Prices with the Chilean Exchange Rate. Resour. Policy 2019, 62, 256–281. [CrossRef]

  16. Campbell, J.Y.; Shiller, R.J. The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors. Rev. Financ. Stud. 1988, 1, 195–228. [CrossRef]

  17. Catania, L.; Grassi, S.; Ravazzolo, F. Forecasting Cryptocurrencies under Model and Parameter Instability. Int. J. Forecast. 2019, 35, 485–501. [CrossRef]

  18. Chen, Y.-C.; Rogoff, K.S.; Rossi, B. Can Exchange Rates Forecast Commodity Prices? Q. J. Econ. 2010, 125, 1145–1194. [CrossRef]

  19. Cheung, Y.-W.; Chinn, M.D.; Pascual, A.G. Empirical Exchange Rate Models of the Nineties: Are Any Fit to Survive? J. Int. Money Financ. 2005, 24, 1150–1175. [CrossRef]

  20. Ciaian, P.; Rajcaniova, M. Virtual Relationships: Short-and Long-Run Evidence from BitCoin and Altcoin Markets. J. Int. Financ. Mark. Inst. Money 2018, 52, 173–195. [CrossRef]

  21. Clark, T.E.; McCracken, M.W. Tests of Equal Forecast Accuracy and Encompassing for Nested Models. J. Econom. 2001, 105, 85–110. [CrossRef]

  22. Clark, T.E.; West, K.D. Approximately Normal Tests for Equal Predictive Accuracy in Nested Models. J. Econom. 2007, 138, 291–311. [CrossRef]

  23. Clark, T.E.; West, K.D. Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference Hypothesis. J. Econom. 2006, 135, 155–186. [CrossRef]

  24. Cong, L.W.; He, Z.; Li, J. Decentralized Mining in Centralized Pools. Rev. Financ. Stud. 2021, 34, 1191–1235. [CrossRef]

  25. Cong, L.W.; Li, Y.; Wang, N. Tokenomics: Dynamic Adoption and Valuation. Rev. Financ. Stud. 2021, 34, 1105–1155. [CrossRef]

  26. Conlon, T.; Cotter, J.; Eyiah-Donkor, E. The Illusion of Oil Return Predictability: The Choice of Data Matters! J. Bank. Financ. 2022, 134, 106331. [CrossRef]

  27. Corbet, S.; Eraslan, V.; Lucey, B.; Sensoy, A. The Effectiveness of Technical Trading Rules in Cryptocurrency Markets. Financ. Res. Lett. 2019, 31, 32–37. [CrossRef]

  28. Daniel, K.; Hirshleifer, D.; Subrahmanyam, A. Investor Psychology and Security Market Under-and Overreactions. J. Financ. 1998, 53, 1839–1885. [CrossRef]

  29. De Long, J.B.; Shleifer, A.; Summers, L.H.; Waldmann, R.J. Noise Trader Risk in Financial Markets. J. Political Econ. 1990, 98, 703–738. [CrossRef]

  30. Della Corte, P.; Sarno, L.; Tsiakas, I. An Economic Evaluation of Empirical Exchange Rate Models. Rev. Financ. Stud. 2009, 22, 3491–3530. [CrossRef]

  31. Detzel, A.; Liu, H.; Strauss, J.; Zhou, G.; Zhu, Y. Learning and Predictability via Technical Analysis: Evidence from Bitcoin and Stocks with Hard-to-Value Fundamentals. Financ. Manag. 2021, 50, 107–137. [CrossRef]

  32. Diebold, F.X.; Mariano, R.S. Comparing Predictive Accuracy. J. Bus. Econ. Stat. 1995, 20, 134–144. [CrossRef]

  33. Engel, C.; Mark, N.C.; West, K.D.; Rogoff, K.; Rossi, B. Exchange Rate Models Are Not as Bad as You Think [with Comments and Discussion]. NBER Macroecon Annu 2007, 22, 381–473. [CrossRef]

  34. Felizardo, L.K.; Paiva, F.C.L.; de Vita Graves, C.; Matsumoto, E.Y.; Costa, A.H.R.; Del-Moral-Hernandez, E.; Brandimarte, P. Outperforming Algorithmic Trading Reinforcement Learning Systems: A Supervised Approach to the Cryptocurrency Market. Expert Syst. Appl. 2022, 202, 117259. [CrossRef]
    Paper not yet in RePEc: Add citation now
  35. Giudici, P.; Polinesi, G. Crypto Price Discovery through Correlation Networks. Ann. Oper. Res. 2021, 299, 443–457. [CrossRef]

  36. Goyal, A.; Welch, I. Predicting the Equity Premium with Dividend Ratios. Manag. Sci. 2003, 49, 639–654. [CrossRef]

  37. Goyal, A.; Welch, I.; Zafirov, A. A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II. 2021. Available online: https://ssrn.com/abstract=3929119 (accessed on 30 May 2022).

  38. Hamilton, J.D. Time Series Analysis; Princeton university press: Princeton, NJ, USA, 2020; ISBN 0691218633.
    Paper not yet in RePEc: Add citation now
  39. Hardy, N. “A Bias Recognized Is a Bias Sterilized”: The Effects of a Bias in Forecast Evaluation. Mathematics 2022, 10,
    Paper not yet in RePEc: Add citation now
  40. Harvey, D.I.; Leybourne, S.J.; Newbold, P. Forecast Evaluation Tests in the Presence of ARCH. J. Forecast. 1999, 18, 435–445. [CrossRef]
    Paper not yet in RePEc: Add citation now
  41. Hong, H.; Lim, T.; Stein, J.C. Bad News Travels Slowly: Size, Analyst Coverage, and the Profitability of Momentum Strategies. J. Financ. 2000, 55, 265–295. [CrossRef]

  42. Hong, H.; Stein, J.C. A Unified Theory of Underreaction, Momentum Trading, and Overreaction in Asset Markets. J. Financ. 1999, 54, 2143–2184. [CrossRef]

  43. Ince, O.; Molodtsova, T. Rationality and Forecasting Accuracy of Exchange Rate Expectations: Evidence from Survey-Based Forecasts. J. Int. Financ. Mark. Inst. Money 2017, 47, 131–151. [CrossRef]

  44. Jang, H.; Lee, J. An Empirical Study on Modeling and Prediction of Bitcoin Prices with Bayesian Neural Networks Based on Blockchain Information. IEEE Access 2017, 6, 5427–5437. [CrossRef]
    Paper not yet in RePEc: Add citation now
  45. Jermann, U.J. Bitcoin and Cagan’s Model of Hyperinflation. 2018. Available online: https://ssrn.com/abstract=3132050 (accessed on 30 May 2022).
    Paper not yet in RePEc: Add citation now
  46. Ji, S.; Kim, J.; Im, H. A Comparative Study of Bitcoin Price Prediction Using Deep Learning. Mathematics 2019, 7, 898. [CrossRef] Mathematics 2022, 10, 2338 26 of 27

  47. Liu, J.; Serletis, A. Volatility in the Cryptocurrency Market. Open Econ. Rev. 2019, 30, 779–811. [CrossRef]

  48. Liu, Y.; Tsyvinski, A. Risks and Returns of Cryptocurrency. Rev. Financ. Stud. 2021, 34, 2689–2727. [CrossRef]

  49. Liu, Y.; Tsyvinski, A.; Wu, X. Common Risk Factors in Cryptocurrency. J. Financ. 2022, 77, 1133–1177. [CrossRef]

  50. Lyons, R.K. Exchange-Rate Dynamics. Princeton Series in International Economics. J. Econ. Literature 2012, 50, 187–191.
    Paper not yet in RePEc: Add citation now
  51. Maciel, L. Cryptocurrencies Value-at-Risk and Expected Shortfall: Do Regime-Switching Volatility Models Improve Forecasting? Int. J. Financ. Econ. 2021, 26, 4840–4855. [CrossRef]

  52. Magner, N.S.; Lavin, J.F.; Valle, M.A.; Hardy, N. The Volatility Forecasting Power of Financial Network Analysis. Complexity 2020, 2020, 7051402. [CrossRef]

  53. Makarov, I.; Schoar, A. Trading and Arbitrage in Cryptocurrency Markets. J. Financ. Econ. 2020, 135, 293–319. [CrossRef]

  54. McNally, S.; Roche, J.; Caton, S. Predicting the Price of Bitcoin Using Machine Learning. In Proceedings of the 2018 26th Euromicro International Conference on Parallel, Distributed And Network-Based Processing (PDP), Cambridge, UK, 21 March–23 March 2018; pp. 339–343.
    Paper not yet in RePEc: Add citation now
  55. Meese, R.; Rogoff, K. The Out-of-Sample Failure of Empirical Exchange Rate Models: Sampling Error or Misspecification. Exch. Rates Int. Macroecon. 1983, 4, 67–112. [CrossRef]

  56. Meese, R.; Rogofp, K. Was It Real? The Exchange Rate-interest Differential Relation over the Modern Floating-rate Period. J. Financ. 1988, 43, 933–948. [CrossRef]

  57. Meese, R.A.; Rogoff, K. Empirical Exchange Rate Models of the Seventies: Do They Fit out of Sample? J. Int. Econ. 1983, 14, 3–24. [CrossRef]

  58. Melvin, M.; Prins, J.; Shand, D. Forecasting Exchange Rates: An Investor Perspective; Elsevier: Amsterdam, The Netherlands, 2013; Volume 2, pp. 721–750, ISBN 1574-0706.

  59. Miller, N.; Yang, Y.; Sun, B.; Zhang, G. Identification of Technical Analysis Patterns with Smoothing Splines for Bitcoin Prices. J. Appl. Stat. 2019, 46, 2289–2297. [CrossRef]

  60. Moosa, I.; Burns, K. The Unbeatable Random Walk in Exchange Rate Forecasting: Reality or Myth? J. Macroecon. 2014, 40, 69–81. [CrossRef]

  61. Moosa, I.A.; Burns, K. The Meese-Rogoff Puzzle. In Demystifying the Meese-Rogoff Puzzle; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–13.

  62. Muglia, C.; Santabarbara, L.; Grassi, S. Is Bitcoin a Relevant Predictor of Standard & Poor’s 500? J. Risk Financ. Manag. 2019, 12, 93. [CrossRef]

  63. Newey, W.K.; West, K.D. Automatic Lag Selection in Covariance Matrix Estimation. Rev. Econ. Stud. 1994, 61, 631–653. [CrossRef]

  64. Newey, W.K.; West, K.D. Hypothesis Testing with Efficient Method of Moments Estimation. Int. Econ. Rev. 1987, 28, 777–787. [CrossRef]

  65. Nguyen, D.-T.; Le, H.-V. Predicting the Price of Bitcoin Using Hybrid ARIMA and Machine Learning. In Future Data and Security Engineering; Springer: Berlin/Heidelberg, Germany, 2019; pp. 696–704.
    Paper not yet in RePEc: Add citation now
  66. Pagnotta, E.; Buraschi, A. An Equilibrium Valuation of Bitcoin and Decentralized Network Assets. 2018. Available online: https://ssrn.com/abstract=3142022 (accessed on 30 May 2022).
    Paper not yet in RePEc: Add citation now
  67. Pincheira, P.; Hardy, N. Correlation Based Tests of Predictability. 2022. Available online: https://mpra.ub.uni-muenchen.de/1120 14/ (accessed on 30 May 2022).

  68. Pincheira, P.; Hardy, N. Forecasting Aluminum Prices with Commodity Currencies. Resour. Policy 2021, 73, 102066. [CrossRef]

  69. Pincheira, P.; Hardy, N. The Mean Squared Prediction Error Paradox. 2021. Available online: https://mpra.ub.uni-muenchen.de/ 107403/ (accessed on 30 May 2022).

  70. Pincheira, P.; Hardy, N.; Bentancor, A. A Simple Out-of-Sample Test of Predictability against the Random Walk Benchmark. Mathematics 2022, 10, 228. [CrossRef]

  71. Pincheira, P.; Hardy, N.; Muñoz, F. “Go Wild for a While!”: A New Test for Forecast Evaluation in Nested Models. Mathematics 2021, 9, 2254. [CrossRef]

  72. Pincheira, P.M.; Hardy, N. The Predictive Relationship between Exchange Rate Expectations and Base Metal Prices. 2018. Available online: https://ssrn.com/abstract=3263709 (accessed on 30 May 2022).

  73. Pincheira, P.M.; West, K.D. A Comparison of Some Out-of-Sample Tests of Predictability in Iterated Multi-Step-Ahead Forecasts. Res. Econ. 2016, 70, 304–319. [CrossRef]

  74. Qi, M.; Zhang, J.; Xiao, J.; Wang, P.; Shi, D.; Nnenna, A.B. Interconnectedness and Systemic Risk Measures of Chinese Financial Institutions. Kybernetes 2021, 51, 57–81. [CrossRef]
    Paper not yet in RePEc: Add citation now
  75. Rapach, D.; Zhou, G. Asset Pricing: Time-Series Predictability. 2021. Available online: https://papers.ssrn.com/sol3/papers.cfm? abstract_id=3941499 (accessed on 30 May 2022).
    Paper not yet in RePEc: Add citation now
  76. Rebane, J.; Karlsson, I.; Papapetrou, P.; Denic, S. Seq2Seq RNNs and ARIMA Models for Cryptocurrency Prediction: A Comparative Study. In Proceedings of the SIGKDD Fintech’18, London, UK, 19–23 August 2018.
    Paper not yet in RePEc: Add citation now
  77. Rossi, B. Are Exchange Rates Really Random Walks? Some Evidence Robust to Parameter Instability. Macroecon. Dyn. 2005, 10, 20–38. [CrossRef]

  78. Rossi, B. Forecasting in the Presence of Instabilities: How We Know Whether Models Predict Well and How to Improve Them. J. Econ. Lit. 2021, 59, 1135–1190. [CrossRef]

  79. Rossi, B. Optimal Tests for Nested Model Selection with Underlying Parameter Instability. Econ. Theory 2005, 21, 962–990. [CrossRef]

  80. Rossi, B.; Inoue, A. Out-of-Sample Forecast Tests Robust to the Choice of Window Size. J. Bus. Econ. Stat. 2012, 30, 432–453. [CrossRef]

  81. Schilling, L.; Uhlig, H. Some Simple Bitcoin Economics. J. Monet. Econ. 2019, 106, 16–26. [CrossRef]

  82. Smutny, Z.; Sulc, Z.; Lansky, J. Motivations, Barriers and Risk-Taking When Investing in Cryptocurrencies. Mathematics 2021, 9,
    Paper not yet in RePEc: Add citation now
  83. Sockin, M.; Xiong, W. Nber Working Paper Series A Model of Cryptocurrencies; National Bureau of Economic Research: Cambridge, MA, USA, 2020.

  84. Stock, J.H.; Watson, M.W. Evidence on Structural Instability in Macroeconomic Time Series Relations. J. Bus. Econ. Stat. 1996, 14, 11–30.

  85. Stock, J.H.; Watson, M.W. Forecasting Output and Inflation: The Role of Asset Prices. J. Econ. Lit. 2003, 41, 788–829. [CrossRef]

  86. Stock, J.H.; Watson, M.W. Why Has US Inflation Become Harder to Forecast? J. Money Credit. Bank. 2007, 39, 3–33. [CrossRef]

  87. Timmermann, A. Elusive Return Predictability. Int. J. Forecast. 2008, 24, 1–18. [CrossRef]

  88. Welch, I.; Goyal, A. A Comprehensive Look at the Empirical Performance of Equity Premium Prediction. Rev. Financ. Stud. 2008, 21, 1455–1508. [CrossRef]

  89. West, K.D. Asymptotic Inference about Predictive Ability. Econom. J. Econom. Soc. 1996, 64, 1067–1084. [CrossRef] Mathematics 2022, 10, 2338 27 of 27

  90. White, H. A Reality Check for Data Snooping. Econometrica 2000, 68, 1097–1126. [CrossRef]

  91. Yae, J.; Tian, G.Z. Out-of-Sample Forecasting of Cryptocurrency Returns: A Comprehensive Comparison of Predictors and Algorithms. Phys. A Stat. Mech. Its Appl. 2022, 598, 127379. [CrossRef]

  92. Yi, Y.; He, M.; Zhang, Y. Out-of-Sample Prediction of Bitcoin Realized Volatility: Do Other Cryptocurrencies Help? N. Am. J. Econ. Financ. 2022, 62, 101731. [CrossRef]

Cocites

Documents in RePEc which have cited the same bibliography

  1. Forecasting cryptocurrencies returns: Do macroeconomic and financial variables improve tail expectation predictions?. (2024). Leccadito, Arturo ; Lawuobahsumo, Kokulo K ; Algieri, Bernardina.
    In: Quality & Quantity: International Journal of Methodology.
    RePEc:spr:qualqt:v:58:y:2024:i:3:d:10.1007_s11135-023-01761-1.

    Full description at Econpapers || Download paper

  2. OG-CAT: A Novel Algorithmic Trading Alternative to Investment in Crypto Market. (2024). Khurana, Surinder Singh ; Singh, Parvinder ; Garg, Naresh Kumar.
    In: Computational Economics.
    RePEc:kap:compec:v:63:y:2024:i:5:d:10.1007_s10614-023-10380-9.

    Full description at Econpapers || Download paper

  3. Forecasting Bitcoin prices using artificial intelligence: Combination of ML, SARIMA, and Facebook Prophet models. (2024). Shahzad, Umer ; Tiwari, Sunil ; Mahendru, Mandeep ; Cheng, Jiyang ; Khaled, Djebbouri.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:198:y:2024:i:c:s0040162523006236.

    Full description at Econpapers || Download paper

  4. Arbitrage opportunities and feedback trading in regulated bitcoin futures market: An intraday analysis. (2024). Wang, Jinghua ; Ngene, Geoffrey M.
    In: International Review of Economics & Finance.
    RePEc:eee:reveco:v:89:y:2024:i:pb:p:743-761.

    Full description at Econpapers || Download paper

  5. REnsembling ARIMAX Model in Algorithmic Investment Strategies on Commodities Market. (2023). Ślepaczuk, Robert ; Jakubowski, Pawe ; Windorbski, Franciszek.
    In: Working Papers.
    RePEc:war:wpaper:2023-20.

    Full description at Econpapers || Download paper

  6. Fundamental and speculative components of the cryptocurrency pricing dynamics. (2023). Kukacka, Jiri ; Krištoufek, Ladislav.
    In: Financial Innovation.
    RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-023-00465-7.

    Full description at Econpapers || Download paper

  7. Cryptocurrency volatility forecasting: What can we learn from the first wave of the COVID-19 outbreak?. (2023). ben Ameur, Hachmi ; Louhichi, Wael ; Ftiti, Zied.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:330:y:2023:i:1:d:10.1007_s10479-021-04116-x.

    Full description at Econpapers || Download paper

  8. Modeling Bitcoin Prices using Signal Processing Methods, Bayesian Optimization, and Deep Neural Networks. (2023). Sharma, Rakesh Kumar ; Tripathi, Bhaskar.
    In: Computational Economics.
    RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10325-8.

    Full description at Econpapers || Download paper

  9. The role of interpersonal trust in cryptocurrency adoption. (2023). Yarovaya, Larisa ; Urquhart, Andrew ; Matkovskyy, Roman ; Jalan, Akanksha.
    In: Post-Print.
    RePEc:hal:journl:hal-03946536.

    Full description at Econpapers || Download paper

  10. How well do investor sentiment and ensemble learning predict Bitcoin prices?. (2023). Hajek, Petr ; Hikkerova, Lubica ; Sahut, Jean-Michel.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:64:y:2023:i:c:s0275531922002227.

    Full description at Econpapers || Download paper

  11. Forecasting Bitcoin with technical analysis: A not-so-random forest?. (2023). Gradojevic, Nikola ; Djakovic, Vladimir ; Adcock, Robert ; Kukolj, Dragan.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:39:y:2023:i:1:p:1-17.

    Full description at Econpapers || Download paper

  12. The role of interpersonal trust in cryptocurrency adoption. (2023). Yarovaya, Larisa ; Urquhart, Andrew ; Matkovskyy, Roman ; Jalan, Akanksha.
    In: Journal of International Financial Markets, Institutions and Money.
    RePEc:eee:intfin:v:83:y:2023:i:c:s1042443122001871.

    Full description at Econpapers || Download paper

  13. Forecasting the movements of Bitcoin prices: an application of machine learning algorithms. (2023). Ongan, Serdar ; Pabuccu, Hakan.
    In: Papers.
    RePEc:arx:papers:2303.04642.

    Full description at Econpapers || Download paper

  14. A note on the Bitcoin and Fed Funds rate. (2022). Aboura, Sofiane.
    In: Empirical Economics.
    RePEc:spr:empeco:v:63:y:2022:i:5:d:10.1007_s00181-022-02207-7.

    Full description at Econpapers || Download paper

  15. Forecasting Bitcoin price direction with random forests: How important are interest rates, inflation, and market volatility?. (2022). Basher, Syed ; Perry, Sadorsky ; Abul, Basher Syed.
    In: MPRA Paper.
    RePEc:pra:mprapa:113293.

    Full description at Econpapers || Download paper

  16. Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle. (2022). Magner, Nicolas ; Hardy, Nicolas.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:13:p:2338-:d:855300.

    Full description at Econpapers || Download paper

  17. Do AI-powered mutual funds perform better?. (2022). Ren, Jinjuan ; Chen, Rui.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:47:y:2022:i:pa:s1544612321005547.

    Full description at Econpapers || Download paper

  18. The personal wealth importance to the intertemporal choice. (2021). Do, Jose Claudio.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:565:y:2021:i:c:s0378437120308578.

    Full description at Econpapers || Download paper

  19. Volatility cascades in cryptocurrency trading. (2021). Tsiakas, Ilias ; Gradojevic, Nikola.
    In: Journal of Empirical Finance.
    RePEc:eee:empfin:v:62:y:2021:i:c:p:252-265.

    Full description at Econpapers || Download paper

  20. MRC-LSTM: A Hybrid Approach of Multi-scale Residual CNN and LSTM to Predict Bitcoin Price. (2021). Fang, Zhiyang ; Lei, Shun ; Guo, Qiutong ; Ye, Qing.
    In: Papers.
    RePEc:arx:papers:2105.00707.

    Full description at Econpapers || Download paper

  21. Forecasting Mid-price Movement of Bitcoin Futures Using Machine Learning. (2020). Uddin, Gazi ; Corbet, Shaen ; Cepni, Oguzhan ; Akyildirim, Erdinc.
    In: Working Papers.
    RePEc:hhs:cbsnow:2020_020.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-01 01:23:15 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.