create a website

Forecasting cryptocurrencies returns: Do macroeconomic and financial variables improve tail expectation predictions?. (2024). Leccadito, Arturo ; Lawuobahsumo, Kokulo K ; Algieri, Bernardina.
In: Quality & Quantity: International Journal of Methodology.
RePEc:spr:qualqt:v:58:y:2024:i:3:d:10.1007_s11135-023-01761-1.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 48

References cited by this document

Cocites: 21

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Adcock, R., Gradojevic, N.: Non-fundamental, non-parametric bitcoin forecasting. Phys. A Stat. Mech. Appl. 531, 121727 (2019). https://doi.org/10.1016/j.physa.2019.121727 .

  2. Algieri, B., Iania, L., Leccadito, A.: Looking ahead: forecasting total energy carbon dioxide emissions. Clean. Environ. Syst. 9, 100112 (2023). https://doi.org/10.1016/j.cesys.2023.100112 .
    Paper not yet in RePEc: Add citation now
  3. Algieri, B., Kalkuhl, M., Koch, N.: A tale of two tails: explaining extreme events in financialized agricultural markets. Food Policy 69, 256–269 (2017).

  4. Algieri, B., Leccadito, A.: Extreme price moves: an INGARCH approach to model coexceedances in commodity markets. Eur. Rev. Agric. Econ. 48, 878–914 (2021). https://doi.org/10.1093/erae/jbaa030 .

  5. Algieri, B.: Drivers of export demand: a focus on the Giips countries. World Econ. 37, 1454–1482 (2014). https://doi.org/10.1111/twec.12153 .

  6. Amalia, F.F., Suhartono, A., Rahayu, S.P., Suhermi, N.: Quantile regression neural network for forecasting inflow and outflow in Yogyakarta. J. Phys. Conf. Ser. 1028, 12232 (2018). https://doi.org/10.1088/1742-6596/1028/1/012232 .
    Paper not yet in RePEc: Add citation now
  7. Ardia, D., Bluteau, K., Rüede, M.: Regime changes in bitcoin GARCH volatility dynamics. Finance Res. Lett. 29, 266–271 (2019). https://doi.org/10.1016/j.frl.2018.08.009 .

  8. Bakas, D., Magkonis, G., Oh, E.Y.: What drives volatility in bitcoin market? Finance Res. Lett. 50, 103237 (2022). https://doi.org/10.1016/j.frl.2022.103237 .
    Paper not yet in RePEc: Add citation now
  9. Basher, S.A., Sadorsky, P.: Forecasting bitcoin price direction with random forests: how important are interest rates, inflation, and market volatility? Mach. Learn. Appl. 9, 100355 (2022). https://doi.org/10.1016/j.mlwa.2022.100355 .

  10. Bernardi, M., Catania, L.: Comparison of value-at-risk models using the MCS approach. Comput. Stat. 31, 579–608 (2016). https://doi.org/10.1007/s00180-016-0646-6 .

  11. Bollerslev, T.: A conditionally heteroskedastic time series model for speculative prices and rates of return. Rev. Econ. Stat. 69, 542–547 (1987).

  12. Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econ. 31, 307–327 (1986). https://doi.org/10.1016/0304-4076(86)90063-1 .

  13. Borri, N.: Conditional tail-risk in cryptocurrency markets. J. Empir. Finance 50, 1–19 (2019). https://doi.org/10.1016/j.jempfin.2018.11.002 .

  14. Cannon, A.J.: Non-crossing nonlinear regression quantiles by monotone composite quantile regression neural network, with application to rainfall extremes. Stoch. Environ. Res. Risk Assess. 32, 3207–3225 (2018). https://doi.org/10.1007/s00477-018-1573-6 .
    Paper not yet in RePEc: Add citation now
  15. Cannon, A.J.: Quantile regression neural networks: implementation in R and application to precipitation downscaling. Comput. Geosci. 37, 1277–1284 (2011). https://doi.org/10.1016/j.cageo.2010.07.005 .
    Paper not yet in RePEc: Add citation now
  16. Caporale, G.M., Zekokh, T.: Modelling volatility of cryptocurrencies using Markov-switching Garch models. Res. Int. Bus. Finance 48, 143–155 (2019). https://doi.org/10.1016/j.ribaf.2018.12.009 .

  17. Chen, C.: A finite smoothing algorithm for quantile regression. J. Comput. Graph. Stat. 16, 136–164 (2007). https://doi.org/10.1198/106186007X180336 .
    Paper not yet in RePEc: Add citation now
  18. Chu, J., Chan, S., Nadarajah, S., Osterrieder, J.: GARCH modelling of cryptocurrencies. J. Risk Financ. Manag. 10, 1–15 (2017). https://doi.org/10.3390/jrfm10040017 .

  19. Diebold, F.X., Mariano, R.S.: Comparing predictive accuracy. J. Bus. Econ. Stat. 20, 134–144 (2002). https://doi.org/10.1198/073500102753410444 .

  20. Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 987–1007 (1982).

  21. Feng, W., Wang, Y., Zhang, Z.: Can cryptocurrencies be a safe haven: a tail risk perspective analysis. Appl. Econ. 50, 4745–4762 (2018). https://doi.org/10.1080/00036846.2018.1466993 .

  22. Fissler, T., Ziegel, J.F., Gneiting, T.: Expected shortfall is jointly elicitable with value at risk—implications for backtesting. Management (2015). https://doi.org/10.48550/ARXIV.1507.00244 .

  23. Fleischer, J.P., von Laszewski, G., Theran, C., ParraBautista, Y.J.: Time series analysis of cryptocurrency prices using long short-term memory. Algorithms (2022). https://doi.org/10.3390/a15070230 .
    Paper not yet in RePEc: Add citation now
  24. Glosten, L.R., Jagannathan, R., Runkle, D.E.: On the relation between the expected value and the volatility of the nominal excess return on stocks. J. Finance 48, 1779–1801 (1993). https://doi.org/10.1111/j.1540-6261.1993.tb05128.x .

  25. Gronwald, M.: The Economics of Bitcoins—Market Characteristics and Price Jumps. SSRN Scholarly Paper ID 2548999. Social Science Research Network, Rochester (2014).
    Paper not yet in RePEc: Add citation now
  26. Hansen, P.R., Lunde, A., Nason, J.M.: The model confidence set. Econometrica 79, 453–497 (2011). https://doi.org/10.3982/ECTA5771 .

  27. Jaquart, P., Dann, D., Weinhardt, C.: Short-term bitcoin market prediction via machine learning. J. Finance Data Sci. 7, 45–66 (2021). https://doi.org/10.1016/j.jfds.2021.03.001 .
    Paper not yet in RePEc: Add citation now
  28. Katsiampa, P.: An empirical investigation of volatility dynamics in the cryptocurrency market. Res. Int. Bus. Finance 50, 322–335 (2019). https://doi.org/10.1016/j.ribaf.2019.06.004 .

  29. Khalaf, L., Leccadito, A., Urga, G.: Multilevel and tail risk management. J. Financ. Econom. 20, 1–36 (2021). https://doi.org/10.1093/jjfinec/nbaa044 .
    Paper not yet in RePEc: Add citation now
  30. Kim, J.M., Jun, C., Lee, J.: Forecasting the volatility of the cryptocurrency market by GARCH and stochastic volatility. Mathematics (2021). https://doi.org/10.3390/math9141614 .

  31. Lahmiri, S., Bekiros, S.: Cryptocurrency forecasting with deep learning chaotic neural networks. Chaos Solitons Fractals 118, 35–40 (2019). https://doi.org/10.1016/j.chaos.2018.11.014 .

  32. Lawuobahsumo, K.K., Algieri, B., Iania, L., Leccadito, A.: Exploring dependence relationships between bitcoin and commodity returns: an assessment using the Gerber cross-correlation. Commodities 1, 34–49 (2022). https://doi.org/10.3390/commodities1010004 .

  33. Mikhaylov, A., Dinçer, H., Yüksel, S.: Analysis of financial development and open innovation oriented fintech potential for emerging economies using an integrated decision-making approach of MF-X-DMA and golden cut bipolar q-ROFSs. Financ. Innov. (2023). https://doi.org/10.1186/s40854-022-00399-6 .

  34. Mikhaylov, A.: Cryptocurrency market analysis from the open innovation perspective. J. Open Innov. Technol. Mark. Complex. 6, 197 (2020). https://doi.org/10.3390/joitmc6040197 .
    Paper not yet in RePEc: Add citation now
  35. Moiseev, N., Mikhaylov, A., Dinçer, H., Yüksel, S.: Market capitalization shock effects on open innovation models in e-commerce: golden cut q-rung orthopair fuzzy multicriteria decision-making analysis. Financ. Innov. 9, 1–25 (2023). https://doi.org/10.1186/s40854-023-00461- .

  36. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf (2009).
    Paper not yet in RePEc: Add citation now
  37. Nelson, D.B.: Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59, 347–370 (1991).

  38. Pabuçcu, H., Ongan, S., Ongan, A.: Forecasting the movements of bitcoin prices: an application of machine learning algorithms. Quant. Finance Econ. 4, 679–692 (2020). https://doi.org/10.3934/QFE.2020031 .
    Paper not yet in RePEc: Add citation now
  39. Pandey, A.K., Singh, P.K., Nawaz, M., Kushwaha, A.K.: Forecasting of non-renewable and renewable energy production in India using optimized discrete grey model. Environ. Sci. Pollut. Res. 30, 8188–8206 (2022). https://doi.org/10.1007/s11356-022-22739-w .
    Paper not yet in RePEc: Add citation now
  40. Peng, Y., Albuquerque, P.H.M., Camboim de Sá, J.M., Padula, A.J.A., Montenegro, M.R.: The best of two worlds: forecasting high frequency volatility for cryptocurrencies and traditional currencies with support vector regression. Expert Syst. Appl. 97, 177–192 (2018). https://doi.org/10.1016/j.eswa.2017.12.004 .
    Paper not yet in RePEc: Add citation now
  41. Rathore, R.K., Mishra, D., Mehra, P.S., Pal, O., Hashim, A.S., Shapi’i, A., Ciano, T., Shutaywi, M.: Real-world model for bitcoin price prediction. Inf. Process. Manag. 59, 102968 (2022). https://doi.org/10.1016/j.ipm.2022.102968 .
    Paper not yet in RePEc: Add citation now
  42. Singh, P.K., Pandey, A.K., Ahuja, S., Kiran, R.: Multiple forecasting approach: a prediction of CO2 emission from the paddy crop in India. Environ. Sci. Pollut. Res. 29, 25461–25472 (2022). https://doi.org/10.1007/s11356-021-17487-2 .
    Paper not yet in RePEc: Add citation now
  43. Singh, P.K., Pandey, A.K., Bose, S.C.: A new grey system approach to forecast closing price of Bitcoin, Bionic, Cardano, Dogecoin, Ethereum, XRP Cryptocurrencies. Qual. Quant. 57, 2429–2446 (2023). https://doi.org/10.1007/s11135-022-01463-0 .
    Paper not yet in RePEc: Add citation now
  44. Singh, P.K., Pandey, A.K., Chouhan, A., Singh, G.J.: Prediction of surface temperature and CO2 emission of leading emitters using grey model EGM (1,1, $$\alpha$$ α , $$\theta$$ θ ). Environ. Sci. Pollut. Res. 30, 39708–39723 (2023). https://doi.org/10.1007/s11356-022-24954-x .
    Paper not yet in RePEc: Add citation now
  45. Taylor, J.: A quantile regression neural network approach to estimating the conditional density of multiperiod returns. J. Forecast. 19, 299–311 (2000).
    Paper not yet in RePEc: Add citation now
  46. Tiwari, A.K., Kumar, S., Pathak, R.: Modelling the dynamics of bitcoin and litecoin: GARCH versus stochastic volatility models. Appl. Econ. 51, 4073–4082 (2019). https://doi.org/10.1080/00036846.2019.1588951 .

  47. Wang, J., Ma, F., Bouri, E., Guo, Y.: Which factors drive bitcoin volatility: macroeconomic, technical, or both? J. Forecast. 25, 1–19 (2022). https://doi.org/10.1002/for.2930 .
    Paper not yet in RePEc: Add citation now
  48. Zakoian, J.M.: Threshold heteroskedastic models. J. Econ. Dyn. Control 18, 931–955 (1994). https://doi.org/10.1016/0165-1889(94)90039-6 .

Cocites

Documents in RePEc which have cited the same bibliography

  1. Forecasting cryptocurrencies returns: Do macroeconomic and financial variables improve tail expectation predictions?. (2024). Leccadito, Arturo ; Lawuobahsumo, Kokulo K ; Algieri, Bernardina.
    In: Quality & Quantity: International Journal of Methodology.
    RePEc:spr:qualqt:v:58:y:2024:i:3:d:10.1007_s11135-023-01761-1.

    Full description at Econpapers || Download paper

  2. OG-CAT: A Novel Algorithmic Trading Alternative to Investment in Crypto Market. (2024). Khurana, Surinder Singh ; Singh, Parvinder ; Garg, Naresh Kumar.
    In: Computational Economics.
    RePEc:kap:compec:v:63:y:2024:i:5:d:10.1007_s10614-023-10380-9.

    Full description at Econpapers || Download paper

  3. Forecasting Bitcoin prices using artificial intelligence: Combination of ML, SARIMA, and Facebook Prophet models. (2024). Shahzad, Umer ; Tiwari, Sunil ; Mahendru, Mandeep ; Cheng, Jiyang ; Khaled, Djebbouri.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:198:y:2024:i:c:s0040162523006236.

    Full description at Econpapers || Download paper

  4. Arbitrage opportunities and feedback trading in regulated bitcoin futures market: An intraday analysis. (2024). Wang, Jinghua ; Ngene, Geoffrey M.
    In: International Review of Economics & Finance.
    RePEc:eee:reveco:v:89:y:2024:i:pb:p:743-761.

    Full description at Econpapers || Download paper

  5. REnsembling ARIMAX Model in Algorithmic Investment Strategies on Commodities Market. (2023). Ślepaczuk, Robert ; Jakubowski, Pawe ; Windorbski, Franciszek.
    In: Working Papers.
    RePEc:war:wpaper:2023-20.

    Full description at Econpapers || Download paper

  6. Fundamental and speculative components of the cryptocurrency pricing dynamics. (2023). Kukacka, Jiri ; Krištoufek, Ladislav.
    In: Financial Innovation.
    RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-023-00465-7.

    Full description at Econpapers || Download paper

  7. Cryptocurrency volatility forecasting: What can we learn from the first wave of the COVID-19 outbreak?. (2023). ben Ameur, Hachmi ; Louhichi, Wael ; Ftiti, Zied.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:330:y:2023:i:1:d:10.1007_s10479-021-04116-x.

    Full description at Econpapers || Download paper

  8. Modeling Bitcoin Prices using Signal Processing Methods, Bayesian Optimization, and Deep Neural Networks. (2023). Sharma, Rakesh Kumar ; Tripathi, Bhaskar.
    In: Computational Economics.
    RePEc:kap:compec:v:62:y:2023:i:4:d:10.1007_s10614-022-10325-8.

    Full description at Econpapers || Download paper

  9. The role of interpersonal trust in cryptocurrency adoption. (2023). Yarovaya, Larisa ; Urquhart, Andrew ; Matkovskyy, Roman ; Jalan, Akanksha.
    In: Post-Print.
    RePEc:hal:journl:hal-03946536.

    Full description at Econpapers || Download paper

  10. How well do investor sentiment and ensemble learning predict Bitcoin prices?. (2023). Hajek, Petr ; Hikkerova, Lubica ; Sahut, Jean-Michel.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:64:y:2023:i:c:s0275531922002227.

    Full description at Econpapers || Download paper

  11. Forecasting Bitcoin with technical analysis: A not-so-random forest?. (2023). Gradojevic, Nikola ; Djakovic, Vladimir ; Adcock, Robert ; Kukolj, Dragan.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:39:y:2023:i:1:p:1-17.

    Full description at Econpapers || Download paper

  12. The role of interpersonal trust in cryptocurrency adoption. (2023). Yarovaya, Larisa ; Urquhart, Andrew ; Matkovskyy, Roman ; Jalan, Akanksha.
    In: Journal of International Financial Markets, Institutions and Money.
    RePEc:eee:intfin:v:83:y:2023:i:c:s1042443122001871.

    Full description at Econpapers || Download paper

  13. Forecasting the movements of Bitcoin prices: an application of machine learning algorithms. (2023). Ongan, Serdar ; Pabuccu, Hakan.
    In: Papers.
    RePEc:arx:papers:2303.04642.

    Full description at Econpapers || Download paper

  14. A note on the Bitcoin and Fed Funds rate. (2022). Aboura, Sofiane.
    In: Empirical Economics.
    RePEc:spr:empeco:v:63:y:2022:i:5:d:10.1007_s00181-022-02207-7.

    Full description at Econpapers || Download paper

  15. Forecasting Bitcoin price direction with random forests: How important are interest rates, inflation, and market volatility?. (2022). Basher, Syed ; Perry, Sadorsky ; Abul, Basher Syed.
    In: MPRA Paper.
    RePEc:pra:mprapa:113293.

    Full description at Econpapers || Download paper

  16. Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle. (2022). Magner, Nicolas ; Hardy, Nicolas.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:13:p:2338-:d:855300.

    Full description at Econpapers || Download paper

  17. Do AI-powered mutual funds perform better?. (2022). Ren, Jinjuan ; Chen, Rui.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:47:y:2022:i:pa:s1544612321005547.

    Full description at Econpapers || Download paper

  18. The personal wealth importance to the intertemporal choice. (2021). Do, Jose Claudio.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:565:y:2021:i:c:s0378437120308578.

    Full description at Econpapers || Download paper

  19. Volatility cascades in cryptocurrency trading. (2021). Tsiakas, Ilias ; Gradojevic, Nikola.
    In: Journal of Empirical Finance.
    RePEc:eee:empfin:v:62:y:2021:i:c:p:252-265.

    Full description at Econpapers || Download paper

  20. MRC-LSTM: A Hybrid Approach of Multi-scale Residual CNN and LSTM to Predict Bitcoin Price. (2021). Fang, Zhiyang ; Lei, Shun ; Guo, Qiutong ; Ye, Qing.
    In: Papers.
    RePEc:arx:papers:2105.00707.

    Full description at Econpapers || Download paper

  21. Forecasting Mid-price Movement of Bitcoin Futures Using Machine Learning. (2020). Uddin, Gazi ; Corbet, Shaen ; Cepni, Oguzhan ; Akyildirim, Erdinc.
    In: Working Papers.
    RePEc:hhs:cbsnow:2020_020.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-29 10:01:31 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.