Adcock, R., Gradojevic, N.: Non-fundamental, non-parametric bitcoin forecasting. Phys. A Stat. Mech. Appl. 531, 121727 (2019). https://doi.org/10.1016/j.physa.2019.121727 .
- Algieri, B., Iania, L., Leccadito, A.: Looking ahead: forecasting total energy carbon dioxide emissions. Clean. Environ. Syst. 9, 100112 (2023). https://doi.org/10.1016/j.cesys.2023.100112 .
Paper not yet in RePEc: Add citation now
Algieri, B., Kalkuhl, M., Koch, N.: A tale of two tails: explaining extreme events in financialized agricultural markets. Food Policy 69, 256–269 (2017).
Algieri, B., Leccadito, A.: Extreme price moves: an INGARCH approach to model coexceedances in commodity markets. Eur. Rev. Agric. Econ. 48, 878–914 (2021). https://doi.org/10.1093/erae/jbaa030 .
Algieri, B.: Drivers of export demand: a focus on the Giips countries. World Econ. 37, 1454–1482 (2014). https://doi.org/10.1111/twec.12153 .
- Amalia, F.F., Suhartono, A., Rahayu, S.P., Suhermi, N.: Quantile regression neural network for forecasting inflow and outflow in Yogyakarta. J. Phys. Conf. Ser. 1028, 12232 (2018). https://doi.org/10.1088/1742-6596/1028/1/012232 .
Paper not yet in RePEc: Add citation now
Ardia, D., Bluteau, K., Rüede, M.: Regime changes in bitcoin GARCH volatility dynamics. Finance Res. Lett. 29, 266–271 (2019). https://doi.org/10.1016/j.frl.2018.08.009 .
- Bakas, D., Magkonis, G., Oh, E.Y.: What drives volatility in bitcoin market? Finance Res. Lett. 50, 103237 (2022). https://doi.org/10.1016/j.frl.2022.103237 .
Paper not yet in RePEc: Add citation now
Basher, S.A., Sadorsky, P.: Forecasting bitcoin price direction with random forests: how important are interest rates, inflation, and market volatility? Mach. Learn. Appl. 9, 100355 (2022). https://doi.org/10.1016/j.mlwa.2022.100355 .
Bernardi, M., Catania, L.: Comparison of value-at-risk models using the MCS approach. Comput. Stat. 31, 579–608 (2016). https://doi.org/10.1007/s00180-016-0646-6 .
Bollerslev, T.: A conditionally heteroskedastic time series model for speculative prices and rates of return. Rev. Econ. Stat. 69, 542–547 (1987).
Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. J. Econ. 31, 307–327 (1986). https://doi.org/10.1016/0304-4076(86)90063-1 .
Borri, N.: Conditional tail-risk in cryptocurrency markets. J. Empir. Finance 50, 1–19 (2019). https://doi.org/10.1016/j.jempfin.2018.11.002 .
- Cannon, A.J.: Non-crossing nonlinear regression quantiles by monotone composite quantile regression neural network, with application to rainfall extremes. Stoch. Environ. Res. Risk Assess. 32, 3207–3225 (2018). https://doi.org/10.1007/s00477-018-1573-6 .
Paper not yet in RePEc: Add citation now
- Cannon, A.J.: Quantile regression neural networks: implementation in R and application to precipitation downscaling. Comput. Geosci. 37, 1277–1284 (2011). https://doi.org/10.1016/j.cageo.2010.07.005 .
Paper not yet in RePEc: Add citation now
Caporale, G.M., Zekokh, T.: Modelling volatility of cryptocurrencies using Markov-switching Garch models. Res. Int. Bus. Finance 48, 143–155 (2019). https://doi.org/10.1016/j.ribaf.2018.12.009 .
- Chen, C.: A finite smoothing algorithm for quantile regression. J. Comput. Graph. Stat. 16, 136–164 (2007). https://doi.org/10.1198/106186007X180336 .
Paper not yet in RePEc: Add citation now
Chu, J., Chan, S., Nadarajah, S., Osterrieder, J.: GARCH modelling of cryptocurrencies. J. Risk Financ. Manag. 10, 1–15 (2017). https://doi.org/10.3390/jrfm10040017 .
Diebold, F.X., Mariano, R.S.: Comparing predictive accuracy. J. Bus. Econ. Stat. 20, 134–144 (2002). https://doi.org/10.1198/073500102753410444 .
Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50, 987–1007 (1982).
Feng, W., Wang, Y., Zhang, Z.: Can cryptocurrencies be a safe haven: a tail risk perspective analysis. Appl. Econ. 50, 4745–4762 (2018). https://doi.org/10.1080/00036846.2018.1466993 .
Fissler, T., Ziegel, J.F., Gneiting, T.: Expected shortfall is jointly elicitable with value at risk—implications for backtesting. Management (2015). https://doi.org/10.48550/ARXIV.1507.00244 .
- Fleischer, J.P., von Laszewski, G., Theran, C., ParraBautista, Y.J.: Time series analysis of cryptocurrency prices using long short-term memory. Algorithms (2022). https://doi.org/10.3390/a15070230 .
Paper not yet in RePEc: Add citation now
Glosten, L.R., Jagannathan, R., Runkle, D.E.: On the relation between the expected value and the volatility of the nominal excess return on stocks. J. Finance 48, 1779–1801 (1993). https://doi.org/10.1111/j.1540-6261.1993.tb05128.x .
- Gronwald, M.: The Economics of Bitcoins—Market Characteristics and Price Jumps. SSRN Scholarly Paper ID 2548999. Social Science Research Network, Rochester (2014).
Paper not yet in RePEc: Add citation now
Hansen, P.R., Lunde, A., Nason, J.M.: The model confidence set. Econometrica 79, 453–497 (2011). https://doi.org/10.3982/ECTA5771 .
- Jaquart, P., Dann, D., Weinhardt, C.: Short-term bitcoin market prediction via machine learning. J. Finance Data Sci. 7, 45–66 (2021). https://doi.org/10.1016/j.jfds.2021.03.001 .
Paper not yet in RePEc: Add citation now
Katsiampa, P.: An empirical investigation of volatility dynamics in the cryptocurrency market. Res. Int. Bus. Finance 50, 322–335 (2019). https://doi.org/10.1016/j.ribaf.2019.06.004 .
- Khalaf, L., Leccadito, A., Urga, G.: Multilevel and tail risk management. J. Financ. Econom. 20, 1–36 (2021). https://doi.org/10.1093/jjfinec/nbaa044 .
Paper not yet in RePEc: Add citation now
Kim, J.M., Jun, C., Lee, J.: Forecasting the volatility of the cryptocurrency market by GARCH and stochastic volatility. Mathematics (2021). https://doi.org/10.3390/math9141614 .
Lahmiri, S., Bekiros, S.: Cryptocurrency forecasting with deep learning chaotic neural networks. Chaos Solitons Fractals 118, 35–40 (2019). https://doi.org/10.1016/j.chaos.2018.11.014 .
Lawuobahsumo, K.K., Algieri, B., Iania, L., Leccadito, A.: Exploring dependence relationships between bitcoin and commodity returns: an assessment using the Gerber cross-correlation. Commodities 1, 34–49 (2022). https://doi.org/10.3390/commodities1010004 .
Mikhaylov, A., Dinçer, H., Yüksel, S.: Analysis of financial development and open innovation oriented fintech potential for emerging economies using an integrated decision-making approach of MF-X-DMA and golden cut bipolar q-ROFSs. Financ. Innov. (2023). https://doi.org/10.1186/s40854-022-00399-6 .
- Mikhaylov, A.: Cryptocurrency market analysis from the open innovation perspective. J. Open Innov. Technol. Mark. Complex. 6, 197 (2020). https://doi.org/10.3390/joitmc6040197 .
Paper not yet in RePEc: Add citation now
Moiseev, N., Mikhaylov, A., Dinçer, H., Yüksel, S.: Market capitalization shock effects on open innovation models in e-commerce: golden cut q-rung orthopair fuzzy multicriteria decision-making analysis. Financ. Innov. 9, 1–25 (2023). https://doi.org/10.1186/s40854-023-00461- .
- Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf (2009).
Paper not yet in RePEc: Add citation now
Nelson, D.B.: Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59, 347–370 (1991).
- Pabuçcu, H., Ongan, S., Ongan, A.: Forecasting the movements of bitcoin prices: an application of machine learning algorithms. Quant. Finance Econ. 4, 679–692 (2020). https://doi.org/10.3934/QFE.2020031 .
Paper not yet in RePEc: Add citation now
- Pandey, A.K., Singh, P.K., Nawaz, M., Kushwaha, A.K.: Forecasting of non-renewable and renewable energy production in India using optimized discrete grey model. Environ. Sci. Pollut. Res. 30, 8188–8206 (2022). https://doi.org/10.1007/s11356-022-22739-w .
Paper not yet in RePEc: Add citation now
- Peng, Y., Albuquerque, P.H.M., Camboim de Sá, J.M., Padula, A.J.A., Montenegro, M.R.: The best of two worlds: forecasting high frequency volatility for cryptocurrencies and traditional currencies with support vector regression. Expert Syst. Appl. 97, 177–192 (2018). https://doi.org/10.1016/j.eswa.2017.12.004 .
Paper not yet in RePEc: Add citation now
- Rathore, R.K., Mishra, D., Mehra, P.S., Pal, O., Hashim, A.S., Shapi’i, A., Ciano, T., Shutaywi, M.: Real-world model for bitcoin price prediction. Inf. Process. Manag. 59, 102968 (2022). https://doi.org/10.1016/j.ipm.2022.102968 .
Paper not yet in RePEc: Add citation now
- Singh, P.K., Pandey, A.K., Ahuja, S., Kiran, R.: Multiple forecasting approach: a prediction of CO2 emission from the paddy crop in India. Environ. Sci. Pollut. Res. 29, 25461–25472 (2022). https://doi.org/10.1007/s11356-021-17487-2 .
Paper not yet in RePEc: Add citation now
- Singh, P.K., Pandey, A.K., Bose, S.C.: A new grey system approach to forecast closing price of Bitcoin, Bionic, Cardano, Dogecoin, Ethereum, XRP Cryptocurrencies. Qual. Quant. 57, 2429–2446 (2023). https://doi.org/10.1007/s11135-022-01463-0 .
Paper not yet in RePEc: Add citation now
- Singh, P.K., Pandey, A.K., Chouhan, A., Singh, G.J.: Prediction of surface temperature and CO2 emission of leading emitters using grey model EGM (1,1, $$\alpha$$ α , $$\theta$$ θ ). Environ. Sci. Pollut. Res. 30, 39708–39723 (2023). https://doi.org/10.1007/s11356-022-24954-x .
Paper not yet in RePEc: Add citation now
- Taylor, J.: A quantile regression neural network approach to estimating the conditional density of multiperiod returns. J. Forecast. 19, 299–311 (2000).
Paper not yet in RePEc: Add citation now
Tiwari, A.K., Kumar, S., Pathak, R.: Modelling the dynamics of bitcoin and litecoin: GARCH versus stochastic volatility models. Appl. Econ. 51, 4073–4082 (2019). https://doi.org/10.1080/00036846.2019.1588951 .
- Wang, J., Ma, F., Bouri, E., Guo, Y.: Which factors drive bitcoin volatility: macroeconomic, technical, or both? J. Forecast. 25, 1–19 (2022). https://doi.org/10.1002/for.2930 .
Paper not yet in RePEc: Add citation now
Zakoian, J.M.: Threshold heteroskedastic models. J. Econ. Dyn. Control 18, 931–955 (1994). https://doi.org/10.1016/0165-1889(94)90039-6 .