- Akbay, M.A.; Kalayci, C.B.; Polat, O. A parallel variable neighborhood search algorithm with quadratic programming for cardinality constrained portfolio optimization. Knowl.-Based Syst 2020, 198, 105944. [CrossRef] Mathematics 2022, 10, 3079 20 of 20
Paper not yet in RePEc: Add citation now
- Annaert, J.; Ceuster, M.D.; Vandenbroucke, J. Mind the Floor: Enhance Portfolio Insurance without Borrowing. J. Investig. 2019, 28, 39â50. [CrossRef]
Paper not yet in RePEc: Add citation now
Bielecki, T.R.; Jin, H.; Pliska, S.R.; Zhou, X.Y. Continuous-time mean-variance portfolio selection with bankruptcy prohibition. Math. Financ. 2005, 15, 213â244. [CrossRef]
Branke, J.; Scheckenbach, B.; Stein, M.; Deb, K.; Schmeck, H. Portfolio optimization with an envelope-based multiobjective evolutionary algorithm. Eur. J. Oper. Res. 2009, 199, 684â693. [CrossRef]
Canakgoz, N.A.; Beasley, J.E. Mixed-integer programming approaches for index tracking and enhanced indexation. Eur. J. Oper. Res. 2009, 196, 384â399. [CrossRef]
- Cornuejols, G.; Tütüncü, R. Optimization Methods in Finance; Cambridge University Press: Cambridge, UK, 2006. [CrossRef]
Paper not yet in RePEc: Add citation now
Dai, Z. A Closer Look at the Minimum-Variance Portfolio Optimization Model. Math. Probl. Eng. 2019, 2019, 1â8. [CrossRef]
- Draviam, T.; Chellathurai, T. Generalized Markowitz mean-variance principles for multi-period portfolio-selection problems. Proc. R. Soc. Lond. A 2002, 458, 2571â2607. [CrossRef]
Paper not yet in RePEc: Add citation now
- Holden, H.; Holden, L. Optimal rebalancing of portfolios with transaction costs. Stochastics Int. J. Probab. Stoch. Process. 2012, 85, 371â394. [CrossRef]
Paper not yet in RePEc: Add citation now
Jiang, W.; Lin, C.L.; Katsikis, V.N.; Mourtas, S.D.; StanimirovicÌ, P.S.; Simos, T.E. Zeroing neural network approaches based on direct and indirect methods for solving the YangâBaxter-like matrix equation. Mathematics 2022, 10, 1950. [CrossRef]
- Jin, L.; Zhang, Y.; Li, S.; Zhang, Y. Modified ZNN for Time-Varying Quadratic Programming With Inherent Tolerance to Noises and Its Application to Kinematic Redundancy Resolution of Robot Manipulators. IEEE Trans. Ind. Electron. 2016, 63, 6978â6988. [CrossRef]
Paper not yet in RePEc: Add citation now
- Katsikis, V.N.; Mourtas, S.D.; StanimirovicÌ, P.S.; Li, S.; Cao, X. Time-varying mean-variance portfolio selection problem solving via LVI-PDNN. Comput. Oper. Res. 2022, 138, 105582. [CrossRef]
Paper not yet in RePEc: Add citation now
Katsikis, V.N.; Mourtas, S.D.; StanimirovicÌ, P.S.; Li, S.; Cao, X. Time-varying mean-variance portfolio selection under transaction costs and cardinality constraint problem via beetle antennae search algorithm (BAS). SN Oper. Res. Forum 2021, 2, 18. [CrossRef]
- Katsikis, V.N.; Mourtas, S.D.; StanimirovicÌ, P.S.; Zhang, Y. Continuous-time varying complex QR decomposition via zeroing neural dynamics. Neural Process. Lett. 2021, 53, 3573â3590. [CrossRef]
Paper not yet in RePEc: Add citation now
- Katsikis, V.N.; Mourtas, S.D.; StanimirovicÌ, P.S.; Zhang, Y. Solving complex-valued time-varying linear matrix equations via QR decomposition with applications to robotic motion tracking and on angle-of-arrival localization. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 3415â3424. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kornilova, M.; Kovalnogov, V.; Fedorov, R.; Zamaleev, M.; Katsikis, V.N.; Mourtas, S.D.; Simos, T.E. Zeroing neural network for pseudoinversion of an arbitrary time-varying matrix based on singular value decomposition. Mathematics 2022, 10, 1208. [CrossRef]
Paper not yet in RePEc: Add citation now
- Leung, M.F.; Wang, J. Minimax and Biobjective Portfolio Selection Based on Collaborative Neurodynamic Optimization. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 2825â2836. [CrossRef]
Paper not yet in RePEc: Add citation now
- Markowitz, H.M. Portfolio Selection: Efficient Diversification of Investments; Cowles Foundation Monograph: No. 16; Yale University Press: New Haven, CT, USA, 1959; p. 368.
Paper not yet in RePEc: Add citation now
Matsumoto, K. Option Replication in Discrete Time with Illiquidity. Appl. Math. Financ. 2013, 20, 167â190. [CrossRef]
- Matsumoto, K. Portfolio Insurance with Liquidity Risk. Asia-Pac. Financ. Mark. 2008, 14, 363. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mourtas, S.D.; Katsikis, V.N. Exploiting the Black-Litterman framework through error-correction neural networks. Neurocomputing 2022, 498, 43â58. [CrossRef]
Paper not yet in RePEc: Add citation now
- Nobre, J.; Neves, R.F. Combining principal component analysis, discretewavelet transform and xgboost to trade in the financial markets. Expert Syst. Appl. 2019, 125, 181â194. [CrossRef]
Paper not yet in RePEc: Add citation now
Simos, T.E.; Katsikis, V.N.; Mourtas, S.D.; StanimirovicÌ, P.S. Unique non-negative definite solution of the time-varying algebraic Riccati equations with applications to stabilization of LTV systems. Math. Comput. Simul. 2022, 202, 164â180. [CrossRef]
- Uhlig, F.; Zhang, Y. Time-varying matrix eigenanalyses via Zhang neural networks and look-ahead finite difference equations. Linear Algebra Its Appl. 2019, 580, 417â435. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, H.; Zhou, X.Y. Continuous-time mean-variance portfolio selection: A reinforcement learning framework. Math. Financ. 2020, 30, 1273â1308. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yaman, I.; Dalkılıç, T.E. A hybrid approach to cardinality constraint portfolio selection problem based on nonlinear neural network and genetic algorithm. Expert Syst. Appl. 2021, 169, 114517. [CrossRef]
Paper not yet in RePEc: Add citation now
Yu, J.R.; Chiou, W.J.P.; Lee, W.Y.; Lin, S.J. Portfolio models with return forecasting and transaction costs. Int. Rev. Econ. Financ. 2020, 66, 118â130. [CrossRef]
- Zakamulin, V. Market Timing with Moving Averages: The Anatomy and Performance of Trading Rules; Springer: Berlin/Heidelberg, Germany, 2017.
Paper not yet in RePEc: Add citation now
- Zhang, Y.; Ge, S.S. Design and analysis of a general recurrent neural network model for time-varying matrix inversion. IEEE Trans. Neural Netw. 2005, 16, 1477â1490. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, Y.; Wang, J. Recurrent neural networks for nonlinear output regulation. Automatica 2001, 37, 1161â1173. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, Y.; Wang, Y.; Chen, D.; Peng, C.; Xie, Q. Neurodynamic solvers robotic applications and solution nonuniqueness of linear programming. In Linear Programming: Theory, Algorithms and Applicant; Nova Science Publishers:Hauppauge, NY, USA, 2014; pp. 27â100.
Paper not yet in RePEc: Add citation now
- Zhang, Z.; Yang, S.; Zheng, L. A Penalty Strategy Combined Varying-Parameter Recurrent Neural Network for Solving TimeVarying Multi-Type Constrained Quadratic Programming Problems. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 2993â3004. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhong, N.; Huang, Q.; Yang, S.; Ouyang, F.; Zhang, Z. A Varying-Parameter Recurrent Neural Network Combined With Penalty Function for Solving Constrained Multi-Criteria Optimization Scheme for Redundant Robot Manipulators. IEEE Access 2021, 9, 50810â50818. [CrossRef]
Paper not yet in RePEc: Add citation now