- Aguilar, L.T.; Orlov, Y.; Acho, L. Nonlinear Hâ-control of nonsmooth time-varying systems with application to friction mechanical manipulators. Automatica 2003, 39, 1531â1542. [CrossRef]
Paper not yet in RePEc: Add citation now
- Aloui, M.; Hamidi, F.; Jerbi, H.; Omri, M.; Popescu, D.; Abbassi, R.A. Chaotic Krill Herd optimization algorithm for global numerical estimation of the attraction domain for nonlinear systems. Mathematics 2021, 9, 1743. [CrossRef]
Paper not yet in RePEc: Add citation now
- Climent, J.; Thome, N.; Wei, Y. A geometrical approach on generalized inverses by Neumann-type series. Linear Algebra Appl. 2001, 332, 533â540. [CrossRef]
Paper not yet in RePEc: Add citation now
- Dong, X.; Hu, G. Time-varying formation tracking for linear multiagent systems with multiple leaders. IEEE Trans. Autom. Control 2017, 62, 3658â3664. [CrossRef]
Paper not yet in RePEc: Add citation now
- Dooren, P.V. A generalized eigenvalue approach for solving Riccati equations. SIAM J. Sci. Stat. Comput. 1981, 2, 121â135. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ferrante, A.; Ntogramatzidis, L. The generalized continuous algebraic Riccati equation and impulse-free continuous-time LQ optimal control. Automatica 2014, 50, 1176â1180. [CrossRef]
Paper not yet in RePEc: Add citation now
- Gupta, A.K. Numerical Methods Using MATLAB; MATLAB Solutions Series; Springer Press: New York, NY, USA, 2014.
Paper not yet in RePEc: Add citation now
- Jerbi, H.; Ben Aoun, S.; Omri, M.; Simos, T.E.; Tsitouras, C. A neural network type approach for constructing Runge-Kutta pairs of orders six and five that perform best on problems with oscillatory solutions. Mathematics 2022, 10, 827. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jerbi, H.; Omri, M.; Kchaou, M.; Simos, T.E.; Tsitouras, C. Runge-Kutta-Nyström pairs of orders 8(6) with coefficients trained to perform best on classical orbits. Mathematics 2022, 10, 654. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jin, J.; Zhu, J.; Gong, J.; Chen, W. Novel activation functions-based ZNN models for fixed-time solving dynamirc Sylvester equation. Neural Comput. Appl. 2022, 34, 14297â14315. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jin, J.; Zhu, J.; Zhao, L.; Chen, L.; Chen, L.; Gong, J. A robust predefined-time convergence zeroing neural network for dynamic matrix inversion. IEEE Trans. Cybern. 2022. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jin, L.; Li, J.; Sun, Z.; Lu, J.; Wang, F. Neural dynamics for computing perturbed nonlinear equations applied to ACP-based lower limb motion intention recognition. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 5105â5113. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jin, L.; Wei, L.; Li, S. Gradient-based differential neural-solution to time-dependent nonlinear optimization. IEEE Trans. Autom. Control. 2022. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jin, L.; Zhang, Y.; Li, S. Integration-enhanced Zhang neural network for real-time-varying matrix inversion in the presence of various kinds of noises. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 2615â2627. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jin, L.; Zhang, Y.; Li, S.; Zhang, Y. Noise-tolerant ZNN models for solving time-varying zero-finding problems: A control-theoretic approach. IEEE Trans. Autom. Control 2017, 62, 992â997. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kalman, R.E. Contributions to the theory of optimal control. Bol. Soc. Mat. Mex. 1960, 5, 102â119.
Paper not yet in RePEc: Add citation now
- Katsikis, V.N.; StanimirovicÌ, P.S.; Mourtas, S.D.; Li, S.; Cao, X. Generalized Inverses: Algorithms and Applications; Mathematics Research Developments, Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2021; Chapter towards Higher Order Dynamical Systems; pp. 207â239.
Paper not yet in RePEc: Add citation now
Kornilova, M.; Kovalnogov, V.; Fedorov, R.; Zamaleev, M.; Katsikis, V.N.; Mourtas, S.D.; Simos, T.E. Zeroing neural network for pseudoinversion of an arbitrary time-varying matrix based on singular value decomposition. Mathematics 2022, 10, 1208. [CrossRef]
- Laub, A. A Schur method for solving algebraic Riccati equations. IEEE Trans. Autom. Control 1979, 24, 913â921. [CrossRef]
Paper not yet in RePEc: Add citation now
- Li, W.; Li, Z. A family of iterative methods for computing the approximate inverse of a square matrix and inner inverse of a non-square matrix. Appl. Math. Comput. 2010, 215, 3433â3442. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, H.; Wang, T.; Guo, D. Design and validation of zeroing neural network to solve time-varying algebraic Riccati equation. IEEE Access 2020, 8, 211315â211323. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, X.; Jin, H.; Yu, Y. Higher-order convergent iterative method for computing the generalized inverse and its application to Toeplitz matrices. Linear Algebra Appl. 2013, 439, 1635â1650. [CrossRef]
Paper not yet in RePEc: Add citation now
Mourtas, S.D.; Kasimis, C. Exploiting mean-variance portfolio optimization problems through zeroing neural networks. Mathematics 2022, 10, 3079. [CrossRef]
- Ohtsuka, T. A recursive elimination method for finite-horizon optimal control problems of discrete-time rational systems. IEEE Trans. Autom. Control 2014, 59, 3081â3086. [CrossRef]
Paper not yet in RePEc: Add citation now
- Oshman, Y.; Bar-Itzhack, I. Eigenfactor solution of the matrix Riccati equationâA continuous square root algorithm. IEEE Trans. Autom. Control 1985, 30, 971â978. [CrossRef]
Paper not yet in RePEc: Add citation now
- Prach, A.; Kayacan, E.; Bernstein, D.S. An experimental evaluation of the forward propagating Riccati equation to nonlinear control of the Quanser 3 DOF Hover testbed. In Proceedings of the 2016 American Control Conference, ACC 2016, Boston, MA, USA, 6â8 July 2016; pp. 3710â3715. [CrossRef]
Paper not yet in RePEc: Add citation now
- Prach, A.; Tekinalp, O.; Bernstein, D.S. A numerical comparison of frozen-time and forward-propagating Riccati equations for stabilization of periodically time-varying systems. In Proceedings of the American Control Conference, Portland, OR, USA, 4â6 June 2014; pp. 5633â5638.
Paper not yet in RePEc: Add citation now
- Qin, B.; Sun, H.; Ma, J.; Li, W.; Ding, T.; Wang, Z.; Zomaya, A.Y. Robust Hâ control of doubly fed wind generator via state-dependent Riccati equation technique. IEEE Trans. Power Syst. 2019, 34, 2390â2400. [CrossRef]
Paper not yet in RePEc: Add citation now
- Rigatos, G.; Busawon, K.; Pomares, J.; Abbaszadeh, M. Nonlinear optimal control for the wheeled inverted pendulum system. Robotica 2020, 38, 29â47. [CrossRef]
Paper not yet in RePEc: Add citation now
- Saiery, M.; Katebi, J.; Lakestani, M. Control of time-varying systems based on forward Riccati formulation in hybrid functions domain. Int. J. Control. 2022. [CrossRef]
Paper not yet in RePEc: Add citation now
- Simos, T.E.; Katsikis, V.N.; Mourtas, S.D.; StanimirovicÌ, P.S. Finite-time convergent zeroing neural network for solving timevarying algebraic Riccati equations. J. Frankl. Inst. 2022. [CrossRef]
Paper not yet in RePEc: Add citation now
Simos, T.E.; Katsikis, V.N.; Mourtas, S.D.; StanimirovicÌ, P.S. Unique non-negative definite solution of the time-varying algebraic Riccati equations with applications to stabilization of LTV systems. Math. Comput. Simul. 2022, 202, 164â180. [CrossRef] Mathematics 2022, 10, 4490 16 of 16
- Simos, T.E.; Katsikis, V.N.; Mourtas, S.D.; StanimirovicÌ, P.S.; Gerontitis, D. A higher-order zeroing neural network for pseudoinversion of an arbitrary time-varying matrix with applications to mobile object localization. Inf. Sci. 2022, 600, 226â238. [CrossRef]
Paper not yet in RePEc: Add citation now
- StanimirovicÌ, P.S.; Katsikis, V.N.; Li, S. Higher-order ZNN dynamics. Neural Process. Lett. 2020, 51, 697â721. [CrossRef]
Paper not yet in RePEc: Add citation now
- StanimirovicÌ, P.S.; Srivastava, S.; Gupta, D.K. From Zhang neural network to scaled hyperpower iterations. J. Comput. Appl. Math. 2018, 331, 133â155. [CrossRef]
Paper not yet in RePEc: Add citation now
- Weiguo, L.; Juan, L.; Tiantian, Q. A family of iterative methods for computing Moore-Penrose inverse of a matrix. Linear Algebra Appl. 2013, 438, 47â56. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, Y.; Ge, S.S. Design and analysis of a general recurrent neural network model for time-varying matrix inversion. IEEE Trans. Neural Netw. 2005, 16, 1477â1490. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now