create a website

Towards Higher-Order Zeroing Neural Network Dynamics for Solving Time-Varying Algebraic Riccati Equations. (2022). Katsikis, Vasilios N ; Simos, Theodore E ; Mourtas, Spyridon D ; Omri, Mohamed ; Ladhar, Lotfi ; Jerbi, Houssem ; Alharbi, Hadeel.
In: Mathematics.
RePEc:gam:jmathe:v:10:y:2022:i:23:p:4490-:d:986833.

Full description at Econpapers || Download paper

Cited: 2

Citations received by this document

Cites: 37

References cited by this document

Cocites: 11

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Zeroing neural network approaches for computing time-varying minimal rank outer inverse. (2024). Cao, Xinwei ; Katsikis, Vasilios N ; Mourtas, Spyridon D ; Li, Shuai ; Stanimirovi, Predrag S ; Mosi, Dijana.
    In: Applied Mathematics and Computation.
    RePEc:eee:apmaco:v:465:y:2024:i:c:s0096300323005817.

    Full description at Econpapers || Download paper

  2. Continuous and Discrete ZND Models with Aid of Eleven Instants for Complex QR Decomposition of Time-Varying Matrices. (2023). Zhang, Yunong ; Kang, Xiangui ; Chen, Jianrong.
    In: Mathematics.
    RePEc:gam:jmathe:v:11:y:2023:i:15:p:3354-:d:1207483.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Aguilar, L.T.; Orlov, Y.; Acho, L. Nonlinear H∞-control of nonsmooth time-varying systems with application to friction mechanical manipulators. Automatica 2003, 39, 1531–1542. [CrossRef]
    Paper not yet in RePEc: Add citation now
  2. Aloui, M.; Hamidi, F.; Jerbi, H.; Omri, M.; Popescu, D.; Abbassi, R.A. Chaotic Krill Herd optimization algorithm for global numerical estimation of the attraction domain for nonlinear systems. Mathematics 2021, 9, 1743. [CrossRef]
    Paper not yet in RePEc: Add citation now
  3. Climent, J.; Thome, N.; Wei, Y. A geometrical approach on generalized inverses by Neumann-type series. Linear Algebra Appl. 2001, 332, 533–540. [CrossRef]
    Paper not yet in RePEc: Add citation now
  4. Dong, X.; Hu, G. Time-varying formation tracking for linear multiagent systems with multiple leaders. IEEE Trans. Autom. Control 2017, 62, 3658–3664. [CrossRef]
    Paper not yet in RePEc: Add citation now
  5. Dooren, P.V. A generalized eigenvalue approach for solving Riccati equations. SIAM J. Sci. Stat. Comput. 1981, 2, 121–135. [CrossRef]
    Paper not yet in RePEc: Add citation now
  6. Ferrante, A.; Ntogramatzidis, L. The generalized continuous algebraic Riccati equation and impulse-free continuous-time LQ optimal control. Automatica 2014, 50, 1176–1180. [CrossRef]
    Paper not yet in RePEc: Add citation now
  7. Gupta, A.K. Numerical Methods Using MATLAB; MATLAB Solutions Series; Springer Press: New York, NY, USA, 2014.
    Paper not yet in RePEc: Add citation now
  8. Jerbi, H.; Ben Aoun, S.; Omri, M.; Simos, T.E.; Tsitouras, C. A neural network type approach for constructing Runge-Kutta pairs of orders six and five that perform best on problems with oscillatory solutions. Mathematics 2022, 10, 827. [CrossRef]
    Paper not yet in RePEc: Add citation now
  9. Jerbi, H.; Omri, M.; Kchaou, M.; Simos, T.E.; Tsitouras, C. Runge-Kutta-Nyström pairs of orders 8(6) with coefficients trained to perform best on classical orbits. Mathematics 2022, 10, 654. [CrossRef]
    Paper not yet in RePEc: Add citation now
  10. Jin, J.; Zhu, J.; Gong, J.; Chen, W. Novel activation functions-based ZNN models for fixed-time solving dynamirc Sylvester equation. Neural Comput. Appl. 2022, 34, 14297–14315. [CrossRef]
    Paper not yet in RePEc: Add citation now
  11. Jin, J.; Zhu, J.; Zhao, L.; Chen, L.; Chen, L.; Gong, J. A robust predefined-time convergence zeroing neural network for dynamic matrix inversion. IEEE Trans. Cybern. 2022. [CrossRef]
    Paper not yet in RePEc: Add citation now
  12. Jin, L.; Li, J.; Sun, Z.; Lu, J.; Wang, F. Neural dynamics for computing perturbed nonlinear equations applied to ACP-based lower limb motion intention recognition. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 5105–5113. [CrossRef]
    Paper not yet in RePEc: Add citation now
  13. Jin, L.; Wei, L.; Li, S. Gradient-based differential neural-solution to time-dependent nonlinear optimization. IEEE Trans. Autom. Control. 2022. [CrossRef]
    Paper not yet in RePEc: Add citation now
  14. Jin, L.; Zhang, Y.; Li, S. Integration-enhanced Zhang neural network for real-time-varying matrix inversion in the presence of various kinds of noises. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 2615–2627. [CrossRef]
    Paper not yet in RePEc: Add citation now
  15. Jin, L.; Zhang, Y.; Li, S.; Zhang, Y. Noise-tolerant ZNN models for solving time-varying zero-finding problems: A control-theoretic approach. IEEE Trans. Autom. Control 2017, 62, 992–997. [CrossRef]
    Paper not yet in RePEc: Add citation now
  16. Kalman, R.E. Contributions to the theory of optimal control. Bol. Soc. Mat. Mex. 1960, 5, 102–119.
    Paper not yet in RePEc: Add citation now
  17. Katsikis, V.N.; Stanimirović, P.S.; Mourtas, S.D.; Li, S.; Cao, X. Generalized Inverses: Algorithms and Applications; Mathematics Research Developments, Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2021; Chapter towards Higher Order Dynamical Systems; pp. 207–239.
    Paper not yet in RePEc: Add citation now
  18. Kornilova, M.; Kovalnogov, V.; Fedorov, R.; Zamaleev, M.; Katsikis, V.N.; Mourtas, S.D.; Simos, T.E. Zeroing neural network for pseudoinversion of an arbitrary time-varying matrix based on singular value decomposition. Mathematics 2022, 10, 1208. [CrossRef]

  19. Laub, A. A Schur method for solving algebraic Riccati equations. IEEE Trans. Autom. Control 1979, 24, 913–921. [CrossRef]
    Paper not yet in RePEc: Add citation now
  20. Li, W.; Li, Z. A family of iterative methods for computing the approximate inverse of a square matrix and inner inverse of a non-square matrix. Appl. Math. Comput. 2010, 215, 3433–3442. [CrossRef]
    Paper not yet in RePEc: Add citation now
  21. Liu, H.; Wang, T.; Guo, D. Design and validation of zeroing neural network to solve time-varying algebraic Riccati equation. IEEE Access 2020, 8, 211315–211323. [CrossRef]
    Paper not yet in RePEc: Add citation now
  22. Liu, X.; Jin, H.; Yu, Y. Higher-order convergent iterative method for computing the generalized inverse and its application to Toeplitz matrices. Linear Algebra Appl. 2013, 439, 1635–1650. [CrossRef]
    Paper not yet in RePEc: Add citation now
  23. Mourtas, S.D.; Kasimis, C. Exploiting mean-variance portfolio optimization problems through zeroing neural networks. Mathematics 2022, 10, 3079. [CrossRef]

  24. Ohtsuka, T. A recursive elimination method for finite-horizon optimal control problems of discrete-time rational systems. IEEE Trans. Autom. Control 2014, 59, 3081–3086. [CrossRef]
    Paper not yet in RePEc: Add citation now
  25. Oshman, Y.; Bar-Itzhack, I. Eigenfactor solution of the matrix Riccati equation–A continuous square root algorithm. IEEE Trans. Autom. Control 1985, 30, 971–978. [CrossRef]
    Paper not yet in RePEc: Add citation now
  26. Prach, A.; Kayacan, E.; Bernstein, D.S. An experimental evaluation of the forward propagating Riccati equation to nonlinear control of the Quanser 3 DOF Hover testbed. In Proceedings of the 2016 American Control Conference, ACC 2016, Boston, MA, USA, 6–8 July 2016; pp. 3710–3715. [CrossRef]
    Paper not yet in RePEc: Add citation now
  27. Prach, A.; Tekinalp, O.; Bernstein, D.S. A numerical comparison of frozen-time and forward-propagating Riccati equations for stabilization of periodically time-varying systems. In Proceedings of the American Control Conference, Portland, OR, USA, 4–6 June 2014; pp. 5633–5638.
    Paper not yet in RePEc: Add citation now
  28. Qin, B.; Sun, H.; Ma, J.; Li, W.; Ding, T.; Wang, Z.; Zomaya, A.Y. Robust H∞ control of doubly fed wind generator via state-dependent Riccati equation technique. IEEE Trans. Power Syst. 2019, 34, 2390–2400. [CrossRef]
    Paper not yet in RePEc: Add citation now
  29. Rigatos, G.; Busawon, K.; Pomares, J.; Abbaszadeh, M. Nonlinear optimal control for the wheeled inverted pendulum system. Robotica 2020, 38, 29–47. [CrossRef]
    Paper not yet in RePEc: Add citation now
  30. Saiery, M.; Katebi, J.; Lakestani, M. Control of time-varying systems based on forward Riccati formulation in hybrid functions domain. Int. J. Control. 2022. [CrossRef]
    Paper not yet in RePEc: Add citation now
  31. Simos, T.E.; Katsikis, V.N.; Mourtas, S.D.; Stanimirović, P.S. Finite-time convergent zeroing neural network for solving timevarying algebraic Riccati equations. J. Frankl. Inst. 2022. [CrossRef]
    Paper not yet in RePEc: Add citation now
  32. Simos, T.E.; Katsikis, V.N.; Mourtas, S.D.; Stanimirović, P.S. Unique non-negative definite solution of the time-varying algebraic Riccati equations with applications to stabilization of LTV systems. Math. Comput. Simul. 2022, 202, 164–180. [CrossRef] Mathematics 2022, 10, 4490 16 of 16

  33. Simos, T.E.; Katsikis, V.N.; Mourtas, S.D.; Stanimirović, P.S.; Gerontitis, D. A higher-order zeroing neural network for pseudoinversion of an arbitrary time-varying matrix with applications to mobile object localization. Inf. Sci. 2022, 600, 226–238. [CrossRef]
    Paper not yet in RePEc: Add citation now
  34. Stanimirović, P.S.; Katsikis, V.N.; Li, S. Higher-order ZNN dynamics. Neural Process. Lett. 2020, 51, 697–721. [CrossRef]
    Paper not yet in RePEc: Add citation now
  35. Stanimirović, P.S.; Srivastava, S.; Gupta, D.K. From Zhang neural network to scaled hyperpower iterations. J. Comput. Appl. Math. 2018, 331, 133–155. [CrossRef]
    Paper not yet in RePEc: Add citation now
  36. Weiguo, L.; Juan, L.; Tiantian, Q. A family of iterative methods for computing Moore-Penrose inverse of a matrix. Linear Algebra Appl. 2013, 438, 47–56. [CrossRef]
    Paper not yet in RePEc: Add citation now
  37. Zhang, Y.; Ge, S.S. Design and analysis of a general recurrent neural network model for time-varying matrix inversion. IEEE Trans. Neural Netw. 2005, 16, 1477–1490. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. A fuzzy activation function based zeroing neural network for dynamic Arnold map image cryptography. (2025). Lei, Xiaoyang ; Jin, Jie ; Li, Zhijing ; Chen, Chaoyang.
    In: Mathematics and Computers in Simulation (MATCOM).
    RePEc:eee:matcom:v:230:y:2025:i:c:p:456-469.

    Full description at Econpapers || Download paper

  2. Advances in risk management: optimum investment portfolios in tanker shipping. (2024). Meng, Bin ; Zhang, Xin ; Haralambides, Hercules ; Kuang, Haibo ; Chen, Shuiyang.
    In: Maritime Economics & Logistics.
    RePEc:pal:marecl:v:26:y:2024:i:4:d:10.1057_s41278-024-00292-2.

    Full description at Econpapers || Download paper

  3. Zeroing neural network approaches for computing time-varying minimal rank outer inverse. (2024). Cao, Xinwei ; Katsikis, Vasilios N ; Mourtas, Spyridon D ; Li, Shuai ; Stanimirovi, Predrag S ; Mosi, Dijana.
    In: Applied Mathematics and Computation.
    RePEc:eee:apmaco:v:465:y:2024:i:c:s0096300323005817.

    Full description at Econpapers || Download paper

  4. Hermitian Solutions of the Quaternion Algebraic Riccati Equations through Zeroing Neural Networks with Application to Quadrotor Control. (2023). Katsikis, Vasilios N ; Simos, Theodore E ; Mourtas, Spyridon D ; ben Aoun, Sondess ; Alshammari, Obaid ; Kchaou, Mourad ; Jerbi, Houssem.
    In: Mathematics.
    RePEc:gam:jmathe:v:12:y:2023:i:1:p:15-:d:1304270.

    Full description at Econpapers || Download paper

  5. Towards Higher-Order Zeroing Neural Networks for Calculating Quaternion Matrix Inverse with Application to Robotic Motion Tracking. (2023). Katsikis, Vasilios N ; Simos, Theodore E ; Mourtas, Spyridon D ; Abbassi, Rabeh ; Kchaou, Mourad ; Jerbi, Houssem.
    In: Mathematics.
    RePEc:gam:jmathe:v:11:y:2023:i:12:p:2756-:d:1173657.

    Full description at Econpapers || Download paper

  6. H∞.. admissibilization for time-varying delayed nonlinear singular impulsive jump systems based on memory state-feedback control. (2023). Wang, Zekun ; Liu, Yiqun ; Lu, Junwei ; Zhao, Junsheng ; Zhuang, Guangming.
    In: Applied Mathematics and Computation.
    RePEc:eee:apmaco:v:447:y:2023:i:c:s0096300323000905.

    Full description at Econpapers || Download paper

  7. Time-varying minimum-cost portfolio insurance problem via an adaptive fuzzy-power LVI-PDNN. (2023). Cao, Xinwei ; Katsikis, Vasilios N ; Mourtas, Spyridon D ; Li, Shuai ; Stanimirovi, Predrag S.
    In: Applied Mathematics and Computation.
    RePEc:eee:apmaco:v:441:y:2023:i:c:s0096300322007688.

    Full description at Econpapers || Download paper

  8. Computation of Time-Varying {2,3}- and {2,4}-Inverses through Zeroing Neural Networks. (2022). Li, Xingyuan ; Katsikis, Vasilios N ; Simos, Theodore E ; Mourtas, Spyridon D ; Lin, Chia-Liang.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:24:p:4759-:d:1003558.

    Full description at Econpapers || Download paper

  9. Towards Higher-Order Zeroing Neural Network Dynamics for Solving Time-Varying Algebraic Riccati Equations. (2022). Katsikis, Vasilios N ; Simos, Theodore E ; Mourtas, Spyridon D ; Omri, Mohamed ; Ladhar, Lotfi ; Jerbi, Houssem ; Alharbi, Hadeel.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:23:p:4490-:d:986833.

    Full description at Econpapers || Download paper

  10. Portfolio Insurance through Error-Correction Neural Networks. (2022). Kovalnogov, Vladislav N ; Katsikis, Vasilios N ; Simos, Theodore E ; Mourtas, Spyridon D ; Fedorov, Ruslan V ; Generalov, Dmitry A ; Chukalin, Andrey V.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:18:p:3335-:d:914983.

    Full description at Econpapers || Download paper

  11. Exploiting Mean-Variance Portfolio Optimization Problems through Zeroing Neural Networks. (2022). Mourtas, Spyridon D ; Kasimis, Chrysostomos.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:17:p:3079-:d:898341.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-06 05:08:11 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.