- Abdullah, A.; Sopian, W.; Arasid, W.; Nandiyanto, A.; Danuwijaya, A.; Abdullah, C. Short-term peak load forecasting using PSO-ANN methods: The case of Indonesia. J. Eng. Sci. Technol. 2018, 13, 2395â2404.
Paper not yet in RePEc: Add citation now
- Abedinia, O.; Amjady, N.; Zareipour, H. A new feature selection technique for load and price forecast of electrical power systems. IEEE Trans. Power Syst. 2016, 32, 62â74. [CrossRef]
Paper not yet in RePEc: Add citation now
Ahmad, W.; Ayub, N.; Ali, T.; Irfan, M.; Awais, M.; Shiraz, M.; Glowacz, A. Towards short term electricity load forecasting using improved support vector machine and extreme learning machine. Energies 2020, 13, 2907. [CrossRef]
- Aimal, S.; Javaid, N.; Rehman, A.; Ayub, N.; Sultana, T.; Tahir, A. Data analytics for electricity load and price forecasting in the smart grid. In Proceedings of the Workshops of the International Conference on Advanced Information Networking and Applications, Matsue, Japan, 27â29 March 2019; pp. 582â591.
Paper not yet in RePEc: Add citation now
- Al-Betar, M.A.; Alyasseri, Z.A.A.; Awadallah, M.A.; Doush, I.A. Coronavirus herd immunity optimizer (CHIO). Neural Comput. Appl. 2021, 33, 5011â5042. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Albahli, S.; Shiraz, M.; Ayub, N. Electricity Price Forecasting for Cloud Computing Using an Enhanced Machine Learning Model. IEEE Access 2020, 8, 200971â200981. [CrossRef]
Paper not yet in RePEc: Add citation now
Aslam, S.; Herodotou, H.; Mohsin, S.M.; Javaid, N.; Ashraf, N.; Aslam, S. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renew. Sustain. Energy Rev. 2021, 144, 110992. [CrossRef]
Aslam, S.; Iqbal, Z.; Javaid, N.; Khan, Z.A.; Aurangzeb, K.; Haider, S.I. Towards efficient energy management of smart buildings exploiting heuristic optimization with real time and critical peak pricing schemes. Energies 2017, 10, 2065. [CrossRef] Sustainability 2021, 13, 12653 26 of 28
- Aurangzeb, K.; Aslam, S.; Mohsin, S.M.; Alhussein, M. A fair pricing mechanism in smart grids for low energy consumption users. IEEE Access 2021, 9, 22035â22044. [CrossRef]
Paper not yet in RePEc: Add citation now
Ayub, N.; Irfan, M.; Awais, M.; Ali, U.; Ali, T.; Hamdi, M.; Alghamdi, A.; Muhammad, F. Big Data Analytics for Short and Medium-Term Electricity Load Forecasting Using an AI Techniques Ensembler. Energies 2020, 13, 5193. [CrossRef]
Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M. Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies 2018, 11, 1636. [CrossRef]
Carmichael, R.; Gross, R.; Hanna, R.; Rhodes, A.; Green, T. The Demand Response Technology Cluster: Accelerating UK residential consumer engagement with time-of-use tariffs, electric vehicles and smart meters via digital comparison tools. Renew. Sustain. Energy Rev. 2021, 139, 110701. [CrossRef]
- Chen, K.; Chen, K.; Wang, Q.; He, Z.; Hu, J.; He, J. Short-term load forecasting with deep residual networks. IEEE Trans. Smart Grid 2018, 10, 3943â3952. [CrossRef]
Paper not yet in RePEc: Add citation now
- Chitsaz, H.; Zamani-Dehkordi, P.; Zareipour, H.; Parikh, P. Electricity price forecasting for operational scheduling of behind-themeter storage systems. IEEE Trans. Smart Grid 2017, 9, 6612â6622. [CrossRef]
Paper not yet in RePEc: Add citation now
- Cupp, J.; Beehler, M. Implementing smart grid communications. TECHBriefs 2008, 4, 5â8.
Paper not yet in RePEc: Add citation now
- Deng, Z.; Wang, B.; Xu, Y.; Xu, T.; Liu, C.; Zhu, Z. Multi-scale convolutional neural network with time-cognition for multi-step short-term load forecasting. IEEE Access 2019, 7, 88058â88071. [CrossRef]
Paper not yet in RePEc: Add citation now
Dileep, G. A survey on smart grid technologies and applications. Renew. Energy 2020, 146, 2589â2625. [CrossRef]
Dong, Y.; Zhang, Z.; Hong, W.C. A hybrid seasonal mechanism with a chaotic cuckoo search algorithm with a support vector regression model for electric load forecasting. Energies 2018, 11, 1009. [CrossRef]
- Eapen, R.; Simon, S. Performance analysis of combined similar day and day ahead short term electrical load forecasting using sequential hybrid neural networks. IETE J. Res. 2019, 65, 216â226. [CrossRef]
Paper not yet in RePEc: Add citation now
Fallah, S.; Deo, R.; Shojafar, M.; Conti, M.; Shamshirband, S. Computational intelligence approaches for energy load forecasting in smart energy management grids: State of the art, future challenges, and research directions. Energies 2018, 11, 596. [CrossRef]
Fan, G.F.; Peng, L.L.; Hong, W.C. Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model. Appl. Energy 2018, 224, 13â33. [CrossRef]
Ghadimi, N.; Akbarimajd, A.; Shayeghi, H.; Abedinia, O. Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting. Energy 2018, 161, 130â142. [CrossRef]
Ghasemi, A.; Shayeghi, H.; Moradzadeh, M.; Nooshyar, M. A novel hybrid algorithm for electricity price and load forecasting in smart grids with demand-side management. Appl. Energy 2016, 177, 40â59. [CrossRef] Sustainability 2021, 13, 12653 27 of 28
- Ghassemi, A.; Bavarian, S.; Lampe, L. Cognitive radio for smart grid communications. In Proceedings of the 2010 First IEEE International Conference on Smart Grid Communications, Gaithersburg, MD, USA, 4â6 October 2010; pp. 297â302. Sustainability 2021, 13, 12653 28 of 28
Paper not yet in RePEc: Add citation now
- Ghosal, A.; Conti, M. Key management systems for smart grid advanced metering infrastructure: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 2831â2848. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hor, C.L.; Watson, S.; Majithia, S. Analyzing the impact of weather variables on monthly electricity demand. IEEE Trans. Power Syst. 2005, 20, 2078â2085. [CrossRef]
Paper not yet in RePEc: Add citation now
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489â501. [CrossRef]
Paper not yet in RePEc: Add citation now
Jin, X.B.; Zheng, W.Z.; Kong, J.L.; Wang, X.Y.; Bai, Y.T.; Su, T.L.; Lin, S. Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization. Energies 2021, 14, 1596. [CrossRef]
- Jindal, A.; Singh, M.; Kumar, N.; Response, C.A. Scheme for Peak Load Reduction in Smart Grid. IEEE Trans. Ind. Electron. 2018, 65, 8993â9004. [CrossRef]
Paper not yet in RePEc: Add citation now
Kabalci, Y. A survey on smart metering and smart grid communication. Renew. Sustain. Energy Rev. 2016, 57, 302â318. [CrossRef]
- Kai, C.; Li, H.; Xu, L.; Li, Y.; Jiang, T. Energy-efficient device-to-device communications for green smart cities. IEEE Trans. Ind. Inform. 2018, 14, 1542â1551. [CrossRef]
Paper not yet in RePEc: Add citation now
Keles, D.; Scelle, J.; Paraschiv, F.; Fichtner, W. Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks. Appl. Energy 2016, 162, 218â230. [CrossRef]
- Ko, J.; Terzis, A.; Dawson-Haggerty, S.; Culler, D.; Hui, J.; Levis, P. Connecting low-power and lossy networks to the internet. IEEE Commun. Mag. 2011, 49, 96â101.
Paper not yet in RePEc: Add citation now
- Koohi-Fayegh, S.; Rosen, M. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [CrossRef]
Paper not yet in RePEc: Add citation now
Kuo, P.H.; Huang, C.J. An electricity price forecasting model by hybrid structured deep neural networks. Sustainability 2018, 10, 1280. [CrossRef]
Lago, J.; De Ridder, F.; De Schutter, B. Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms. Appl. Energy 2018, 221, 386â405. [CrossRef]
Lago, J.; De Ridder, F.; Vrancx, P.; De Schutter, B. Forecasting day-ahead electricity prices in Europe: The importance of considering market integration. Appl. Energy 2018, 211, 890â903. [CrossRef]
- Lahouar, A.; Slama, J. Day-ahead load forecast using random forest and expert input selection. Energy Convers. Manag. 2015, 103, 1040â1051. [CrossRef]
Paper not yet in RePEc: Add citation now
Li, Y.; Kubicki, S.; Guerriero, A.; Rezgui, Y. Review of building energy performance certification schemes towards future improvement. Renew. Sustain. Energy Rev. 2019, 113, 109244. [CrossRef]
- Li, Z.L.; Xia, J.; Liu, A.; Li, P. States prediction for solar power and wind speed using BBA-SVM. IET Renew. Power Gener. 2019, 13, 1115â1122. [CrossRef]
Paper not yet in RePEc: Add citation now
Liang, Y.; Niu, D.; Hong, W.C. Short term load forecasting based on feature extraction and improved general regression neural network model. Energy 2019, 166, 653â663. [CrossRef]
Liu, Y.; Wang, W.; Ghadimi, N. Electricity load forecasting by an improved forecast engine for building level consumers. Energy 2017, 139, 18â30. [CrossRef]
- Liu, Y.; Yuen, C.; Huang, S.; Hassan, N.; Wang, X.; Xie, S. Peak-to-average ratio constrained demand-side management with consumerâs preference in residential smart grid. IEEE J. Sel. Top. Signal Process. 2014, 8, 1084â1097. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ma, Z.; Zhong, H.; Xie, L.; Xia, Q.; Kang, C. Month ahead average daily electricity price profile forecasting based on a hybrid nonlinear regression and SVM model: An ERCOT case study. J. Mod. Power Syst. Clean Energy 2018, 6, 281â291. [CrossRef]
Paper not yet in RePEc: Add citation now
Mahmood, A.; Javaid, N.; Razzaq, S. A review of wireless communications for smart grid. Renew. Sustain. Energy Rev. 2015, 41, 248â260. [CrossRef]
- Morley, S.; Brito, T.; Welling, D. Measures of model performance based on the log accuracy ratio. Space Weather 2018, 16, 69â88. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mujeeb, S.; Javaid, N.; Akbar, M.; Khalid, R.; Nazeer, O.; Khan, M. Big data analytics for price and load forecasting in smart grids. In Proceedings of the International Conference on Broadband and Wireless Computing, Communication and Applications, Taichung, Taiwan, 27â29 October 2018; pp. 77â87.
Paper not yet in RePEc: Add citation now
Pérez-Chacón, R.; Luna-Romera, J.M.; Troncoso, A.; MartÃnez-lvarez, F.; Riquelme, J.C. Big data analytics for discovering electricity consumption patterns in smart cities. Energies 2018, 11, 683. [CrossRef]
- Patil, M.; Deshmukh, S.; Agrawal, R. Electric power price forecasting using data mining techniques. In Proceedings of the 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), Pune, India, 24â26 February 2017; pp. 217â223.
Paper not yet in RePEc: Add citation now
- Rafiei, M.; Niknam, T.; Khooban, M.H. Probabilistic forecasting of hourly electricity price by generalization of ELM for usage in improved wavelet neural network. IEEE Trans. Ind. Inform. 2016, 13, 71â79. [CrossRef]
Paper not yet in RePEc: Add citation now
- Rahimi, F.; Ipakchi, A. Demand response as a market resource under the smart grid paradigm. IEEE Trans. Smart Grid 2010, 1, 82â88. [CrossRef]
Paper not yet in RePEc: Add citation now
Raviv, E.; Bouwman, K.; Van Dijk, D. Forecasting day-ahead electricity prices: Utilizing hourly prices. Energy Econ. 2015, 50, 227â239. [CrossRef]
- Rojas-DomÃnguez, A.; Padierna, L.C.; Valadez, J.M.C.; Puga-Soberanes, H.J.; Fraire, H.J. Optimal hyper-parameter tuning of SVM classifiers with application to medical diagnosis. IEEE Access 2017, 6, 7164â7176. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shayeghi, H.; Ghasemi, A.; Moradzadeh, M.; Nooshyar, M. Simultaneous day-ahead forecasting of electricity price and load in smart grids. Energy Convers. Manag. 2015, 95, 371â384. [CrossRef]
Paper not yet in RePEc: Add citation now
- Siano, P. Demand response and smart gridsâA survey. Renew. Sustain. Energy Rev. 2014, 30, 461â478. [CrossRef]
Paper not yet in RePEc: Add citation now
Ugurlu, U.; Oksuz, I.; Tas, O. Electricity price forecasting using recurrent neural networks. Energies 2018, 11, 1255. [CrossRef]
- Vaccaro, A.; Villacci, D. Performance analysis of low earth orbit satellites for power system communication. Electric Power Syst. Res. 2005, 73, 287â294. [CrossRef]
Paper not yet in RePEc: Add citation now
- Vadari, S. Electric System Operations: Evolving to the Modern Grid; Artech House: Braga, Portugal, 2020.
Paper not yet in RePEc: Add citation now
- Varshney, H.; Sharma, A.; Kumar, R. A hybrid approach to price forecasting incorporating exogenous variables for a day ahead electricity market. In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 4â6 July 2016; pp. 1â6.
Paper not yet in RePEc: Add citation now
- Wang, J.; Liu, F.; Song, Y.; Zhao, J. A novel model: Dynamic choice artificial neural network (DCANN) for an electricity price forecasting system. Appl. Soft Comput. 2016, 48, 281â297. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, K.; Xu, C.; Zhang, Y.; Guo, S.; Zomaya, A. Robust big data analytics for electricity price forecasting in the smart grid. IEEE Trans. Big Data 2017, 5, 34â45. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, L.; Zhang, Z.; Chen, J. Short-term electricity price forecasting with stacked denoising autoencoders. IEEE Trans. Power Syst. 2016, 32, 2673â2681. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, Z.; Wang, Y.; Zeng, R.; Srinivasan, R.; Ahrentzen, S. Random Forest based hourly building energy prediction. Energy Build. 2018, 171, 11â25. [CrossRef]
Paper not yet in RePEc: Add citation now
Yang, W.; Wang, J.; Niu, T.; Du, P. A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting. Appl. Energy 2019, 235, 1205â1225. [CrossRef]
- Yang, W.; Wang, J.; Niu, T.; Du, P. A novel system for multi-step electricity price forecasting for electricity market management. Appl. Soft Comput. 2020, 88, 106029. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, X.; Wang, J.; Zhang, K. Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm. Electr. Power Syst. Res. 2017, 146, 270â285. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhou, L.; Wu, D.; Chen, J.; Dong, Z. Greening the smart cities: Energy-efficient massive content delivery via D2D communications. IEEE Trans. Ind. Inform. 2017, 14, 1626â1634. [CrossRef]
Paper not yet in RePEc: Add citation now